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Cyclic Subgroup Separability of
HNN-Extensions with Cyclic Associated
Subgroups
Goansu Kim and C. Y. Tang

Abstract. We derive a necessary and sufficient condition for HNN-extensions of cyclic subgroup separable
groups with cyclic associated subgroups to be cyclic subgroup separable. Applying this, we explicitly charac-
terize the residual finiteness and the cyclic subgroup separability of HNN-extensions of abelian groups with
cyclic associated subgroups. We also consider these residual properties of HNN-extensions of nilpotent groups
with cyclic associated subgroups.

1 Introduction

A group G is said to be cyclic subgroup separable, or briefly πc, if for each pair of elements
x, y ∈ G such that y /∈ 〈x〉, there exists a normal subgroup N of finite index in G, briefly
NC f G, such that y /∈ N〈x〉. Since every πc group is residually finite (RF), πc is a stronger
property than RF. On the other hand it is much weaker than subgroup separability. Sub-
group separability is such a strong property that only very few classes of groups have this
property. Cyclic subgroup separability is possessed by a much larger classes of groups. For-
tunately in the study of residual properties and separability properties of generalized free
products with cyclic amalgamation and HNN-extensions with cyclic associated subgroups
only πc is needed instead of subgroup separability (see [6], [5], [13]). The concept was also
useful in the study of 1–relator groups [1], [2]. In [14], Thurston asked whether Kleinian
groups are subgroup separable. In fact he asked whether these groups are separable with
respect to any special subgroups. Subgroup separability of Kleinian groups is probably
very difficult to prove. Maybe it is more feasible to prove that they are πc. Separability
properties of HNN-extensions were not much known, since one of the simplest type of
HNN-extensions, the Baumslag-Solitar group, 〈b, t : t−1b2t = b3〉 is not even residually fi-
nite. However, in [11], [7], Stebe and Meskin gave characterizations for 1-relator groups of
the form 〈b, t : t−1bβt = bλ〉 to be πc or residually finite, respectively. Hence the residual
finiteness and cyclic subgroup separability of HNN-extensions of a cyclic group are known.
Andreadakis, Raptis and Varsos [3] characterized the residual finiteness of HNN-extensions
of abelian groups. For HNN-extensions with cyclic associated subgroups, Resenberger and
Sasse [10] proved a criterion for such HNN-extensions to be RF or πc. In [5], Kim and Tang
considered the conjugacy separability of HNN-extensions of abelian groups. In this paper
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we derive a simple necessary and sufficient condition for HNN-extensions of πc groups
with cyclic associated subgroups to be πc (Theorem 2.9). Applying this result we can easily
characterize HNN-extensions of abelian group with cyclic associated subgroups to be resid-
ually finite or πc (Theorem 2.16 and Corollary 2.12). We also consider those properties for
HNN-extensions of nilpotent groups.

2 Main Results

HNN-extensions of residually finite (or πc) groups with finite associated subgroups are
residually finite (or πc, respectively). In this paper we shall consider whether HNN-exten-
sions of finitely generated nilpotent groups with infinite cyclic associated subgroups are
residually finite or πc. For HNN-extensions of cyclic groups, we have the followings:

Theorem 2.1 ([11]) The group 〈b, t : t−1bβt = bγ〉 is πc if and only if β = ±γ.

Theorem 2.2 ([7]) The group 〈b, t : t−1bβt = bγ〉 is residually finite if and only if |β| = 1
or |γ| = 1 or β = ±γ.

A useful criterion for HNN-extensions to be πc is the following:

Theorem 2.3 ([4]) Let H,K < A such that φ : H → K is an isomorphism. Let ∆ =
{PC f A : φ(P ∩H) = P ∩ K}. Assume that

(a)
⋂

P∈∆HP = H and
⋂

P∈∆ KP = K,
(b)
⋂

P∈∆ P〈x〉 = 〈x〉 for all x ∈ A.

Then the HNN-extension G = 〈A, t : t−1ht = φ(h), h ∈ H〉 is πc.

In [8], Niblo defined that a group A has regular quotients at {h, k} if there exists a positive
integer r, such that for each positive integer s, there exists NC f A such that N ∩ 〈h〉 = 〈hrs〉
and N ∩ 〈k〉 = 〈krs〉. He found a condition for a free group to have regular quotients at
{h, k} [8, Proposition 1.1].

Definition 2.4 Let A be a group and let h, k ∈ A be of infinite order. Then A is said to be
quasi-regular at {h, k} if, for each given integer ε > 0, there exist an integer λε > 0 and
NεC f A, depending on ε, such that Nε ∩ 〈h〉 = 〈hελε〉 and Nε ∩ 〈k〉 = 〈kελε〉.

Remark The followings are some simple facts about regular quotients and quasi-regular-
ity.

1. If A has regular quotient at {h, k} then A is quasi-regular at {h, k}.
2. A has regular quotients at {h, h} if and only if A is weak 〈h〉-potent [12].
3. If A is weak 〈h〉-potent and h ∼A k, then A has regular quotients at {h, k}. Hence A is

quasi-regular at {h, k}.
4. If A is quasi-regular at {h, k} and 〈h〉 ∩ 〈k〉 6= 1, then we have hs = k±s for some s > 0.

To see this, let hs = kt , where s > 0. By quasi-regularity, there exist an integer λ and
NC f A such that N∩〈h〉 = 〈hλs〉 and N∩〈k〉 = 〈kλs〉. Since hλs = kλt ∈ N∩〈k〉 = 〈kλs〉,
s | t . Similarly t|s. Hence hs = k±s for some s > 0.
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Lemma 2.5 Let A be πc and let h, k ∈ A be of infinite order. Let A be weak 〈h〉-potent and
〈h〉 ∩ 〈k〉 6= 1. Then A is quasi-regular at {h, k} if and only if hδ = k±δ for some δ > 0.

Proof As mentioned before, if A is quasi-regular at {h, k} and 〈h〉∩ 〈k〉 6= 1 then hδ = k±δ

for some δ > 0. Conversely, we suppose hδ = k±δ for some δ > 0. Let ε > 0 be a
given integer. Since A is πc and |k| = ∞, there exists N1C f A such that ki /∈ N1〈kδ〉 for
all 1 ≤ i < δ. Let N1 ∩ 〈k〉 = 〈knδ〉. Since A is weak 〈h〉-potent, we can find N2C f A
such that N2 ∩ 〈h〉 = 〈hnεδλ〉 for some λ. Let N = N1 ∩ N2. Then NC f A and we have
N ∩ 〈h〉 = N1 ∩ 〈hnεδλ〉 = N1 ∩ 〈knεδλ〉 = 〈knεδλ〉 = 〈hnεδλ〉 and N ∩ 〈k〉 = N2 ∩ 〈knδ〉 =
N2 ∩ 〈hnδ〉 = 〈hnεδλ〉. Hence A is quasi-regular at {h, k}.

Let Zi(A), or simply Zi , denote the i-th term of the upper central series of A and let
Z(A) = Z1(A) be the center of A.

Lemma 2.6 Let A be a finitely generated nilpotent group. Let h̄, k̄ ∈ Z(Ā) be of infinite
order, where Ā = A/Zi. If 〈h̄〉 ∩ 〈k̄〉 = 1 or h̄δ = k̄±δ for some δ > 0, then A is quasi-regular
at {h, k}.

Proof (1) Suppose 〈h̄〉 ∩ 〈k̄〉 = 1, where Ā = A/Zi . Let ε > 0 be a given integer. Since
h̄, k̄ ∈ Z(Ā), 〈h̄ε〉〈k̄ε〉 C Ā. Let Ã = Ā/〈h̄ε〉〈k̄ε〉. Since Ã is residually finite, we can find
ÑC f Ã such that Ñ ∩〈h̃〉〈k̃〉 = 1. Let N be the preimage of Ñ in A. Then NC f A, N ∩〈h〉 =
〈hε〉 and N ∩ 〈k〉 = 〈kε〉. Hence A is quasi-regular at {h, k}.

(2) Suppose h̄δ = k̄±δ for some δ > 0, where Ā = A/Zi . Let ε > 0 be a given integer.
Since h̄, k̄ ∈ Z(Ā), 〈h̄εδ〉 = 〈k̄εδ〉C Ā. Let Ã = Ā/〈h̄εδ〉. Then, as before, we can find NC f A
such that N ∩ 〈h〉 = 〈hεδ〉 and N ∩ 〈k〉 = 〈kεδ〉. Hence A is quasi-regular at {h, k}.

Lemma 2.5 and 2.6 imply the following:

Corollary 2.7 Let A be a finitely generated nilpotent group. Let h, k ∈ Z(A) be of infinite
order. Then A is quasi-regular at {h, k} if and only if 〈h〉 ∩ 〈k〉 = 1 or hδ = k±δ for some
δ > 0.

Here are some other easy examples of quasi-regularity of nilpotent groups.

Lemma 2.8 Let A be a finitely generated nilpotent group. Let h, k ∈ A be of infinite order.

(1) If h ∼A k then A is quasi-regular at {h, k}.
(2) Suppose 〈h, k〉 is a torsion free normal subgroup of A. Then A is quasi-regular at {h, k} if

and only if 〈h〉 ∩ 〈k〉 = 1 or hδ = k±δ for some δ > 0.

Proof (1) Since A is finitely generated nilpotent, A is weak 〈h〉-potent. Hence, by Re-
mark (3), A is quasi-regular at {h, k} if h ∼A k.

(2) By Lemma 2.5 it suffices to show that A is quasi-regular at {h, k} if 〈h〉 ∩ 〈k〉 = 1
and 〈h, k〉 is a torsion-free normal subgroup of A. Let B = 〈h, k〉. Then Bε C A for every
ε > 0. We shall show Bε ∩ 〈h〉 = 〈hε〉 by induction on the nilpotency class of B. If B is
abelian then it clearly holds. Suppose B is of class c > 1. Since B = 〈h, k〉 is torsion-free,
we will prove that if 〈h〉〈k〉 ∩ Zc−1(B) 6= 1 then B = 〈Zc−1(B), y〉 for some y ∈ B. Suppose
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hnkm ∈ Zc−1(B) for n 6= 0 6= m then we may assume that (n,m) = 1. This is because
B is torsion-free and B/Zc−1(B) is abelian. Let 1 = ns + mt for some integers s, t . Thus
hZc−1(B) = hns+mt Zc−1(B) = (k−sht )mZc−1(B). Similarly, kZc−1(B) = (k−sht )−nZc−1(B).
Hence B = 〈h, k〉 = 〈Zc−1(B), k−sht〉 has nilpotency class ≤ c − 1 [9, p. 135]. Also if
hn ∈ Zc−1(B) (or kn ∈ Zc−1(B)) for n 6= 0 then h ∈ Zc−1(B). Hence B = 〈Zc−1(B), k〉 has
nilpotency class ≤ c − 1. This implies 〈h〉〈k〉 ∩ Zc−1(B) = 1. Hence 〈h̄〉 ∩ 〈k̄〉 = 1, where
B̄ = B/Zc−1(B). Therefore, by induction, B̄ε ∩ 〈h̄〉 = 〈h̄ε〉. This implies Bε ∩ 〈h〉 = 〈hε〉.
Similarly Bε ∩ 〈k〉 = 〈kε〉.

Let Ã = A/Bε. Then |h̃| = |k̃| = ε. Since Ã is residually finite, there exists ÑC f Ã
such that Ñ ∩ 〈h̃〉〈k̃〉 = 1. Let N be the preimage of Ñ in A. Then N ∩ 〈h〉 = 〈hε〉 and
N ∩ 〈k〉 = 〈kε〉, hence A is quasi-regular at {h, k}.

We are now ready to prove our main theorem.

Theorem 2.9 Let A be πc and let h, k ∈ A be of infinite order. Then G = 〈A, t : t−1ht = k〉
is πc if and only if A is quasi-regular at {h, k}.

Proof Suppose G is πc. Let ε > 0 be a given integer. Since G is πc, there exists MC f G
such that hi /∈ M〈hε〉 and ki /∈ M〈kε〉 for all 1 ≤ i < ε. Let M ∩ 〈h〉 = 〈hελ〉 for some
λ. Since h ∼G k,M ∩ 〈k〉 = 〈kελ〉. Let M ∩ A = N . Then NC f A, N ∩ 〈h〉 = 〈hελ〉 and
N ∩ 〈k〉 = 〈kελ〉. Hence A is quasi-regular at {h, k}.

Conversely, suppose A is quasi-regular at {h, k}. We need to show that A satisfies (a)
and (b) of Theorem 2.3. Let a, x ∈ A such that a /∈ 〈x〉. Since A is πc, there exists N1C f A
such that a /∈ N1〈x〉. Let N1 ∩ 〈h〉 = 〈hn1〉, N1 ∩ 〈k〉 = 〈kn2〉 and ε = n1n2. By quasi-
regularity, there exist an integer λ and N2C f A such that N2 ∩ 〈h〉 = 〈hλε〉 and N2 ∩ 〈k〉 =
〈kλε〉. Let Na = N1 ∩ N2. Then a /∈ Na〈x〉, Na ∩ 〈h〉 = 〈hλε〉 and Na ∩ 〈k〉 = 〈kλε〉. Thus
(a) and (b) of Theorem 2.3 hold. Hence G is πc.

The above result together with Lemmas 2.5 and 2.6 and Corollary 2.7 implies:

Corollary 2.10 Let A be a finitely generated nilpotent group. Let h, k ∈ A be of infinite order
such that 〈h〉 ∩ 〈k〉 6= 1. Then G = 〈A, t : t−1ht = k〉 is πc if and only if hδ = k±δ for some
δ > 0.

Corollary 2.11 Let A be a finitely generated nilpotent group. Let h̄, k̄ ∈ Z(Ā) be of in-
finite order, where Ā = A/Zi. If 〈h̄〉 ∩ 〈k̄〉 = 1 or h̄δ = k̄±δ for some δ > 0, then
G = 〈A, t : t−1ht = k〉 is πc.

Corollary 2.12 Let A be a finitely generated nilpotent group. Let h, k ∈ Z(A) be of infinite
order. Then G = 〈A, t : t−1ht = k〉 is πc if and only if 〈h〉 ∩ 〈k〉 = 1 or hδ = k±δ for some
δ > 0.

We also have the following from Lemma 2.8.

Corollary 2.13 Let A be a finitely generated nilpotent group. Let h, k ∈ A be of infinite order
and let G = 〈A, t : t−1ht = k〉.
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(1) If h ∼A k then G is πc.
(2) Suppose 〈h, k〉C A. Then G is πc if and only if 〈h〉∩〈k〉 = 1 or hδ = k±δ for some δ > 0.

From now on, we consider the residual finiteness of HNN-extensions.

Lemma 2.14 Suppose A is not a cyclic group and Z(A) 6= 1. Let h ∈ A be of infinite order.
Then G = 〈A, t : t−1hδt = h〉 is not residually finite if |δ| > 1.

Proof Let |δ| > 1. If 〈h〉 is not isolated in A, say hi = wα for w ∈ A\〈h〉 and |α| > 1, then
the subgroup 〈w, t : t−1wαδt = wα〉 of G is not residually finite by Theorem 2.2. Hence G
is not residually finite. Thus we can assume that 〈h〉 is isolated in A for the rest of the proof.

Suppose there exists w ∈ Z(A)\〈h〉. Since |δ| > 1, g = [t−1ht,w] 6= 1. If G is residually
finite then there exists a finite homomorphic image Ḡ of G with ḡ 6= 1 6= h̄. Let n = |h̄|.
Since hδ ∼G h, (δ, n) = 1. Therefore, there exist integers λ, µ such that 1 = λδ + µn. Thus
t̄−1h̄t = t̄−1h̄λδ+µnt̄ = t̄−1h̄λδ t̄ = h̄λ. It follows ḡ = [t̄−1h̄t, w̄] = [h̄λ, w̄] = 1, since
w ∈ Z(A). This contradicts the choice of Ḡ, whence G is not residually finite.

Suppose there exists no w ∈ Z(A)\〈h〉. This means 1 6= Z(A) ⊂ 〈h〉. Let Z(A) = 〈hs〉,
where s > 0.

If s = 1 then Z(A) = 〈h〉. Since A is not cyclic and |δ| > 1, we can choose w ∈ A\〈h〉
such that g = [t−1ht,w] 6= 1. Then as before there is no finite homomorphic image Ḡ of
G such that ḡ 6= 1 6= h̄. Hence G is not residually finite.

Let s > 1. Since A is not cyclic, there exists b ∈ A\〈h〉. If |b| = n < ∞ then (bhs)n =
hsn ∈ 〈h〉, where 〈h〉 is isolated. Hence bhs ∈ 〈h〉 and b ∈ 〈h〉, which is impossible. Thus
|b| = ∞. Consider the subgroup B = 〈b, hs, t : [b, hs] = 1, t−1hsδt = hs〉 of G. By [3,
Corollary 3], B is not residually finite. Thus G is not residually finite. This completes the
proof.

Theorem 2.15 Let A be a finitely generated nilpotent group. Let h, k ∈ A be of infinite order
such that 〈h〉 ∩ 〈k〉 6= 1. Then G = 〈A, t : t−1ht = k〉 is residually finite if and only if one of
the following holds:

(i) If A = 〈b〉, h = bα and k = bβ , then |α| = 1 or |β| = 1 or α± β = 0.
(ii) If A is not cyclic then hδ = k±δ for some δ > 0.

Proof By Theorem 2.2, if (i) holds then G is residually finite. For (ii), if hδ = k±δ for some
δ > 0 then, by Corollary 2.10, G is πc, hence G is residually finite.

Conversely suppose G is residually finite. Then (i) holds by Theorem 2.2. If A is not
cyclic, then hλ = kδ for some λ 6= 0 6= δ. Thus t−1hδt = kδ = hλ. Hence 〈h, t〉 =
〈h, t : t−1hδt = hλ〉 < G. Since G is residually finite, 〈h, t〉 is also residually finite. Thus,
by (i), |δ| = 1 or |λ| = 1 or δ = ±λ. Suppose λ = ±1. Then h = k±δ . Hence
G = 〈A, t : t−1k±δt = k〉. Since G is residually finite, by Lemma 2.14 we have |δ| = 1.
Similarly, if |δ| = 1 then |λ| = 1. Hence, in any case, δ = ±λ, and thus hδ = k±δ for some
δ > 0.

Theorem 2.16 Let A be a finitely generated abelian group. Let h, k ∈ A be of infinite or-
der. The HNN-extension G = 〈A, t : t−1ht = k〉 is residually finite if and only if one of the
followings holds:
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(i) If A = 〈b〉, h = bα and k = bβ , then |α| = 1 or |β| = 1 or α± β = 0.
(ii) If A is not cyclic then 〈h〉 ∩ 〈k〉 = 1 or hδ = k±δ for some δ > 0.

Proof Suppose G is residually finite. Then, by Theorem 2.2, (i) holds if A is cyclic. If A is
not cyclic and 〈h〉 ∩ 〈k〉 6= 1 then, by Theorem 2.15, hδ = k±δ for some δ > 0.

Conversely, by Theorem 2.2, (i) implies that G is residually finite. If 〈h〉 ∩ 〈k〉 = 1 or
hδ = k±δ for δ > 0 then, by Corollary 2.12, G is πc. Hence G is residually finite.

Finally we give some examples of non-residually finite HNN-extensions of nilpotent
groups which supplement Corollary 2.10, 2.11 and Theorem 2.15.

Example 1 Let A = 〈a, b : [a, b, a], [a, b, b]〉 be a free nilpotent group of class 2. Let
h = a2[a, b]2 and k = a3[a, b]2. Then 〈h〉 ∩ 〈k〉 = 1. Consider the HNN-extension
G = 〈A, t : t−1ht = k〉. Let g =

[
t−1a[a, b]t, a[a, b]

]
. Then g 6= 1. Suppose G is residually

finite. Then there exists NC f G such that g, h /∈ N . Let N ∩ 〈h〉 = 〈hn〉 for some n.
Thus hn = a2n[a, b]2n ∈ N and kn = a3n[a, b]2n ∈ N . Hence an ∈ N . If n = 2m then
hm = (a2[a, b]2)m = a2m[a2m, b] = an[an, b] ∈ N . Therefore (n, 2) = 1. Thus there exist
integers λ, µ such that 1 = λn +µ2, whence, in Ḡ = G/N , t−1a[a, b]t = t̄−1(a[a, b])2µt̄ =
t̄−1h̄µt̄ = k̄µ. It follows that ḡ =

[
k̄µ, a[a, b]

]
= 1, a contradiction. This implies that G is

not residually finite. We note that A is not quasi-regular at {h, k}, since there are no integer
λ and NC f A such that N ∩ 〈h〉 = 〈h2λ〉 and N ∩ 〈k〉 = 〈k2λ〉.

Example 2 Let A = 〈a, b : [a, b, a], [a, b, b]〉 be as above. Let h = [a, b]2 and k = a.
Then the HNN-extension G = 〈A, t : t−1ht = k〉 is not residually finite as before. Here we
consider g =

[
t−1[a, b]t, a[a, b]

]
. Also A is not quasi-regular at {h, k}.

We note that the subgroup 〈h, k, t : [h, k] = 1, t−1ht = k〉 of G in the above examples is
πc by Corollary 2.13.

3 Criteria for Quasi-Regularity

Example 1, Section 2, shows that, for a finitely generated torsion-free nilpotent group A of
class 2, the HNN-extension G = 〈A, t : t−1ht = k〉 need not be residually finite, whence
not πc, even if 〈h〉 ∩ 〈k〉 = 1. In the example 〈h, k〉 and 〈h〉 are not isolated in A. In
this section we derive some results for A to be quasi-regular at {h, k} when A is a finitely
generated torsion-free nilpotent group. Applying these results we derive some conditions
for the HNN-extension G to be residually finite or πc.

Lemma 3.1 Let A be a finitely generated torsion-free nilpotent group. Let z ∈ Z such that
〈z〉 is isolated and let x ∈ Z2\Z. Then for every ε > 0, 〈xε〉A ∩ 〈z〉 ⊂ 〈zε〉.

Proof Suppose zl ∈ 〈xε〉A. Let g1, . . . , gm ∈ A such that

zl = g−1
1 xk1εg1 · · · g

−1
m xkmεgm = xk1ε[xk1ε, g1] · · · xkmε[xkmε, gm].

Since x ∈ Z2, [x, gi] ∈ Z. This implies

zl = x(k1+···+km)ε
(
[x, g1]k1 · · · [x, gm]km

)ε
.
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Now A is torsion-free and x ∈ Z2\Z. This implies k1+· · ·+km = 0. Moreover 〈z〉 is isolated.
This means [x, g1]k1 · · · [x, gm]km ∈ 〈z〉, whence zl ∈ 〈zε〉. This proves the lemma.

Lemma 3.2 Let A be a finitely generated torsion-free nilpotent group. Let h ∈ Z and k ∈
Z2\Z such that 〈h〉 is isolated. Then for every ε > 0, there exists NεC f A such that Nε ∩ 〈h〉 =
〈hε〉 and Nε ∩ 〈k〉 = 〈kε〉.

Proof Let M = 〈hε〉〈kε〉A. Clearly 〈hε〉, 〈kε〉A ⊂ M. By Lemma 3.1, 〈kε〉A ∩ 〈h〉 ⊂ 〈hε〉.
Hence M ∩ 〈h〉 = 〈hε〉. Suppose ki ∈ M ∩ 〈k〉. Then,

ki = hsε · g−1
1 kt1εg1 · · · g

−1
m ktmεgm

= k(t1+···+tm)ε · hsε[kt1ε, g1] · · · [ktmε, gm],

where g1, . . . , gm ∈ A. This implies, in Ā = A/Z, k̄i = k̄(t1+···+tm)ε. Since Ā is torsion-free
nilpotent, i = (t1 + · · · + tm)ε. It follows that ki ∈ 〈kε〉, whence M ∩ 〈k〉 = 〈kε〉.

Let Ã = A/M. Then |h̃| = |k̃| = ε. Since Ã is residually finite, there exists ÑC f Ã
such that Ñ ∩ 〈h̃〉〈k̃〉 = 1. Let Nε be the preimage of Ñ in A. Then Nε ∩ 〈h〉 = 〈hε〉 and
Nε ∩ 〈k〉 = 〈kε〉.

By Example 2, if 〈h〉 is not isolated then the above lemma fails.

Lemma 3.3 Let A be a finitely generated torsion-free nilpotent group. Let h, k ∈ Z2\Z and
1 6= z ∈ Z such that 〈z〉 is isolated. Suppose hα = kβzδ , where (α, β, δ) = 1. Then for
every integer n > 0, there exists NnC f A such that Nn ∩ 〈h〉 = 〈hn〉 and Nn ∩ 〈k〉 = 〈kn〉 if
(1) δ = ±1, or (2) 〈h〉, 〈k〉 are isolated.

Proof We first note that [h, k] = 1. This is because hα = kβzδ with z ∈ Z implies
[hα, kβ] = 1. Now h, k ∈ Z2 implies 1 = [hα, kβ] = [h, k]αβ . Since A is torsion-free,
[h, k] = 1.

Next we show that (α, β) = 1. Suppose (α, β) = d. Let α = dα ′ and β = dβ ′. This
implies zδ = (hα

′
k−β

′
)d. Since 〈z〉 is isolated, hα

′
k−β

′
= zλ. Thus δ = λd, which implies

d | (α, β, δ) = 1. Hence d = 1, i.e., (α, β) = 1. Therefore, there exist integers s, t such that
sα + tβ = 1.

To prove the lemma we first consider the case when n = pε, where p is a prime. Let
Ā = A/Z pε . Then h̄αpε = k̄βpε . Since h ∈ Z2, [hpε , g] = [h, g]pε ∈ Z pε for each g ∈ A. This
implies h̄pε ∈ Z(Ā). In the same way k̄pε ∈ Z(Ā). Since [h, k] = 1, we have

h̄pε = h̄pε(sα+tβ) = k̄sβpε h̄tβpε = (k̄sh̄t )βpε .

Similarly k̄pε = (k̄sh̄t )αpε . Let ū = (k̄sh̄t )pε and Ū = 〈ū〉. Then 〈h̄pε〉 ⊂ Ū ∩ 〈h̄〉 and
〈k̄pε〉 ⊂ Ū ∩ 〈k̄〉. We shall show that equality holds if either δ = ±1 or if 〈h〉, 〈k〉 are
isolated.

Suppose h̄i = ū j . This means h̄i = (k̄sh̄t ) j pε . Thus, h̄(i− jt pε)β = k̄ jsβpε = h̄ jsαpε . Since
|h̄| = ∞, (i − jt pε)β = jsαpε. This implies iβ = j pε(sα + tβ) = j pε. Therefore, pε | iβ
and h̄i = (k̄sh̄t ) j pε = (k̄sh̄t )iβ . Hence k̄isβ = h̄i(1−tβ) = h̄isα = k̄isβ z̄isδ . This implies that
z̄isδ = 1, whence zisδ ∈ Z pε ∩ 〈z〉. Since 〈z〉 is isolated, Z pε ∩ 〈z〉 = 〈zpε〉. Hence pε | isδ.
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Case 1 δ = ±1. Then pε | is. This implies pε | isα + itβ = i. Hence Ū ∩ 〈h̄〉 = 〈h̄pε〉. In
the same way, we can show Ū ∩ 〈k̄〉 = 〈k̄pε〉.

Case 2 〈h〉, 〈k〉 are isolated. If p - δ, then zisδ ∈ 〈zpε〉 implies pε | is. Thus, as in Case 1, we
have Ū ∩ 〈h̄〉 = 〈h̄pε〉 and Ū ∩ 〈k̄〉 = 〈k̄pε〉. So, we can assume p | δ. Let δ = pδ ′. Suppose
p | β and β = pβ ′. This implies (kβ

′
zδ
′
)p = kβzδ = hα. Since 〈h〉 is isolated, kβ

′
zδ
′
∈ 〈h〉.

Let kβ
′

zδ
′

= hλ. Then hλp = hα, whence λp = α. This implies p | (α, β, δ) = 1, which is
impossible. Therefore, we can assume p - β if p | δ. Thus pε | iβ implies pε | i. Hence, as
in Case 1, Ū ∩ 〈h̄〉 = 〈h̄pε〉 and Ū ∩ 〈k̄〉 = 〈k̄pε〉.

Since h̄pε , k̄pε ∈ Z(Ā), Ū C Ā. Let Ã = Ā/Ū . Then Ã is residually finite with |h̃| = |k̃| =
pε. Therefore, there exists M̃C f Ã such that M̃ ∩ 〈h̃〉〈k̃〉 = 1. Let M be the preimage of M̃
in A. Then MC f A and M ∩ 〈h〉 = 〈hpε〉 and M ∩ 〈k〉 = 〈kpε〉.

Let n = pn1
1 · · · p

nl
l , where the pi ’s are distinct primes. By above, for each i, there exists

NiC f A such that Ni ∩〈h〉 = 〈hp
ni
i 〉 and Ni ∩〈k〉 = 〈kp

ni
i 〉. Let Nn =

⋂l
i=1 Ni . Then NnC f A,

Nn ∩ 〈h〉 = 〈hn〉 and Nn ∩ 〈k〉 = 〈kn〉. This completes the proof.

We can now prove the following theorem:

Theorem 3.4 Let A be a finitely generated torsion-free nilpotent group. Let h, k ∈ Z2 such
that 〈h, k〉 is isolated. Then A is quasi-regular at {h, k} if and only if 〈h〉∩〈k〉 = 1 or h = k±1.

Proof If h = k±1, then A is quasi-regular at {h, k} by Lemma 2.5. So we suppose 〈h〉 ∩
〈k〉 = 1. If h, k ∈ Z then A is quasi-regular at {h, k} by Corollary 2.7. Hence let h ∈ Z and
k /∈ Z (or h /∈ Z and k ∈ Z). Since 〈h, k〉 and Z are isolated and h ∈ Z, 〈h, k〉 ∩ Z = 〈h〉 is
isolated. Thus A is quasi-regular at {h, k} by Lemma 3.2. Finally we suppose that h, k /∈ Z.
If 〈Zh〉 ∩ 〈Zk〉 = Z or Zh = Zk±1 then A is quasi-regular at {h, k} by Lemma 2.6. So let
Zhα = Zkβ . Then, by the unique root property, (α, β) = 1. This implies hα = kβzδ , where
1 6= zδ ∈ Z and 〈z〉 is isolated. Moreover (α, β, δ) = 1. Thus A is quasi-regular at {h, k}
by Lemma 3.3.

Conversely, suppose A is quasi-regular at {h, k}. If 〈h〉 ∩ 〈k〉 6= 1 then, by Lemma 2.5,
hδ = k±δ for some δ > 0. It follows from the unique root property that h = k±1.

The proof of the next result is very similar to above.

Theorem 3.5 Let A be a finitely generated torsion-free nilpotent group. Let h, k ∈ Z2 such
that 〈h〉, 〈k〉 are isolated. Then A is quasi-regular at {h, k} if and only if 〈h〉 ∩ 〈k〉 = 1 or
h = k±1.

Applying Theorem 2.9, we immediately have the following:

Corollary 3.6 Let A be a finitely generated torsion-free nilpotent group. Let h, k ∈ Z2

such that either 〈h, k〉 is isolated or 〈h〉, 〈k〉 are isolated. Then the HNN-extension G =
〈A, t : t−1ht = k〉 is πc if and only if 〈h〉 ∩ 〈k〉 = 1 or h = k±1.

Corollary 3.7 Let A be a finitely generated torsion-free nilpotent group. Let h, k ∈ Z2

such that either 〈h, k〉 is isolated or 〈h〉, 〈k〉 are isolated. Then the HNN-extension G =
〈A, t : t−1ht = k〉 is residually finite if and only if 〈h〉 ∩ 〈k〉 = 1 or h = k±1.
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Proof Clearly if 〈h〉∩〈k〉 = 1 or h = k±1 then G is residually finite by the above result. For
the converse, suppose that G is residually finite. If 〈h〉∩〈k〉 6= 1 then, by Theorem 2.15, hδ =
k±δ for some δ > 0. Hence, by the unique root property of A, h = k±1 as required.

Above two results characterize the residual finiteness and cyclic subgroup separability of
the HNN-extension 〈A, t : t−1ht = k〉 of the finitely generated torsion-free nilpotent group
A of class 2 when 〈h, k〉 is isolated or 〈h〉 and 〈k〉 are isolated. We note that, in Example 1,
〈h, k〉 = 〈a, [a, b]2〉 is not isolated in A and 〈h〉 = 〈a2[a, b]2〉 is not isolated.

Problem Let A be a finitely generated nilpotent group. Characterize all h, k ∈ A such that
A is quasi-regular at {h, k}.
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