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CENTRAL LIMIT THEOREMS FOR VOLUME AND
SURFACE CONTENT OF STATIONARY POISSON
CYLINDER PROCESSES IN EXPANDING DOMAINS
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Abstract

A stationary Poisson cylinder process in the d-dimensional Euclidean space is composed
of a stationary Poisson process of k-flats (0 ≤ k ≤ d−1) which are dilated by independent
and identically distributed random compact cylinder bases taken from the corresponding
(d−k)-dimensional orthogonal complement. If the second moment of the (d−k)-volume
of the typical cylinder base exists, we prove asymptotic normality of the d-volume of
the union set of Poisson cylinders that covers an expanding star-shaped domain �W

as � grows unboundedly. Due to the long-range dependencies within the union set of
cylinders, the variance of its d-volume in �W increases asymptotically proportional to
the (d + k)th power of �. To obtain the exact asymptotic behaviour of this variance, we
need a distinction between discrete and continuous directional distributions of the typical
k-flat. A corresponding central limit theorem for the surface content is stated at the end.
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1. Introduction and preliminaries

The notion of (infinitely long) cylinders is well known in integral and stochastic geometry.
They can be introduced as follows. For a space L ∈ G(d, k) (the Grassmannian of
k-dimensional subspaces of R

d ), k = 0, . . . , d − 1, and a set B in the orthogonal complement
L⊥, we define a cylinder as the Minkowski sum L ⊕ B, where L is called the direction space
and B the base of the cylinder. In the literature, convex bases B are mostly considered [11],
[14], [18], but also polyconvex bases are taken into account [19], [20], [22]. The first general
definition of cylinder processes (CPs) with polyconvex bases can be found in [22].

In this paper, the orientation of the direction space L is suppressed and the restriction on the
polyconvexity of B will be dropped, thus allowing the base to be compact. Since it is a natural
choice for the modelling of material, we consider CPs which are driven by a Poisson process,
so-called Poisson cylinder processes (PCPs).

Under the condition that the exponential moment of the (d−k)-volume of the typical cylinder
base exists, in [9] the authors derived a central limited theorem (CLT) with Berry–Esseen bounds
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and Cramér-type large deviations results implying the distributional convergence

|� ∩ �W |d − E |� ∩ �W |d√
var |� ∩ �W |d

d−→ N (0, 1) as � → ∞, (1)

where � is the union set of the PCP, W is star shaped (with respect to the origin od ) such
that W contains a centred ball of positive radius, and |� ∩ �W |d denotes the volume of the
intersection of � and �W . As the first main result of this paper, we show the CLT in (1) under
minimal conditions on the typical cylinder base. Here we only require that the second moment
of the (d − k)-volume of the typical cylinder base exists. As our second main result, we derive
formulae for the asymptotic variance in formula (1) by distinguishing between discrete and
continuous directional distributions. Finally, we also present a CLT for the surface content of
the boundary ∂� of the union set of the PCP and sketch its proof.

To be precise in describing our problem, we first introduce some notation and give a
rigorous definition of a stationary PCP (which slightly differs from that in [20]). For this, let
{e1, . . . , ed} denote the usual orthonormal basis of R

d defining the orthogonal subspaces Ek =
span{ed−k+1, . . . , ed} (E0 = {o}) and E

⊥
k = span{e1, . . . , ed−k}, where k ∈ {0, . . . , d − 1}

is fixed in what follows. It is well known that, for any given L ∈ G(d, k), there exists
an equivalence class OL ∈ SOd/S(Od−k × Ok) of orthogonal matrices O ∈ R

d×d with
det(O) = 1 such that OEk = L. In other words, two matrices O, Ô ∈ SOd belong to OL

if and only if OEk = ÔEk = L and the product O
Ô belongs to the set of orthogonal block
matrices S(Od−k × Ok) defined by{(

A 0
0 B

)
: A ∈ R

(d−k)×(d−k), B ∈ R
k×k, A
 = A−1, B
 = B−1, det(A) = det(B)

}
.

We identify each class OL with a single representative OL ∈ OL which can be chosen in a
canonical (unique) way, e.g. as the lexicographically smallest element of the (compact) set OL.
On the other hand, due to the fact from differential geometry that dim G(d, k) = (d −k)k, there
always exists a parametric representation of the matrices OL over some subset of R

(d−k)k . In
the special cases d = 2, k = 1 and d = 3, k = 1, suitable parameterizations are

OL(θ) =
(

cos θ − sin θ

sin θ cos θ

)
, OL(θ1, θ2) =

⎛⎝ sin θ1 cos θ1 cos θ2 cos θ1 sin θ2
− cos θ1 sin θ1 cos θ2 sin θ1 sin θ2

0 − sin θ2 cos θ2

⎞⎠ ,

for θ ∈ [0, π) and (θ1, θ2) ∈ [0, 2π) × [0, π/2], respectively. In the dual case d = 3, k = 2,
the first column of OL(θ1, θ2) must be multiplied by −1 and then interchanged with the third
column.

Once we have chosen such a canonical one-to-one correspondence between L ∈ G(d, k) and
OL ∈ SOd such that L = OLEk , we denote by SO

d
k the family of all OL. For the rest of this

paper, we define

SO
d
k =

⋃
L∈G(d,k)

{
OL : OLEk = L, OL = lexmin

{
SOd

S(Od−k × Ok)

}}
,

where lexmin denotes the lexicographically smallest element. In this way, to each random
subspace L ∈ G(d, k) corresponds a (unique) random matrix �(L) ∈ SO

d
k . It should be

mentioned that instead of �(L), we can take �S(L) = �(L)S for any fixed S ∈ S(Od−k ×Ok).
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Throughout this paper, all random elements are defined on a common probability space
[�, F , P], and E and var (cov) respectively denote the expectation and variance (covariance)
with respect to P. In particular, let (�0, �0) be a measurable mapping from [�, F , P] into the
mark space Md,k = SO

d
k × Kd−k , where Kd−k denotes the space of compact subsets of R

d−k

equipped with the Hausdorff metric. The image measure Qd,k := P ◦(�0, �0)
−1 acting on the

corresponding Borel product σ -field B(Md,k) determines the joint distribution of the (not
necessarily independent) random elements �0 and �0.

Now we are in a position to introduce a stationary, independently marked Poisson process
	λ,Qd,k

= ∑
i≥1 δ[Pi,(�i ,�i)] with intensity λ and mark distribution Qd,k(·), i.e. 	λ,Qd,k

(·) is
a random locally finite counting measure (shift-invariant in the first component) on the Borel
subsets of R

d−k × Md,k such that the numbers 	λ,Qd,k
(B × M) are Poisson distributed with

mean λ|B|d−kQd,k(M) for any bounded B ∈ B(Rd−k) (with Lebesgue measure | · |d−k)
and M ∈ B(Md,k); see [1, Chapters 2 and 6] for a standard reference on general (Poisson)
point processes. This definition implies that the numbers of atoms of the unmarked Poisson
process 	λ = ∑

i≥1 δPi
located in disjoint subsets of R

d−k are independent, and the marks
(�i, �i) associated with the atoms Pi are independent and identically distributed copies of
(�0, �0) ∼ Qd,k and independent of 	λ.

Furthermore, we need two important formulae for 	λ,Qd,k
, with each characterising the

distribution of 	λ,Qd,k
. The probability generating functional of 	λ,Qd,k

takes the form

E

(∏
i≥1

v(Pi, �i, �i)

)
= exp

{
−λ

∫
Rd−k

∫
Md,k

(1 − v(x, θ, ξ))Qd,k(d(θ, ξ)) dx

}
(2)

for any measurable function v : R
d−k × Md,k �→ [0, 1] such that 1 − v(·, θ, ξ) has bounded

support for (θ, ξ) ∈ Md,k . The nth-order Campbell formula, for any n ∈ N, reads

E

( ∑∗

i1,...,in≥1

n∏
j=1

fj (Pij , �ij , �ij )

)
= λn

n∏
j=1

∫
Rd−k

∫
Md,k

fj (x, θ, ξ)Qd,k(d(θ, ξ)) dx (3)

for nonnegative measurable functions f1, . . . , fn : R
d−k ×Md,k �→ R

1, where the sum
∑∗ on

the left-hand side of (3) runs over all n-tuples of pairwise distinct indices i1, . . . , in ≥ 1; see
[2, Chapters 9 and 13] or [19], [21].

Definition. For the independently marked Poisson process 	λ,Qd,k
= ∑

i≥1 δ[Pi,(�i ,�i)] satis-
fying the above assumptions, by a stationary PCP we understand a countable family of cylinders

{�i((�
′
i + P ′

i ) ⊕ Ek), i ≥ 1} = {�i((�i + Pi) × R
k), i ≥ 1} (4)

with �′
i + P ′

i = {(x + Pi, ok)

 : x ∈ �i} ⊂ E

⊥
k for i ≥ 1, where ‘⊕’ denotes the Minkowski

addition in R
d and ok is the null vector in R

k .

In this paper we are interested in the d-volume measure |�λ,Qd,k
∩ (·)|d of the stationary

random set

�λ,Qd,k
=

⋃
i≥1

�i((�i + Pi) × R
k) (5)

derived from (4) and, in particular, in the asymptotic behaviour of |�λ,Qd,k
∩ �W |d as � → ∞,

where the set W ∈ Kd is chosen star shaped (with respect to the origin od ) such that Bd(δW ) ⊆
W ⊆ Bd(1) for some δW > 0 and the (d − k)-volume |�0|d−k of the typical cylinder base
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Figure 1: Planar isotropic and spatial anisotropic PCP with one-dimensional direction space.

possesses a second moment. Here Bd(r) is a closed ball in R
d with radius r ≥ 0 centred at the

origin.

Remark 1. In the degenerate case k = 0 (where E0 = {od} and �0 is the unit matrix) the union
set (5) coincides with the well-studied Boolean (or Poisson grain, Poisson blob, Swiss cheese)
model in R

d with typical grain �0; see, e.g. [4], [15], [16], and [21] for more information.

Remark 2. Provided that E|�0|d−k < ∞, the random union set (5) is (P-amost surely) closed
if and only if E|�0 ⊕Bd−k(ε)|d−k < ∞ for some ε > 0. This can be shown similarly as in the
case of Boolean models; see [6]. The necessary changes and extensions are left to the reader.
In this case we may derive from (2) with suitable v the hitting functional of �λ,Qd,k

:

P(�λ,Qd,k
∩ C �= ∅) = 1 − exp{−λE|�0 ⊕ (−πd−k(�



0 C))|d−k}

for any C ∈ Kd ; see [9], [14], [16], and [20]. Here πd−k(y) denotes the projection of the vector
y ∈ R

d on its first d − k components. Note that even P(|�0|d−k ≤ 1) = 1 does in general not
imply the (P-almost surely) closedness of (5); see also [9] for a counterexample. Realisations
for d = 2, k = 1 and d = 3, k = 1 are shown in Figure 1.

In the next section we state the announced CLT for the d-volume |�λ,Qd,k
∩ �W |d and give

the exact asymptotic behaviour of its variance as � → ∞.

2. Main results

For notational ease, we will mostly use the abbreviation � instead of �λ,Qd,k
. We first

recall the fact that the probability space [�, F , P] on which the marked Poisson process
	λ,Qd,k

= ∑
i≥1 δ[Pi,(�i ,�i)] is defined can be chosen in such a way that the mapping

R
d × � � (x, ω) �→ 1�(ω)(x) ∈ {0, 1} is measurable with respect to the product σ -field

B(Rd)⊗F ; see the appendix of [6]. This enables us to apply Fubini’s theorem to the stationary
random field of indicator variables 1�(x), x ∈ R

d , and implies among other things that its
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nth-order mixed moments (also called n-point probabilities of �)

p�(x1, . . . , xn) := E

( n∏
i=1

1�(xi)

)
= P(x1 ∈ �, . . . , xn ∈ �)

are B(Rdn)-measurable functions of (x1, . . . , xn) for any n ∈ N and the void probabilities
p�c(x1, . . . , xn) = P(� ∩ {x1, . . . , xn} = ∅) take the explicit form

p�c(x1, . . . , xn) = E

( n∏
i=1

(1 − 1�(xi))

)
= exp

{
−λE

∣∣∣∣ n⋃
i=1

(�0 − πd−k(�


0 xi))

∣∣∣∣
d−k

}
,

which follows from (2) with v(·, θ, ξ) = 1 if θ((ξ + (·)) × R
k) ∩ {x1, . . . , xn} = ∅, and

v(·, θ, ξ) = 0 otherwise. Since the random fields 1�(·) and 1−1�(·) have the same covariance
function, it follows from (2) for n = 1, 2 together with the shift invariance and additivity of the
Lebesgue measure | · |d−k that, for any x1, x2 ∈ R

d ,

cov(1�(x1), 1�(x2)) = exp{−λE|�0 ∪ (�0 − πd−k(�


0 (x2 − x1)))|d−k} − e−2λM1

= e−2λM1(exp{λE|�0 ∩ (�0 − πd−k(�


0 (x2 − x1)))|d−k} − 1).

Here and below, let Ms = E|�0|sd−k denote the moment of order s > 0 of the (d − k)-volume
of �0. By multiple use of Fubini’s theorem we obtain, for any bounded B ∈ B(Rd),

var(|� ∩ B|d)

=
∫

B

∫
B

cov(1�(x1), 1�(x2)) dx1 dx2

= e−2λM1

∫
Rd

|B ∩ (B − x)|d(exp{λE|�0 ∩ (�0 − πd−k(�


0 x)|d−k} − 1) dx. (6)

We are now in a position to formulate our main results, where we use the fact that
P(od ∈ �λ,Qd,k

) = E|�λ,Qd,k
∩ [0, 1]d |d = 1 − exp{−λM1} is just the volume fraction of the

stationary random set (5) which coincides with the intensity of the random volume measure
|� ∩ (·)|d .

Theorem 1. Let �λ,Qd,k
be the union set (5) of a stationary PCP 	λ,Qd,k

with compact typical
cylinder base �0 ⊂ R

d−k satisfying 0 < M2 < ∞. Furthermore, let W ⊂ R
d be compact and

star shaped with respect to od satisfying Bd(δW ) ⊆ W ⊆ Bd(1) for some δW ∈ (0, 1]. Then

|�λ,Qd,k
∩ �W |d − �d |W |d(1 − e−λM1)√

var(|�λ,Qd,k
∩ �W |d)

d−→ N (0, 1) as � → ∞. (7)

Lemma 1 of [9] shows that the variance of |� ∩ �W |d increases to ∞ proportional to the
(d + k)th power of � (in the sense of Hardy–Littlewood); see relation (18) below. More
precisely, there exist positive constants c1 and c2 not depending on � ≥ 1 such that

c1�
d+k ≤ var(|�λ,Qd,k

∩ �W |d) ≤ c2�
d+k for all � ≥ 1. (8)

As our second main result, the following theorem provides the exact asymptotic growth rate
of the variances of the d-volume |�∩�W |d in dependence of k, d, and W in the cases of purely
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discrete and continuous directional distributions P0(·) = Qd,k((·) × Kd−k). By the (unique)
decomposition of P0(·) into a discrete and continuous part and by combining both relations
(10) and (11) below, we are able to guarantee the existence and positivity of the asymptotic
variance

σ 2
d,k(W) = lim

�→∞
var(|�λ,Qd,k

∩ �W |d)

�d+k
(9)

for any distribution Qd,k (of (�0, �0)) on B(Md,k) such that 0 < M2 < ∞.
Here, we call a distribution P0(·) discrete if it is concentrated on {θi ∈ SO

d
k , i ∈ I } for some

at most countable index set I and continuous if P0({θ}) = 0 for all θ ∈ SO
d
k .

Theorem 2. Let the assumptions of Theorem 1 hold. If the marginal distribution P0(·) is
concentrated on the at most countable family {θi ∈ SO

d
k , i ∈ I } then

σ 2
d,k(W) = e−2λM1

∑
i∈I

Id,k(θ


i W)

∫
Rd−k

(eλf (y,θi ) − 1) dy, (10)

where f (y, θi) = E(|�0 ∩ (�0 − y)|d−k1{�0 = θi}) for i ∈ I and

Id,k(θ

W) =

∫
Rk

|θ
W ∩ (θ
W − (od−k, x)
)|d dx for θ ∈ SO
d
k .

On the other hand, if P0(·) is continuous, we have

σ 2
d,k(W) = λe−2λM1 E(Id,k(�



0 W)|�0|2d−k)

= λe−2λM1

∫
SO

d
k

M2(θ)Id,k(θ

W) P0(dθ), (11)

where M2(θ) = E(|�0|2d−k|�0 = θ) for θ ∈ SO
d
k .

Remark 3. Both of the different expressions (10) and (11) for the asymptotic variance σ 2
d,k(W)

depend on the shape of the sampling window �W (not only on its volume) due to the long-
range dependencies of (5). The latter results from the fact (see Chapter 12.3 of [2]) that the
(nontrivial) events {�λ,Qd,k

∩ Bd(ε) = ∅}, ε > 0, belong to the tail σ -algebra generated by (5).
If P0 is discrete then �λ,Qd,k

consists of unions of parallel Poisson cylinders which prevents
the stationary random set (5) from being mixing (the proof is left to the reader). This might be
the main reason for larger variances in the discrete case; see also Corollary 1 below.

We mention further that the above theorems can be extended to analogous results for
estimators of the covariance C�c(x) of the random set �c defined by the two-point probability
p�c(od , x) for any x ∈ R

d ; see, e.g. [4], [20], and [21]. This is seen from the obvious relation
C�c(x) = 1 − P(od ∈ � ∪ (� − x)) and the fact that the union � ∪ (� − x) takes the form (5)
with typical base �0 ∪ (�0 − πd−k(�



0 x)). In the same way one can treat the corresponding

estimator for the n-point probability p�c(od , x1, . . . , xn−1).
The rest of this paper is organised as follows. In Section 3 we prove the CLT by using

the moment convergence theorems formulated in terms of cumulants, see [17], combined with
a truncation technique which allows us to approximate the union set (5) by a union set �(τ)

of cylinders with truncated cylinder bases. In this way we make use of the estimates of the
nth-order cumulants of |� ∩ �W |d derived in [9] if Mj < ∞ for j = 1, . . . , n. In Section 4
we prove formulae (10) and (11) for the asymptotic variances of |� ∩ �W |d . Furthermore,
we show that the limit (9) always exists. In Section 5 we discuss formulae (10) and (11) for
W = Bd(1) and the isotropic case in (11). In Section 6 we formulate a bivariate CLT (with a
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rough outline of its proof) for the joint distribution of the d-volume of � and surface content
of ∂� in �(W \ ∂W) as � → ∞.

3. A CLT for a truncated Poisson cylinder process

We now introduce a truncated version �(τ) of the PCP (5). Let

�(τ) =
⋃
i≥1

�i((�
(τ)
i + Pi) × R

k), (12)

where the second component of the typical mark (�0, �0) in (5) is replaced by the truncated
typical grain

�
(τ)
0 =

{
�0 if |�0|d−k ≤ τ ,

∅ if |�0|d−k > τ ,
with τ = ε�(d−k)/2 (13)

for arbitrarily small ε > 0 and large enough � > 0 such that τ ≥ 1 just for convenience.
Obviously, by (4) and (5), we have �(τ) ⊆ � as well as the inclusion

� \ �(τ) ⊆
⋃
i≥1

�i[(�i \ �
(τ)
i + Pi) × R

k] =: �̃(τ),

where �̃(τ) can be regarded as a PCP with typical mark (�0 \ �
(τ)
0 , �0). The latter relation

yields

E|(� \ �(τ)) ∩ �W |2d ≤ E|�̃(τ) ∩ �W |2d = var(|�̃(τ) ∩ �W |d) + (E|�̃(τ) ∩ �W |d)2.

Next replace in (6) the bounded Borel set B by the star-shaped set �W which increases when
� does. In view of the relation {x ∈ R

d : �W ∩ (�W − x) �= ∅} = �(W ⊕ (−W)) ⊆ Bd(2�)

and the inequality ey − 1 ≤ yey for y ≥ 0, we may write

var(|� ∩ �W |d) ≤ λe−λM1 |�W |d
∫

�(W⊕(−W))

E|�0 ∩ (�0 + πd−k(�


0 x))|d−k dx

≤ λ|W |de−λM1�dE
∫

Bd(2�)

|�0 ∩ (�0 + πd−k(x))|d−k dx

≤ λ|W |de−λM1�dE
∫

[−2�,2�]k

∫
Rd−k

|�0 ∩ (�0 + y1)|d−k dy1 dy2

= λ|W |de−λM1 4kE|�0|2d−k�
d+k for any � > 0. (14)

Replacing �0 in (14) by �0 \ �
(τ)
0 , we obtain

var(|�̃(τ) ∩ �W |d) ≤ λ|W |d exp{−λE|�0 \ �
(τ)
0 |d−k}4kE|�0 \ �

(τ)
0 |2d−k�

d+k

≤ λ|W |d4kE|�0|2d−k1{|�0|d−k > τ }�d+k,

and, by E|� ∩ B|d = (1 − exp{−λM1})|B|d ≤ λM1|B|d for any bounded B ∈ B(Rd), we
obtain the inequality

(E|�̃(τ) ∩ �W |d)2 ≤ λ2|W |2d�2d(E|�0 \ �
(τ)
0 |d−k)

2

≤ λ2|W |2d�d+kε−2(E|�0|2d−k1{|�0|d−k > τ })2.
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For
M2(ε, τ ) = ε−2E|�0|2d−k1{|�0|d−k > τ },

we have M2(ε, τ ) → 0 as � → ∞ since τ = τ(�) → ∞ as � → ∞. Thus, together with
Chebyshev’s inequality, we arrive at

P(�−(d+k)/2|(� \ �(τ)) ∩ �W |d ≥ ε) ≤ ε−2�−(d+k)E|(� \ �(τ)) ∩ �W |2d
≤ λ|W |d(4k + λ|W |dM2(ε, τ ))M2(ε, τ )

→ 0 as � → ∞
for any ε > 0. By the same arguments,

�−(d+k)/2 E |(� \ �(τ)) ∩ �W |d ≤ (�−(d+k)E|�̃(τ) ∩ �W)|2d)1/2 → 0 as � → ∞,

and, together with �(τ) ⊆ � and Minkowski’s inequality, we obtain

�−(d+k)|var(|� ∩ �W |d) − var(|�(τ) ∩ �W |d)|
≤ �−(d+k)(E|�̃(τ) ∩ �W |2d)1/2((var(|�(τ) ∩ �W |d))1/2 + (var(|� ∩ �W |d))1/2)

→ 0 as � → ∞.

In summary, by applying Slutzky’s theorem, to prove the limit (7) in Theorem 1, it suffices
to verify the CLT

|�(τ) ∩ �W |d − E|�(τ) ∩ �W |d√
var(|�(τ) ∩ �W |d)

d−→ N (0, 1) as � → ∞ (15)

for the truncated model �(τ) instead of �. Note that, by standard arguments from analysis, ε > 0
can be chosen as the null sequence ε(�) → 0 as � → ∞ such that τ(�) = ε(�)�(d−k)/2 → ∞
as � → ∞ and M2(ε(�), τ (�)) → 0 as � → ∞.

To verify (15), it remains to prove the limits cumn(|�(τ(�)) ∩ �W)|d) → 0 as � → ∞ for
n ≥ 3. The nth-order cumulants cumn(|�∩B|d) can be expressed analogously to the nth-order
moment of the volume |� ∩ B|d :

cumn(|� ∩ B|d) =
∫

Bn

c�(x1, . . . , xn) d(x1, . . . , xn) for n ≥ 2.

Here the nth-order mixed cumulant c�(x1, . . . , xn) of the {0, 1}-valued random field {1�(x),

x ∈ R
d} is defined by

c�(x1, . . . , xn) = ∂n

∂s1 · · · ∂sn
log E exp

{ n∑
j=1

sj 1�(xj )

} ∣∣∣∣
s1=···=sn=0

=
n∑

k=1

(−1)k−1(k − 1)!
∑

X1∪···∪Xk=X

p�(X1) · · · p�(Xk), (16)

where the inner sum runs over all partitions of X = {x1, . . . , xn} into pairwise disjoint,
nonempty subsets X1, . . . , Xk; see [13] or [17]. The latter formula gives a representation of
the (mixed) cumulant c�(X) in terms of the (mixed) moment functions p�(Y ), ∅ �= Y ⊆ X,
of 1�(·). If we replace the union set � by its complement �c, then c�c(x1, . . . , xn) turns out to
be the nth-order mixed cumulant of the random field 1−1�(·). By applying the very definition
of mixed cumulants, (16), we get the relationship

c�(x1, . . . , xn) = (−1)nc�c(x1, . . . , xn),
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which in turn yields a representation of c�(x1, . . . , xn) in terms of the mixed moment function
p�c(Y ) for nonempty subsets Y of {x1, . . . , xn} given in (2).

By the invariance of c�(x1, x2, . . . , xn+1) against diagonal shifts as consequence of the
stationarity of � respectively 1�(·), we may rewrite cumn+1(|� ∩ B|d) as

cumn+1(|� ∩ B|d)

= (−1)n+1
∫

(B⊕(−B))n

∣∣∣∣B ∩
n⋂

i=1

(B − xi)

∣∣∣∣
d

c�c(od , x1, . . . , xn) d(x1, . . . , xn),

generalising the variance formula (6). Since W ⊕ (−W) ⊆ Bd(2) by our assumptions, it
follows that, for n ≥ 2,

| cumn+1(|� ∩ �W |d)| ≤ �d |W |d
∫

(Bd(2�))n
|c�c(od , x1, . . . , xn)| d(x1, . . . , xn). (17)

Lemma 1. Provided that M2 < ∞, the truncated PCP (12) with τ = ε�(d−k)/2 gives the
estimates

�−(d+k)n/2| cumn(|�(τ) ∩ �W |d)| ≤ εn−2cn(λ)|W |d for n ≥ 3,

where the constants cn(λ) depend only on λ, n, and the moments M1 and M2.

The proof of Lemma 1 relies essentially on the following recursive estimate shown in [9]
for a general stationary PCP (5).

Lemma 2. If Mn+1 < ∞ for fixed n ≥ 2 then∫
(Bd(2�))n

|c�c(od , x1, . . . , xn)| d(x1, . . . , xn) ≤ C1,n�
kn,

where C1,n depends only on λ, n, and the moments M1, . . . , Mn+1, and can be calculated
successively by means of the double-indexed sequence Cm,n defined by C0,n = 0 for n ≥ 1
and, for m ≥ 1 and n ≥ 1,

Cm,n = An +
n−1∑
j=0

(
n

j

)
AjCm−1+j,n−j with Cm,1 = 4kmλe−λM1M2.

Here A0 = 1, A1 = 4kλeλM1M2, and, for n ≥ 2,

An = An−1A1 + e2λM1

n−2∑
j=0

(
n − 1

j

)
AjBn−j ,

Bn = 4kn(n − 1)!
n−1∑
j=1

λj

j !
∑

n1+···+nj =n−1
n1,...,nj ≥1

Mn1+2

n1!
j∏

i=2

Mni+1

ni ! .

Proof of Lemma 1. We replace in Lemma 2 the typical cylinder base �0 by the truncated
cylinder base (13) of the PCP �(τ). Hence, in Bn the moments Mj are replaced by the truncated
moments M

(τ)
j = E|�(τ)

0 |jd−k for j = 2, . . . , n + 1. Since M
(τ)
j ≤ τ j−2M2, we are led to

Bn ≤ 4kn
n−1∑
j=1

(λM2)
j

j ! τn−j
∑

n1+···+nj =n−1
n1,...,nj ≥1

(n − 1)!
n1! · · · nj ! ≤ τn−1bn(λ),
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where

bn(λ) = 4kn
n−1∑
j=1

(λM2)
j

j !
∑

n1+···+nj =n−1
n1,...,nj ≥1

(n − 1)!
n1! · · · nj ! .

A simple inductive argument shows that

An ≤ τn−1an(λ) for n ≥ 1,

where a1(λ) = A1 and

an(λ) = an−1(λ)a1(λ) + e2λM1

(
bn(λ) +

n−2∑
j=1

(
n − 1

j

)
aj (λ)bn−j (λ)

)
for n ≥ 2. Finally, we put cm,1(λ) = Cm,1 for m ≥ 1. In view of Cm,2 − Cm−1,2 =
A2 + 2A1Cm,1, it is easy to see that Cm,2 = mA2 + 2A1(Cm,1 + · · · + C1,1) ≤ cm,2τ with
cm,2 = ma2(λ) + 2a1(λ)(cm,1(λ) + · · · + c1,1(λ)) for any m ≥ 1. In this way we may proceed
for n = 3, 4, . . . and arrive at Cm,n ≤ cm,n(λ)τn−1 for all n ≥ 3 and m ≥ 1, where the numbers
cm,n(λ) are defined recursively by

cm,n(λ) = cm−1,n(λ) + an(λ) +
n−1∑
j=1

(
n

j

)
aj (λ)cm−1+j,n−j (λ).

Thus, after inserting τ = ε�(d−k)/2, we find that

C1,n�
kn ≤ εn−1c1,n(λ)�−d+(d+k)(n+1)/2 for n ≥ 2.

This estimate combined with (17) and the choice of ε(�) → 0 as � → ∞ completes the proof
of Lemma 1.

4. The asymptotic variance for discrete and continuous directional distributions

We first recall the Hardy–Littlewood equivalence var(|�λ,Qd,k
∩�W |d) � �d+k as � → ∞,

which means that

0 < lim inf
�→∞

var(|�λ,Qd,k
∩ �W |d)

�d+k
≤ lim sup

�→∞
var(|�λ,Qd,k

∩ �W |d)

�d+k
< ∞. (18)

The asymptotic relation (18) is an obvious consequence of (8) and holds under the assump-
tions of Theorem 1.

Remark 4. Equation (18) reveals that the variance of |�λ,Qd,k
∩ �W |d grows with the power

|�W |1+k/d
d of the window volume which expresses long-range dependencies within the random

set (5). The same effect is observed when studying the asymptotic behaviour of the total
(d−k)-volume of all (d−k)-flats arising from the intersection of k pairwise distinct hyperplanes
of a stationary Poisson hyperplane process in Bd(�) (see [10]) and �W for convex W (see [5])
as � → ∞.

The aim of this section is to prove that both of the limits in (18) coincide. For this, we
consider the cases of discrete and continuous (marginal) distributions of �0 separately.
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4.1. Continuous directional distribution

We first prove the second result of Theorem 2 with a continuous distribution P0 of �0,
i.e. P(�0 = θ) = 0 for all θ ∈ SO

d
k . The inequality 0 ≤ ex − 1 − x ≤ x2ex/2 for x ≥ 0 leads

to∣∣∣∣ var(|� ∩ �W |d) − λe−2λM1

∫
Rd

|�W ∩ (�W − x)|d E |�0 ∩ (�0 − πd−k(�


0 x))|d−k dx

∣∣∣∣
≤ λ2

2
e−λM1 |�W |d

∫
�(W⊕(−W))

(E |�0 ∩ (�0 − πd−k(�


0 x))|d−k)

2 dx

≤ λ2

2
e−λM1�d |W |d

∫
Bd(2�)

(E |�0 ∩ (�0 − πd−k(�


0 x))|d−k)

2 dx.

We divide both sides of this inequality by �d+k and show in the next step that

J� = �−k

∫
Bd(�)

(E |�0 ∩ (�0 − πd−k(�


0 x))|d−k)

2 dx → 0 as � → ∞. (19)

Taking an independent copy (�̃0, �̃0) of the mark (�0, �0) ∼ Qd,k , applying Fubini’s
theorem, and substituting x = �0y, we may rewrite J� with the total expectation formula as

J� = �−k E

(∫
Bd(�)

|�0 ∩ (�0 − πd−k(�


0 x))|d−k|�̃0 ∩ (�̃0 − πd−k(�̃



0 x))|d−k dx

)
= �−k E

(∫
Bd(�)

|�0 ∩ (�0 − πd−k(y))|d−k|�̃0 ∩ (�̃0 − πd−k(�̃


0 �0y))|d−k dy

)
= �−k

∫
SO

d
k

∫
SO

d
k

E

(∫
Bd(�)

|�0 ∩ (�0 − πd−k(y))|d−k

× |�̃0 ∩ (�̃0 − πd−k(θ̃

θy))|d−k dy

∣∣∣∣ �0 = θ, �̃0 = θ̃

)
× P0(dθ̃ ) P0(dθ).

Since P0 is continuous and �0 and �̃0 are stochastically independent, it follows that
P(�0 = �̃0) = 0. Thus, it suffices to show that the inner integral disappears as � → ∞
for any pair (θ, θ̃) ∈ SO

d
k × SO

d
k with θ �= θ̃ . For this purpose, we consider the subspace

E = (θ
θ̃Ek)∩Ek with dimension dim E =: l ∈ {0, . . . , k−1} depending on the choice of the
distinct orthogonal matrices θ and θ̃ . We note that dim E = k would imply that θ
θ̃Ek = Ek

and this gives θ = θ̃ by the very definition of SO
d
k . Furthermore, let ϑ ∈ SOd be chosen

such that E = ϑEl and ϑEk = Ek (such ϑ always exists). Now, setting y = (y1, y2)

 with

y1 ∈ R
d−l and y2 ∈ R

l , we can continue to estimate the above inner integral over Bd(�) as

�−k

∫
Bd(�)

|�0 ∩ (�0 − πd−k(y))|d−k|�̃0 ∩ (�̃0 − πd−k(θ̃

θy))|d−k dy (20)

≤ �−k

∫
Bl(�)

∫
Bd−l (�)

|�0 ∩ (�0 − πd−k(ϑ(y1, y2)

))|d−k

× |�̃0 ∩ (�̃0 − πd−k(θ̃

θϑ(y1, y2)


))|d−k dy1 dy2

≤ �−k

∫
Bl(�)

∫
Bd−l (�)

|�0 ∩ (�0 − πd−k(ϑ(y1, ol )

))|d−k

× |�̃0 ∩ (�̃0 − πd−k(θ̃

θϑ(y1, ol )


))|d−k dy1 dy2,
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where we have used the facts that θ̃
θϑEl and ϑEl are subspaces of Ek with dimension
less than k. This means that πd−k(θ̃


θϑy) = πd−k(θ̃

θϑ(y1, ol )) and πd−k(ϑy) =

πd−k(ϑ(y1, ol )), i.e. the integrand does not depend on y2, and we can take y2 = ol and
evaluate the integral over y2 ∈ Bl(�).

Furthermore, by setting y1 = (z1, z2)

 with z1 ∈ R

d−k and z2 ∈ R
k−l , we obtain the

following upper bound of (20):

�−(k−l)κl

∫
Bk−l (�)

∫
Rd−k

|�0 ∩ (�0 − πd−k(ϑ(z1, z2, ol )

))|d−k

× |�̃0 ∩ (�̃0 − πd−k(θ̃

θϑ(z1, z2, ol )


))|d−k dz1 dz2

= κl

∫
Bk−l (1)

∫
Rd−k

|�0 ∩ (�0 − πd−k(ϑ(z1, ok)

))|d−k

× |�̃0 ∩ (�̃0 − πd−k(θ̃

θϑ(z1, �z2, ol )


))|d−k dz1 dz2

→ 0 as � → ∞.

Here we have used the relations

πd−k(ϑ(z1, z2, ol )

) = πd−k(ϑ(z1, ok)


) and ‖πd−k(θ̃

θϑ(z1, �z2, ol )


)‖ → ∞
as � → ∞ for z2 �= ok−l and any z1 ∈ R

d−k , and κl denotes the volume of the l-dimensional
unit ball. Finally, applying the dominated convergence theorem completes the proof of (19).

Taking into account the inequality at the very beginning of this subsection we see that in the
case of continuous P0 the limit (9) is obtained as follows:

λe−2λM1

�d+k

∫
�(W⊕(−W))

|�W ∩ (�W − x)|d E |�0 ∩ (�0 − πd−k(�


0 x))|d−k dx

= λe−2λM1

�d+k
E

(∫
Rd−k

∫
Rk

|�W ∩ (�W − �0(x1, x2)

)|d |�0 ∩ (�0 − x1)|d−k dx2 dx1

)
= λe−2λM1 E

(∫
Rd−k

∫
Rk

∣∣∣∣W ∩
(

W − �0

(
x1

�
, x2

)
)∣∣∣∣
d

|�0 ∩ (�0 − x1)|d−k dx2 dx1

)
→ λe−2λM1

∫
SO

d
k

E(|�0|2d−k | �0 = θ)

×
∫

Rk

|θ
W ∩ (θ
W − (od−k, x)
)|d dx P0(dθ) as � → ∞.

This completes the proof of (11).

4.2. Discrete directional distribution

Let P0 be a discrete distribution, i.e. its support is some finite or countably infinite set
{θi ∈ SO

d
k , i ∈ I } of distinct matrices in SO

d
k ; for convenience, let I = N. With the notation

of Theorem 2 we have f (y, θi) = E(|�0 ∩ (�0 − y)|d−k | �0 = θi) P0({θi}) for i ∈ N and
y ∈ R

d−k .
To begin with, we state the elementary inequality

ex1+···+xn − 1 −
n∑

i=1

(exi − 1) ≤
n−1∑
i=1

n∑
j=i+1

(exi − 1)(exj − 1)ex1+···+xn for x1, . . . , xn ≥ 0,

which can be verified by induction on n ∈ N and also remains valid in the limit as n → ∞.
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Applying the above inequality to the points xi = λf (πd−k(θ


i x), θi) for i ∈ N and x ∈ R

d ,
we are led to the estimate∣∣∣∣ var(|� ∩ �W |d) − e−2λM1

∫
Rd

|�W ∩ (�W − x)|d
∞∑
i=1

(exp{λf (πd−k(θ


i x), θi)} − 1) dx

∣∣∣∣
≤ λ2|W |d�d

∫
Bd(2�)

∞∑
i=1

∞∑
j=i+1

f (πd−k(θ


i x), θi)f (πd−k(θ



j x), θj ) dx,

where the simple relations xi + xj + ∑∞
k=1 xk ≤ 2λM1 for all i < j and exi − 1 ≤ xiexi have

been used.
In analogy to (19) we divide both sides of the above inequality by �d+k and prove that

I� = �−k

∫
Bd(�)

∞∑
i=1

∞∑
j=i+1

f (πd−k(θ


i x), θi)f (πd−k(θ



j x), θj ) dx → 0 as � → ∞.

For any ε > 0, there exists an integer n = n(ε) ≥ 1 such that
∑∞

i=n+1 f (od−k, θi) ≤ ε and
this yields the estimate

I� ≤ ε�−k
∞∑
i=1

∫
Bd(�)

f (πd−k(θ


i x), θi) dx

+ �−k
n−1∑
i=1

n∑
j=i+1

∫
Bd(�)

f (πd−k(θ


i x), θi)f (πd−k(θ



j x), θj ) dx. (21)

By setting x = (x1, x2)

 with x1 ∈ R

d−k and x2 ∈ R
k , it is easily seen that the first summand

in (21) is equal to

ε�−k
∞∑
i=1

∫
Bd(�)

E(|�0 ∩ (�0 − πd−k(θ


i (x1, x2)


))|d−k1{�0 = θi}) d(x1, x2)

= ε�−k

∫
Bd(�)

E |�0 ∩ (�0 − πd−k((x1, x2)

))|d−k d(x1, x2)

≤ ε�−k

∫
Bk(�)

∫
Rd−k

E |�0 ∩ (�0 − x1)|d−k dx1 dx2

= εκkM2.

In order to treat the finite double sum in (21), it suffices to consider the integral

�−k

∫
Bd(�)

f (πd−k(θ


i x), θi)f (πd−k(θ



j x), θj ) dx

= �−k

∫
Bd(�)

f (πd−k(θ


i θj y), θi)f (πd−k(y), θj ) dy

= �−k

∫
Bd(�)

E(|�0 ∩ (�0 − πd−k(θ


i θj y))|d−k | �0 = θi) P0({θi})

× E(|�0 ∩ (�0 − πd−k(y))|d−k | �0 = θj ) P0({θj }) dy
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for a single pair i < j . This integral can be shown to converge to 0 as � → ∞ by repeating
the same steps carried out to show that integral (20) disappears as � → ∞. Thus, the total sum
in (21) can be made arbitrarily small. This means that the existence and the explicit form of
the limit (9) in case of discrete P0 is proved by finding the limit (as � → ∞) of

e−2λM1

�d+k

∫
�(W⊕(−W))

|�W ∩ (�W − x)|d
∞∑
i=1

(exp{λf (πd−k(θ


i x), θi)} − 1) dx.

Making use of the monotone convergence theorem we first interchange integration and
summation and then we pass to the limit for each term of the above sums:

1

�d+k

∫
�(W⊕(−W))

|�W ∩ (�W − x)|d(exp{λf (πd−k(θ


i x), θi)} − 1) dx

= 1

�k

∫
Rd−k

∫
Rk

∣∣∣∣W ∩
(

W − θi

(
x1

�
,
x2

�

)
)∣∣∣∣
d

dx2(e
λf (x1,θi ) − 1) dx1

=
∫

Rd−k

∫
Rk

∣∣∣∣W ∩
(

W − θi

(
x1

�
, x2

)
)∣∣∣∣
d

dx2(e
λf (x1,θi ) − 1) dx1

→
∫

Rk

|θ

i W ∩ (θ


i W − (od−k, x2)

)|d dx2

∫
Rd−k

(eλf (x1,θi ) − 1) dx1 as � → ∞.

The last step is justified by the dominated convergence theorem. This completes the proof of
(10) and thus of Theorem 2.

In general, each directional distribution P0 allows a unique decomposition P0 = α Pdis
0 +

(1−α)Pcon
0 (implying a decomposition of the mark distribution Qd,k = αQdis

d,k + (1 − α)Qcon
d,k

on Md,k) in a discrete distribution Pdis
0 and a continuous distribution Pcon

0 on SO
d
k . Then the

limit (9) exists and admits the decomposition

σ 2
d,k(W) = σ

2,dis
d,k,α(W) + (1 − α)σ

2,con
d,k (W), (22)

where σ
2,dis
d,k,α(W) and σ

2,con
d,k (W) are as defined in (10) and (11) with P0 respectively replaced

by α Pdis
0 (in f (y, θi)) and Pcon

0 .
We only sketch the crucial idea leading to (22). We split the exponential term in the

representation formula of the variance, (6), as

exp{λE|�0 ∩ (�0 − πd−k(�


0 x))|d−k} − 1

= exp{λT dis(x)} − 1 + exp{λT con(x)} − 1 + (exp{λT dis(x)} − 1)(exp{λT con(x)} − 1),

where T dis(x) and T con(x) respectively denote the discrete and continuous parts of the
expectation term T (x) = E |�0 ∩ (�0 − πd−k(�



0 x))|d−k . Now, we have to repeat the

procedures of Subsections 4.1 and 4.2 with T (x) replaced by T dis(x) and T con(x), respectively.
In view of the inequality

(exp{λT dis(x)} − 1)(exp{λT con(x)} − 1) ≤ λ2eλM1T dis(x)T con(x),

the additional third term can be shown to disappear as � → ∞ using (20).
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Corollary 1. Both cases in Theorem 2 and (22) can be combined as

σ 2
d,k(W) = λe−2λM1 E(Id,k(�



0 W)|�0|2d−k)

+ e−2λM1
∑
i∈I

Id,k(θ


i W)

∫
Rd−k

(eαλf dis(y,θi ) − 1 − αλf dis(y, θi)) dy

for 0 ≤ α ≤ 1 with

f dis(y, θi) = E(|�0 ∩ (�0 − y)|d−k | � = θi)P
dis
0 ({θi}),

where Pdis
0 (·) is concentrated on {θi, i ∈ I }.

5. Some special cases and concluding remarks

5.1. Spherical sampling window

For W = Bd(1), (10) and (11) can be substantially simplified. This relies on the formula∫ 2

0
|Bd(1) ∩ (Bd(1) + se1)|dsk−1 ds = 2κd−1

∫ 2

0

∫ s/2

0
(

√
1 − y2)d−1 dysk−1 ds

= 2kκd−1

k

∫ 1

0
z(k+1)/2−1(1 − z)(d+1)/2−1 dz

= 2kκk+d

πkκk−1
,

which, together with 2πκk−1 = (k + 1)κk+1, yields

Id,k(θ

W) =

∫
Rk

|Bd(1) ∩ (Bd(1) − (od−k, x)
)|d dx = 2k+1κkκk+d

(k + 1)κk+1
.

Thus, we obtain in the discrete case

σ 2
d,k(Bd(1)) = e−2λM1

2k+1κkκk+d

(k + 1)κk+1

∑
i∈I

∫
Rd−k

(eλf (x,θi ) − 1) dx,

and analogously in the continuous case

σ 2
d,k(Bd(1)) = λe−2λM1

2k+1κkκk+d

(k + 1)κk+1
M2.

5.2. The case of motion-invariant union sets �λ,Qd,k

Another important special case arises when the stationary random set (5) is additionally
isotropic, i.e. P0 is the uniform distribution on SO

d
k induced by the normalised Haar measure

on the Grassmannian G(d, k). If the conditional second moment M2(θ) does not depend on
θ ∈ SO

d
k (e.g. �0 and �0 are independent), we obtain∫

SO
d
k

M2(θ)Id,k(θ

W) P0(dθ)

= M2

∫
∂Bk(1)

∫ ∞

0

∫
SO

d
k

|W ∩ (W − rθ(od−k, u)
)|d P0(dθ)rk−1 drHk−1(du)
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= kκk

dκd

M2

∫
∂Bd(1)

∫ ∞

0
|W ∩ (W − rv)|drk−1 drHd−1(dv)

= kκk

dκd

M2

∫
Rd

|W ∩ (W − x)|d
‖x‖d−k

dx

= M2Ik+1(W),

where Hk(·) denotes the k-dimensional Hausdorff measure in R
d and the functional

Ik+1(W) = kκk

dκd

∫
W

∫
W

dy dx

‖y − x‖d−k

is known as the (d −k)-energy of W ; see, e.g. [3] for a physical interpretation. If W is a convex
body, this is also called the (k +1)th-order chord power integral of W (up to occasionally other
multiplicative constants).

5.3. Other expressions for the asymptotic variance in the case of isotropy

Applying Blaschke–Petkantschin-type formulae for convex bodies W in R
d leads to the

identities (see [19, pp. 362–364])

Ik+1(W) = κk

k + 1

∫
A(d,1)

(V1(W ∩ E))k+1µ1(dE) =
∫

A(d,k)

(Vk(W ∩ E))2µk(dE),

where Vk(·) denotes the kth intrinsic volume and A(d, k) is the space of affine k-flats in R
d which

carries the motion-invariant k-flat measure µk satisfying µk({E ∈ A(d, k) : E∩Bd(1) �= ∅}) =
κd−k; see [19] for precise definitions and more details. By virtue of Carleman’s inequality (see
[19, Theorem 8.6.6]), we get the estimate

Ik+1(W) ≤ 2k+1κkκk+d

(k + 1)dκk+1

( |W |d
κd

)(d+k)/d

, k = 1, . . . , d − 1,

for convex W in R
d with equality if and only if W = Bd(r). Hence, for a given volume of W ,

the variance of the volume of the motion-invariant set (5) is maximal in the case of a spherical
window.

5.4. A CLT for stationary Poisson k-flat processes

If we choose �0 = Bd−k(δ) in (5) with small δ > 0 then the approximative equation

|�λ,Qd,k
∩ �W |d = κd−kδ

d−kHk(�λ,P0 ∩ �W) + O(δd−k+1) as δ ↓ 0

can be derived for fixed � ≥ 1, where �λ,P0 = ⋃
i≥1 �i({Pi} × R

k) is the union set of the
Poisson k-flats given by (4) with �0 = {od−k}. On the other hand, since M1 = κd−kδ

d−k and
M2(θ) = (κd−kδ

d−k)2 for any θ , it is immediately seen that

lim
δ→0

E |�λ,Qd,k
∩ �W |d

κd−kδd−k
= λ�d |W |d and lim

δ→0

σ 2
d,k(W)

(κd−kδd−k)2 = λ E(Id,k(�


0 W)),

regardless of whether the directional distribution P0 is discrete or continuous. These arguments
can be made rigorous by the fact that Hk(�λ,P0 ∩ �W) = ∑

i≥1 Hk(�i({Pi} × R
k) ∩ �W) is

a stationary Poisson shot noise process on R
d−k which allows us to deduce the CLT

�−(d+k)/2(Hk(�λ,P0 ∩ �W) − λ�d |W |d)
d−→ N (0, λ E(Id,k(�



0 W))) as � → ∞ (23)

for k = 1, . . . , d − 1; see, e.g. [8]. Note that the special case k = d − 1 of (23) is a byproduct
of Theorem 4.1 of [5].
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6. A CLT for the surface content of the boundary ∂�λ,Qd,k

It is quite natural to ask for a correspondence to Theorem 1 providing the asymptotic
normality of the total (d − 1)-dimensional Hausdorff measure of the boundary ∂�λ,Qd,k

contained in the interior W int
� := W� \ ∂W� as � → ∞. In what follows we formulate a

bivariate CLT for the joint behaviour of the d-volume Vd,k(W�) = |�λ,Qd,k
∩ W�|d and surface

content Sd,k(W�) = Hd−1(∂�λ,Qd,k
∩ W int

� ) of the union set (5) in W int
� as � → ∞. We only

sketch the main idea of the proof which relies on bounds of the mixed cumulants (in terms
of powers of �) of Vd,k(W�) and the d-volume V

(δ)
d,k (W�) of the parallel set �λ,Qd,k

⊕ Bd(δ)

(at distance δ > 0) in W�. Using these estimates and the truncation technique of Section 3
combined with Slutzky’s theorem, we are able to approximate Sd,k(W�) by the scaled volume
difference δ−1(V

(δ)
d,k (W�) − Vd,k(W�)); see below for more precise arguments. To realise this

approach, we assume that W ∈ Kd is convex with o ∈ W int. Furthermore, we require
that the typical cylinder base �0 ∈ Kd−k is additionally convex (P-almost surely) such that
M2 > 0 and E(Hd−k(�0 ⊕ Bd−k(δ)))

2 < ∞ for some δ > 0. These conditions ensure that
�λ,Qd,k

∩ W� belongs (P-almost surely) to the convex ring of R
d , see Remark 2, as well as

M2 < ∞ and 0 < S2 < ∞, where Sp denotes the moment of order p > 0 of the surface
content Hd−k−1(∂�0) of the boundary ∂�0. Furthermore, we define a nonnegative definite,
symmetric matrix

�d,k(W) =
(

σ 2
d,k(W) τd,k(W)

τd,k(W) ω2
d,k(W)

)
(24)

by (9) and the limits

ω2
d,k(W) = lim

�→∞
var(Sd,k(W�))

�d+k
and τd,k(W) = lim

�→∞
cov(Sd,k(W�), Vd,k(W�))

�d+k
,

which always exist.

Theorem 3. Under the conditions imposed on W and �0 at the beginning of Section 6, the joint
distribution of Vd,k(W�) and Sd,k(W�) is asymptotically normal as � → ∞. More precisely,
the CLT

1

�(d+k)/2

(
Vd,k(W�) − (1 − e−λM1)�d |W |d
Sd,k(W�) − λS1e−λM1�d |W |d

)
d−→ N2(o2, �d,k(W)) as � → ∞ (25)

holds, where N2(o2, �d,k(W)) denotes a two-dimensional mean zero Gaussian vector with
covariance matrix (24). If the directional distribution P0(·) = P(�0 ∈ (·)) is either discrete
with atoms {θi, i ∈ I } or continuous, then σ 2

d,k(W) coincides with (10) and (11), respectively.
With the additional notation g(y, θ) = E(Hd−k−1(∂�0)∩ (�0 + y)1{�0 = θ}), the other two
entries of (24) can be expressed by

τd,k(W) = λe−2λM1 E[Id,k(�


0 W)|�0|d−k(H

d−k−1(∂�0) − λS1|�0|d−k)],
ω2

d,k(W) = λe−2λM1 E[Id,k(�


0 W)(Hd−k−1(∂�0) − λS1|�0|d−k)

2],
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if P0(·) is continuous, i.e. P0({θ}) = 0 for all θ ∈ SO
d
k , and

τd,k(W) = λe−2λM1
∑
i∈I

Id,k(θ


i W)

∫
Rd−k

[eλf (z,θi )(g(z, θi) − S1) + S1] dz,

ω2
d,k(W) = λe−2λM1

×
∑
i∈I

Id,k(θ


i W)

(
E

(
1{�0 = θi}

∫
∂�0

∫
∂�0

eλf (z2−z1,θi )Hd−k−1(dz2)

× Hd−k−1(dz1)

)
+ λ

∫
Rd−k

[eλf (z,θi )(S1 − g(z, θi))(S1 − g(−z, θi)) − S2
1 ] dz

)
for a discrete directional distribution P0(·) concentrated on {θi, i ∈ I }.
Remark 5. It seems that the above conditions needed just for our proving technique can be
relaxed. In particular, our variance formulae apparently reveal that the polyconvexity of �0
(P-almost surely in R

d−k) and 0 < M2, S2 < ∞ are sufficient for (25) to hold. According to
Remark 1, Theorem 3 includes the stationary Boolean model in R

d with typical compact and
convex grain �0 as a special case k = 0 with discrete P0(·) concentrated on the unit matrix E.
Since Id,0(E


W) = |W |d , it is easy to see that the scaled matrix |W |−1
d �d,0(W) does not

depend on W and coincides with the corresponding asymptotic covariance matrix obtained in
Theorem 4.3 of [15] and Corollary 7.1 of [7].

Sketch of the proof of Theorem 3. The first step to prove (25) makes use of the fact that
�λ,Qd,k

⊕ Bd(δ) = ⋃
i≥1 �i((�i ⊕ Bd−k(δ) + Pi) × R

k). This identity is rapidly seen from
(5), see also [12], and it enables us to regard �λ,Qd,k

⊕ Bd(ε) as a union set of Poisson cylinders
(4) with typical cylinder base �0 ⊕Bd−k(δ) instead of �0. This places us in a position to extend
the recursive estimation method developed in [9] for higher-order cumulants of Vd,k(W�) to the
mixed higher-order cumulants of the vector (V

(δ)
d,k (W�), Vd,k(W�))
, which leads—in analogy

to (17) and Lemma 2—to the estimate

| cumn+1(a1V
(δ)
d,k (W�) + a2Vd,k(W�))| ≤ |W |d�d+knC∗

1,n for any a1, a2 ∈ R
1,

where C∗
1,n depends on the integer n ≥ 1, λ, a1, a2, and the moments Mj = E |�0|jd−k and

M
(δ)
j = E |�0 ⊕ Bd−k(δ)|jd−k for j = 1, . . . , n + 1. In the second step we again apply the

truncation technique of Section 3 (with a truncated version of the cylinder base �0 ⊕Bd−k(δ)),
yielding a counterpart of Lemma 1 (provided that M

(δ)
2 < ∞) for the linear combination

a1V
(δ)
d,k (W�) + a2Vd,k(W�), where both �λ,Qd,k

and �λ,Qd,k
⊕ Bd(δ) are replaced by the

corresponding unions of the truncated Poisson cylinders. Thus, for any fixed δ ≥ 0 such
that M

(δ)
2 < ∞, we may state the univariate CLT

1

�(d+k)/2
(a1(V

(δ)
d,k (W�) − (1 − e−λM

(δ)
1 )|W�|d) + a2(Vd,k(W�) − (1 − e−λM1)|W�|d))

d−→ N (0, lim
�→∞ �−(d+k) var(a1V

(δ)
d,k (W�) + a2Vd,k(W�))) as � → ∞

for all (a1, a2)

 �= o2, where the asymptotic variance in the last line can be calculated explicitly.

In the third step we put a2 = b2 − a1 and a1 = b1/δ for any (b1, b2)

 �= o2, and show that

lim
δ→0

lim
�→∞ �−(d+k) var(δ−1(V

(δ)
d,k (W�) − Vd,k(W�)) − Sd,k(W�)) = 0. (26)
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This requires determining the limits (as � → ∞) of the ratios �−(d+k) var(V (δ)
d,k (W�))

and �−(d+k) var(Sd,k(W�)), as well as of the ratios �−(d+k) cov(V
(δ)
d,k (W�), Sd,k(W�)) and

�−(d+k) cov(V
(δ)
d,k (W�), Vd,k(W�)). These calculations are rather lengthy and repeatedly use

the Campbell–Mecke formula combined with Slivnyak’s theorem; see [2, Chapter 13]. Finally,
we apply Steiner’s formula, see [19], to the parallel set �0 ⊕Bd−k(δ) in order to get the second
limit as δ → 0. From (26) and the above CLT, it follows with Slutzky’s theorem that

1

�(d+k)/2
(b1(Sd,k(W�) − λS1e−λM1 |W�|d) + b2(Vd,k(W�) − (1 − e−λM1)|W�|d))

d−→ N (0, b2
1ω

2
d,k(W) + 2b1b2τd,k(W) + b2

2σ
2
d,k(W)) as � → ∞

for all (b1, b2)

 �= o2. Due to the Cramér–Wold theorem, the latter univariate CLT is equivalent

to Theorem 3.

Remark 6. It seems to be possible to shorten the proof of (25) by using some estimates of the
ratio δ−1(V

(δ)
d,k (W�) − Vd,k(W�)) obtained in [12] for grain–germ models.
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