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ABSTRACT. Voellmy's (1955) method for computing the run-out distance of a snow avalanche includes 
an unsatisfactory feature: the a priori selection of a midslope reference where the avalanche is assumed to 
begin decelerating from a computed steady velocity. There is no objective criterion for selecting this 
reference, and yet the choice critically determines the computed stopping position of the avalanche. As an 
alternative, a differential equation is derived in this paper on the premise that the only logical reference is the 
starting position of the avalanche. The equation is solved numerically for paths of complex geometry. 
Solutions are based on two parameters: a coefficient offriction fL; and a ratio of avalanche mass-to-drag, MID. 
These are analogous to the two parameters in Voellmy's model, fL and tH. Velocity and run-out distance data 
are needed to estimate fL and M ID to useful precision. The mathematical properties of two-parameter models 
are explored, and it is shown that some difficulties arise since similar results are predicted by dissimilar pairs 
of fL and MID. 

R EsUME. Un modele a deux parametres pour le mouvement d'une avalanche de neige. La methode de Voellmy 
(1955) pour calculer la distance d'arret d'une avalanche de neige comporte un element peu satisfaisant: le 
choix a priori d'un point a rni-pente OU I 'on ad met que I'avalanche commence a ralentir a partir d'une vitesse 
constante calcuJee. Il n'y a pas de crithe objectif pour faire ce choix, alors que ce choix commande le point 
calcuJe d'arret de I'avalanche. Pour y pour voir, on etablit dans cet article une equation differentielle qui ne 
se base que sur une hypothese logique concernant le point de declenchement de I'avalanche. L'equation est 
resolue numeriquement pour des couloirs de geometries complexes. Les solutions s'appuient sur-deux 
parametres: un coefficient de friction fL et un rapport masse-a-resistance (mass to drag) M ID. Ceux-ci sont 
analogues aux deux parametres /.L et tH du modele de Voellmy. Il faut avoir comme donnees vitesses et 
distance d'arret pour estimer /.L et M ID avec une precision convenable. On explore les proprietes mathe­
matiques des modeles a deux parametres et l'on montre qu'il peut y avoir quelques difficultes du fait que des 
resultats semblables peuvent et re prevus a partir de paires dissemblables de valeur pour /.L et MID. 

ZUSAMMENFASSUNG. Ein zweiparametriges Model! fur die Bewegung von Schneelawincn. Voellmys ( 1955) 
Methode zur Berechnung der Reichweite einer Schneelawine enthait einen unbefriedigenden Punkt, 
niimlich die a priori-Festsetzung einer Stelle in Hangmitte, wo eine Verzogerung der Lawine aus ihrer 
berechneten gleichformigen Bewegung einsetzt. Es gibt kein objektives Kriterium fur die Wahl dieser Stelle, 
die von kritischem Einfluss auf die Berechnung der Reichweite der Lawine ist. Als Alternative wird in dieser 
Arbeit eine Differentialgleichung hergeleitet, beruhend auf der Annahme, dass der einzige logische Bezugs­
punkt die Abrissposition der Lawine ist. Die Gleichung wird numerisch flir geometrisch komplizierte Bahnen 
gelost. Die Losungen stiitzen sich auf zwei Parameter: einen Reibungskoeffizient fL und ein Verhaltnis von 
Masse zu Hemmung MID der Lawine. Dies sind analoge Grossen zu den zwei Parametern /.L und tH in 
Voellmys Modell. Werte fUr die Geschwindigkeit und die Reichweite werden fur die Abschatzung von fL und 
MID mit ausreichender Genauigkeit benotigt. Die mathematischen Eigenschaften der zweiparametrigen 
Modelle werden untersucht; es zeigt sich, dass gewisse Schwierigkeiten auftreten, da ahnliche Ergebnisse 
aus verschiedenen Paaren von /.L und MID hervorgehen. 

INTRODUCTION 

Voellmy's (1955) methods for computing avalanche speed and run-out distance have been 
used by engineers for many years, although not without reservations, some of which are 
explored in other papers at this Symposium. We will focus on certain difficulties in the 
Voellmy approach, difficulties that we believe can be remedied without further complicating 
the theory of avalanche dynamics, but rather by reworking the theory into a more concise 
and systematic form. To see what these difficulties are, we first restate briefly some ofVoellmy's 
underlying assumptions and central results. 
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Fig. I . Avalanche on long, inclined channel. 

The foundation of Voellmy's method is rooted in hydraulic theory, specifically, the theory 
of open-channel flow. The avalanche is modelled as a fluid which accelerates very quickly from 
rest to a steady, terminal velocity in a long, inclined channel. If the avalanche accelerates to a 
terminal velocity Vt through Eulerian coordinates fixed to the channel (Fig. I), then along 
the centre of the channel, where (% x) = (% y ) = 0, shear stress txz and gravitational stress 
are balanced according to the equilibrium equation 

dtxz . Tz+pg sm 8 = 0 (I) 

where p is the density of the avalanche "fluid" and 8 is the inclination of the channel. 
Assuming an average p across a flow height H, integration of Equation (I) gives 

txz (o)-txz(H) = pgHsin 8, (2) 
where the shear stresses txz (H) and txz (o) at the respective boundaries z = Hand z = 0 

are determined from additional assumptions. Voellmyassumes the boundary shear stress at 
the avalanche-atmosphere interface (z = H ) is due to dynamic drag, and is therefore 
proportional to Vtz. Thus, 

where kl is a constant. Shear stress at the avalanche-channel interface (z = 0) is also assumed 
to consist of dynamic drag, but because the avalanche consists of lumps and blocks that slide 
and bounce, a "friction" term proportional to the normal stress tzz is included. Hence, 

txz (o) = kzVtz + f.1-gHp cos 8, (4) 

where k2 is a constant and where f.1- is a "coefficient of friction". The friction term, which does 
not play a role in the conventional theory of open channel flow, appears to be necessary in 
order to model the observation that avalanches accelerate on relatively steep slopes (tan 8 > f.1-) 
and decelerate on less steep slopes (tan 8 < f.1-) . Substituting boundary conditions Equations 
(3) and (4) into Equation (2) gives Voellmy's formula for avalanche terminal velocity 

Vt = [gH(sin 8-f.1- cos 8)]l, (5) 

where density and drag coefficients are lumped together into a single constant g. 
The preceding derivation can be generalized to account for avalanche channels of given 

cross-section by replacing H with the hydraulic radius, which is defined in the theory of open­
channel flow as the flow cross-sectional area divided by the wetted perimeter. Further 
hydraulic analogies are discussed by Leaf and Martinelli (1977). 

Voellmy also proposed a formula for computing the run-out distance S required for an 
avalanche to decelerate from terminal speed Vt to rest. His equation, based on a balance of 
energy, is 

(6) 
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where the run-out distance S is measured from a reference position on the slope and where the 
velocity Vt is computed according to Equation (5). The parameter HD is the mean deposition 
depth, and is introduced to account [or the energy lost due to the pile-up of debris. 

In practice, one of the difficulties with Voellmy's method is the need to establish a reference 
position for the computation of S. There are many ways a reference can be chosen. For 
example, it may seem logical to select the slope position where tan 8 ~ p.. The path geometry 
is thus approximated as two slopes of constant 8 joined at this reference. The accelerating 
condition (tan 8 > p.) applies to the upper slope, and the decelerating condition (tan 8 < p.) 
applies to the lower slope. For this choice, the computed S-valuc could depend crucially on 
the p.-value, but as we will show later, p.-values cannot be determined to great precision due to 
certain theoretical difficulties. Looked at another way, Voellmy's method is inconsistent in 
the sense that acceleration distance is not used to compute Vt, whereas deceleration distance 
S is one of the essential outputs. 

In summary, we feel it is illogical to compute avalanche velocities and run-out distances 
on paths of complex geometry by selecting a priori the reference position that separates the 
acceleration and deceleration portion of the avalanche path. We are thus led in a natural 
way to conclude that the logical reference is the initial rest position of the system, the starting 
zone, and that the computation should proceed down-slope from this reference. 

CENTRE-OF-MASS MODEL 

If the reference position is taken at the starting zone, then distance enters into the accelera­
tion as well as the deceleration computations. That is, the avalanche accelerates from its 
initial rest position (v = 0, S = 0, t = 0); reaches a maximum velocity v = Vmax at some 
slope position s = SI> or alternatively at some time t = t1 ; and then decelerates to rest, 
v = 0, at a second position s = S2 or t = t 2 • 

To model this accelerating and decelerating behaviour, we will assume that the moving 
avalanche is enclosed by finite boundaries at any slope position (or any time). Equivalently, 
we assume the avalanche has a finite mass M (s) or M (t), where s or t characterizes the position 
in space or time of the centre ofmass. Admittedly, in Nature, the boundaries and mass of an 
avalanche are usually poorly defined. Perhaps this is why Voellmy chose the opposite 
viewpoint and solved for the motion of a column in an "endless" fluid. On the other hand, 
the longer and hence more interesting avalanche paths are on the order of 103 m long, yet we 
believe from our visual observations (no firm data presently available) that most of the 
avalanche mass at any time is confined to a length scale not greater than half the path length, 
and typically on the order of 102 m. Therefore, in our opinion, the centre-of-mass model is 
the more reasonable of the two diametrically opposed viewpoints. It does turn out, however, 
that this argument may be academic since we will show that the" endless-fluid" and "centre­
of-mass" viewpoints lead to analogous results in many respects, at least as far as present data 
allow us to evaluate details of both models. The task of synthesizing these opposite viewpoints 
into a comprehensive avalanche model which predicts the position of the centre of mass as 
well as the diffusion of the fluid-like boundaries is a task left [or future investigators equipped 
with better data. 

The motion of the centre of mass is described by Newton's law relating the momentum 
change to the sum of the applied forces, that is 

d 
dt (Mv) = L F, 

where M, the mass of the avalanche, is continuously changing due to entrainment of new 
snow from the path, or due to deposition of snow onto the track. The tangential equation of 
motion on a curved path is 
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dv dM 
Mv ds +V

2 ds = Mg sin 6-R, (8) 

where s is the pOSItiOn of the centre of m ass measured along the path from the reference 
position at the top of the path, v is the tangential speed ds/dt, and the tangential resistive force 
R is the sum of drag, ploughing, and friction as illustrated in Figure 2. 

Fig. 2. Resistive forces opposing avalanche acceleration. 

R has a complicated dependence on avalanche speed, shape, mass distribution, snow 
properties, path roughness, and related factors. As in Voellmy's model, R is assumed to 
include a friction resistance proportional to the normal force against the path. If centripetal 
force is included, the friction component in R is 

(9) 

where fL is the coefficient of friction, and r is the local radius of curvature. 
Also following Voellmy, the drag and ploughing terms in R are assumed to be dominated 

by an inertial term of the form kV2 • This important assumption is examined later in our paper. 
Taking R as the sum of the friction term (9) and kv2 , then substituting into Equation (8), and 
finally rearranging, gives 

dv (fLM dM ) Mv ds = Mg(sin 6-fL cos 6) _ V2 -r-+ ds + k . ( 10) 

Note that entrainment is considered to have an inertial resistive effect, and is therefore lumped 
in with the other v2 terms. After combining all v2 terms into a single parameter 

fLM dM 
D(s) - -+-d + k, 

r s 

then Equation (10) can be expressed in the concise form 

1 dv2 D 
- - = g(sin 6-fL cos 6)-- V2 
2 ds M ' 

(II) 

where solutions depend on two adjustable parameters fL and M /D. The latter parameter is 
given the physical interpretation of.a mass-ta-drag ratio. 

Equation (12) is a linear differential equation in v2 • Analytical solutions are cumbersome 
since the parameters 6, fL, and M /D are in general functions of position s. Instead, we use an 
iterative solution similar to the procedure proposed by K6rner ( 1976). First, we divide the 
slope into small enough segments that 6 can be considered constant over the length of the 
segment. Each segment is assigned an angle 6t, a length Lt, a friction value fLi, and a mass/drag 
value (M/D)t. If the speed at the beginning of the ith segment is ViA, and the avalanche 
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does not stop somewhere in the middle of the segment, then the speed ViB at the end of the 
ith segment is the Equation ( 12) solution 

where CCi = g(sin (h-ILi cos ei ) and f3i = -2Lt/(M /D)t. 
If the avalanche stops at a mid-segment position, the stopping distance S from the begin­

ning of the ith segment is the Equation ( 12) solution 

Fig. 3. Segment i and Segment i + I. 

As illustrated in Figure 3, the ViB computed from Equation ( 13) is used to compute 
ViH A , and the computation repeated progressively down-slope until the stopping position. 
ViB cannot always be substituted directly in place of Vi +IA, since it is sometimes necessary to 
include a correction for momentum change at the slope transition. For the case Oi ;? Oi+1> 

we assume the following correction which is based on the conservation of linear momentum. 

( IS) 

Equation (15) introduces a significant correction for an abrupt transition (e.g. an avalanche 
descending over a cliff onto benched terrain), but only a minute correction where a smooth 
curve is subdivided into many segments. For example, if a 45° arc is divided into 100 segments 
the correction is cos1oo(45 / Ioo) ~ 0.997. For the case et < ei +l , we envision that velocity 
decrease due to momentum change is compensated to a large extent by velocity increase due 
to the reduced friction as the avalanche tends to lift off the slope. Thus for the case Oi < OJ+1 

we do not introduce a momentum correction, but simply set Vi+IA = ViB. We recognize that 
our momentum corrections are only rough approximations that lose validity where the path 
of the centre-of-mass deviates significantly from the given slope profile. 

The above computations were programmed for solution using a digital computer. Pro­
gramming details are reported by Cheng and Perla (1979)' A sample computation for a 
simplified case where IL and ]v[/D are constant over the entire path length is shown in 
Table r. 

For the special case where fL and M ID are constant on an infinitely long slope of constant 
inclination e, and assuming the acceleration case tan e > fL, then there is a maximum 
velocity solution to Equation (12) of the form 

[
Mg ]! Vt = IS" (sin O-J.t cos 0) . ( 16) 

This result is analogous to Voellmy's Equation (5), except that the factor MglD replaces the 
factor gH. 
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TABLE I. AVALANCHE VELOCITY COMPUTATION 

Input Output 

Segment 8, L, VA VB 
(i= ) deg m m/s m/s 

I 40 100 0.00 27·09 
2 35 100 26.g8 34·33 
3 30 100 34.20 37.20 
4 25 100 37.06 37.32 
5 20 100 37. 17 35· 19 
6 15 100 35.05 30.84 
7 10 100 30.72 23·59 
8 5 100 23.50 8.72 
9 0 100 8.68 

Avalanche stops 12.66 m on segment i= g. 
Above computations based on I-' = 0·3 and 

MID = 103 • 

THE V2 ASSUMPTION 

The square-root dependence common to both Voellmy's Equation (5) and the centre-of­
mass Equation (16) is a direct consequence of the assumption that R in both models has the 
special form ao+azvz. As Salm (1966) points out, the more general assumption is 

where the coefficients ao, ai, and az can be related to the respective effects of friction, viscous 
dissipation, and inertial resistance. The justification for selecting the term azvz rather than the 
term aIv is that at the speeds of interest, v > 10 m /s, the Reynolds number should be suffi­
ciently high that inertial effects involving stress terms proportional to pv' should dominate the 
scale analysis of an equation of motion that includes both viscous and inertial stress terms. 
Air drag would involve a term proportional to pvz where p is the density of air, while snow drag 
and ploughing would involve terms proportional to p(p+ flp)vz / flp, where p is now the 
density of undisturbed snow before drag and ploughing, and flp is the increase in snow density 
due to the compressional disturbance of drag and ploughing. 

Setting aside the Reynolds number argument, there is some observational evidence to 
support the choice of an azv' term rather than an aIv term. If aI v dominated the equation of 
motion, then Vt would depend linearly on slope angle 8. However, Voellmy summarizes 
observations to the contrary: Vt varies weakly, if at all, with slope angle. 

It is indeed fortunate that ao+ aov2 appear to be the important terms, otherwise Equation 
(12) would be non-linear. Solutions for the three-parameter case aO+aIv + aZv' given by Salm 
(1966) are still in advance of practical application. Even a two-parameter model is overly 
flexible and contains a mathematical redundancy, as we show later. 

RANGE OF J1. AND M/D 

The values of J1. and M /D (or Voellmy's J1. and gH) can be estimated only roughly from 
existing data. Even the upper and lower bounds of J1. and M /D (or gH ) are controversial. 
Voellmy claimed that J1. could decrease to less than o. I if the avalanche fluidizes into a low 
density (c. 10 kg/m3) dust cloud. However, a value of J1. less than o. I is difficult to reconcile 
with data collected by Bovis and Mears (1976), who found that the average slope angle in the 
deposition zone oflarge avalanches exceeds 10° (i.e. J1. > 0.18) . The only avalanches known 
to run steadily (without deceleration) on slopes where 8 < 10° are slush avalanches, observed 
mostly in the Arctic. 
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The upper limit of /L is equally controversial, but it is known that avalanches have initiated 
from rest on 25° slopes (Perla, in press), and that after a large avalanche begins accelerating 
it is unlikely to decelerate unless 8 is less than 25°. These observations imply that /L is generally 
less than tan-125° or less than about 0.5. Thus, a reasonable range for /L appears to be 
O. I ~ /L ~ 0·5, depending on such factors as snow type, path roughness, and the presence of 
trees and obstacles. 

The range of M /D (or Voellmy's gH) can be estimated from avalanche speeds using 
Equation (16) (or Voellmy's Equation (5) ). Speeds of large dry avalanches are reported by 
Voellmy and many others (Perla, in press) to sometimes reach 50 m /s, and possibly even reach 
100 m/s. From Equation (16), it is seen that M /D must reach or exceed 103 m if avalanche 
speeds can truly exceed 50 m /s. Typically, wet avalanches move considerably slower 
(v ::::: 10 m/s) and are thus characterized by lower M/D values (c. 102 m). The wide range of 
avalanche velocity indicates that the range of M /D (or gH ) spans several orders of magnitude, 
at least from 102 to 104 m, and possibly from 10 to 105 m. 

ESTIMATES OF M AND D 

A more refined estimate of M/D could be based on separate estimates of M and D, in 
much the same way that Voellmy separates the factors g and H. Once again, we note that 
present data are so limited that we can only sketch order-of-magnitude estimates. 

The avalanche mass M (s) is a function of position. The initial value M (o) is estimated as 
the mass of the snow in the starting zone, and the extreme values of M (o), for example the 
one-in-Ioo-year estimate, determine the extreme values of velocity and run-out distance. 
Typically, M ( 0) is in the range 105 to 108 kg for the relatively larger avalanches that threaten 
facilities in North America. The values of M at successive segments down-slope from the 
starting zone depend on the rate of entrainment dM/ds. For convenience, Voellmy assumed 
dM/ds = 0, but in Nature the deposited avalanche mass could be a multiple or a fraction of 
M(o). A relatively large avalanche, for example M(o) = 106 kg, could double its mass along 
a path length of 103 m, in which case (dM/ds) ::::: 103 kg/m. Entrainment rates could con­
ceivably reach 104 kg/m, or perhaps higher for the world's largest avalanches. 

The parameter D also ranges widely depending on the terms in Equation (I I), namely the 
drag and ploughing term k, the entrainment term dM/ds, and the curvature term /LM/r. The 
curvature term (/LM/r) presents an interesting problem because at cliff bands and terrain 
inflections, where r approaches zero, the curvature effect could easily dominate the M/D 
computation. For this reason, our computer solutions tacitly avoid the mathematical 
singularity of Equation (I I). Instead, we approximate the avalanche path with straight-line 
segments and introduce a correction for momentum loss using Equation (15)' 

With curvature handled separately, the parameter D combines the remaining terms k and 
dM/ds. Using conventional hydrodynamic theory, we estimate k as a sum of terms 

( 18) 

where P1 is the density of the jth resistive medium the avalanche moves through (air, new 
snow, compressed snow), A1 is the portion of the avalanche surface area that interfaces with 
the jth medium, and e1 is a drag coefficient which is dependent on the shape of AJ and the 
Reynolds number. The density factor P1 ranges from I kg/m3 for air to over 102 kg/m3 for 
compressed snow. At the interface where the lead tip of the avalanche ploughs through snow, 
P1 is replaced by the term p(p+ /).p) / /).p, discussed earlier. 

As example, consider a relatively large avalanche with M (o) ::::: 105 to 106 kg. Typical 
values of A1 would range from 104 m 2 at the avalanche-air interface, down to perhaps 102 m2 
for the avalanche-snow interface at the lead or ploughing edge. From hydrodynamic tables, 
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Cj will range from o. I to 1.0 for the Reynolds numbers, which are computed to exceed IOS 

using the traditional formula VL/v. On the basis of these estimates it is conceivable that k 
could range from 10 kg/m to I06 kg/m. H owever, in Equation (18), it is more likely that the 
air density I kg/m3 would pair with the large surface area I04 m2, and similarly the high 
density of the snow medium > I02 kg/m 3 would pair with the smaller surface area I02 mZ• 

Hence, the range of k for this example of a relatively large avalanche is narrowed to perhaps 
I03 or I04 kg/m, even allowing for variation in Cj and other uncertainties. Finally, recalling 
that our estimates of dM/ds overlap these estimates of k, we conclude that D (here, k+dM/ds) 
can also be estimated as c. 103 or 104 kg/m for the above example of a large avalanche. 

Taking the example of the large avalanche one step further, we next combine our estimate 
IOS < M < 106 kg with the corresponding estimate 103 < D < 104 kg/m, and obtain 
I02 < M /D < 103 m. This range is within the range derived independently in our previous 
section using velocity observations and Equation (16). 

Suppose M (o) is significantly larger, for example c. 107 kg or c. 108 kg. Does D also 
increase? In general, yes. A larger M implies a larger volume, which in turn implies larger 
surface area Aj along with higher dM/ds, and hence a higher D-value. However, M/D also 
increases in general since mass is proportional to LJ, where L is some characteristic size, while 
surface area is proportional to L2, and thus M/D is proportional to L. 

Voellmy introduced flow height H as a characteristic size in his Equation (5), but we feel 
that H is too restrictive to serve as the crucial parameter. Voellmy's interpretation of the role 
of H breaks down if we no longer regard the avalanche as an "endless fluid" because at the 
front of the avalanche an increase in H due to fluidization implies an increase in frontal 
surface area. The increase in frontal resistive forces may have a decelerating effect, com­
pletely contrary to the prediction of Equation (5). It is for this reason we prefer the new 
parameter M/D which, compared to Voellmy's gH, allows a more flexible interpretation of 
the resistive forces. 

NUMERICAL COMPUTATION OF iL AND M/D 

I t is possible to devise a criterion for calculating one pair {iL, M /D} or {iL, gH} which 
matches the overall data measured on one or more paths. For example, K6rner (1976) has 
devised a graphical method for selecting the {iL, gH} that best matches the known velocity 
and run-out distance for a single path. Since velocity data are rare, we pose another problem 
of practical importance: Find the pair {iL, M/D} which is the best predictor of known stopping 
positions for a group of N paths. Here it would seem that one could choose the {iL, M /D} 
which minimizes the difference between the computed and known stopping distance, summed 
for all N paths. However, this criterion will not work since a {iL, M /D} that yields a close fit 
for some of the paths may take the avalanche beyond the boundaries of the remaining paths 
in the group, and in some cases on towards "infinity" if tan e > iL. To perform the calcula­
tions, we would therefore be forced to extend the paths in some arbitrary and artificial 
fashion. An alternative is to select {iL, M /D} to minimize kinetic energy or impact pressure 
at the known stopping position. This is equivalent to selecting the {iL, M /D} that minimizes 
u2 at the known stopping position. One way to proceed is as follows: 

(a) If the avalanche is computed to overshoot the known stopping position, then compute 
VZ at the known stopping position. 

(b) If the avalanche is computed to stop short of the known stopping position, then 
compute u2 necessary to force the avalanche from the "computed" to the known stop. 
This computation involves Equations (13), (14), and (15) applied in reverse. 

(c) Assign positive values for the overshoot u2 (i.e. case (a)), negative values for the 
undershoot u2 (i.e. case (b)), and add algebraically for all N paths. 
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TABLE 11. CASCADE HIGH WAY AVALANCHES. F r om L aCh a p elle and others (1971 ) 

Segmen t 1 Segment 2 Segment g Segment 4 Segment 5 Segmwl 6 Segmmt 7 Segment 8 

Avalanche path 0, L, 8, L, 8, L, 0, L, 0, L, 8. 4 8, L, 8, L . 
deg m deg m deg m deg m deg m deg m deg m d eg m 

Newhalem 3 36·4 492 38.6 390 43 ·5 420 37·5 384 32.1 360 32. 1 360 24·9 336 18. , 3 18 
Newhalem 5 43·5 420 43·5 420 4 1.7 408 40.7 402 32 . 1 360 Ig.8 324 
Newhalem 6 38.2 504 43·5 420 37·5 384 30.6 354 25·0 Ig8 17·0 138 
Newhalem 7 36.g 300 32.0 1080 28.9 1 044 35·0 372 28. 1 204 48.2 IBo 12. 1 270 
Granite Creek I 35.0 372 33·6 336 30.6 354 20.8 276 
Gra nite Creek 4 33·3 372 36.4 384 24·4 348 20·9 336 22 · 3 348 20· 9 336 14·5 336 13.6 204 
Grani te Creek 6 32.0 396 35.6 402 31. 1 372 27.8 360 19·5 324 16.0 240 
G ranite Creek 7 4(,0 384 33·7 378 25·2 408 18.5 360 23.6 240 15·0 324 13·9 324 9·9 420 
G ran ite Creek 8 43·4 192 29·2 270 31.1 372 24·5 420 16 .0 348 5·5 312 
Gra nite Creek 9 30.0 240 38.g 420 42 .8 300 40·5 240 34.8 420 g.g 3B4 
Granite Creek 10 36.g I Bo 37·5 3B4 Ig.B 324 5. 1 306 
Whistler M ountain 45.6 240 4 1.7 408 3 7· 5 384 32. 1 360 12 · 3 312 
Whistler Shoulder 45·2 528 27·3 162 15 ·4 168 
Cutthroat I 4 1. 7 402 33.6 360 24.6 330 16.1 306 
Cutthroat 2 4 1.7 402 3B.6 384 26.B 336 16.1 306 
Cutthroat 4 43·5 372 36.2 372 26.8 336 IJ.5 300 
Cutthroat I Q 43 .6 4 ! 4 33·9 360 29. 7 348 Ig.6 3 12 
Dela ncy 4 33·9 564 33.6 360 26.8 336 24.6 330 22 . 2 324 16. 1 306 
Delancy 5 37·9 534 32.1 354 24.6 330 19·4 3 18 15·9 312 11 ·5 300 
D elancy 7 31.9 5 16 30.5 348 26.8 336 30·5 348 JI ·5 300 
Delancy B 30·5 34B 26.8 336 27.8 342 26.8 336 24·6 330 11. 5 300 
Dela ncy 9 30·5 34B 32 .1 354 36.2 372 24·6 330 22.2 324 (1 ·5 300 
D elancy 12 33.6 360 33.6 360 2B· 7 342 30.5 34B 2B. 7 342 26.B 336 11.5 300 
D elancy 13 3B.o 3B4 33.6 360 2B· 7 342 24.6 330 24.6 330 28.7 342 22 .2 324 1I·5 300 
Silver Star I 3B.5 564 33.6 360 22 . 2 324 27·0 330 

It is necessary to assign positive a nd negative values to the energy term (v2 ) , and to take an 
algebraic sum, becau se if instead the criterion is based on L IV 2 1, then the optimum pair is 
perforce a very low M ID and a very low fL tha t for a ll N pa ths takes the avalanche creeping 
through the known stopping positions, and never gen era tes velocities a t a ny position on any 
of the N paths in excess of c. 1 to IQ m /s. The deta ils of how this criterion is programmed 
for a digital computer are given by Cheng (1979) . 

As an example, the above v2 criterion was a pplied to a group of 25 avalanche p a ths 
(N = 25) mapped by L aChapelle and o thers (1971 ) . D a ta are shown in T able Il. Avalanches 
are presumed to stop at the end of the last segment. A total of 412 = 1 681 combina tions of 
fL and M ID were formed by allowing fL to range in 0. 0 1 intervals from 0.1 to 0.5 (41 values 
total), a nd by allowing M ID to range as 1.0 ~ 10glo (M ID ) ~ 5.0 in 0.1 intervals (41 values 
total) . Each of these 1 68 1 pairs of V.l., M ID } was tried as a predictor of the stopping distance 
on all 25 paths using the above criterion . The ten bes t fi ts a re ranked in T able III according 
to the algebraic sum of v2 • In addition, T able III lists for each { fL , M ID }, the m aXImum 
velocity genera ted on a ny segment of any of the 25 p a ths. 

TABLE Ill. BEST FITS TO DATA OF TABLE II 

Pair 

Rank I" log!o (M ID) 1: v
' 

Vmax 
ml/s' mls 

0·39 3.1 -16.21 65.22 
2 0.19 2·3 -22·75 33·47 
3 0.14 2.1 55.46 27·99 
4 0.21 2.{ 110.69 36.90 
5 0.12 2.0 -11 3·43 25.38 
6 0. 36 3·0 206.50 60·79 
7 0·33 2·9 243·95 56.50 
8 0.{6 3·4 393·53 76.63 
9 0·44 3·3 448.82 73.24 

10 0.30 2.8 456.19 52.20 

If 1: V' is n eg a tive, the r e is a n e t unde r estimate o f the stopping 
positio n; p ositive 1: v

' 
i s n e t over estimat e . 

V m ax is the maxim u m v elocity computed on any segment on 
any of the 25 paths sho wn in T a ble II. 
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For the ten best fits, M ID has a range defined as 2.0 ~ 10gIo(MID) ~ 3+ This range 
(c. 102 m to 103 m) is consistent with our estimate of M ID using expected M and D values for 
large avalanches, as derived in our previous section. Moreover, the corresponding maximum 
velocities are consistent with maximum velocity observations as reviewed by Perla (in press). 
The interesting feature is that we did not input velocity to arrive at the ranking of Table Ill. 
Rather, we have computed from input data of stopping distances that maximum velocity is 
somewhere in the range 25 ~ V max :(: 76 mls for the ten best fits. 

The fact that a solution with a relatively high velocity (V max = 65 m/s) ranked first is 
probably not significant because of the wild fluctuation of {,.L, M ID} in successive rankings. 
Quite possibly, a lower velocity solution would rank first on a finer grid; for example 
t:.fL = 0.001, t:. 10gIO(MID ) = 0.01. In any case, the range of {fL, M ID} cannot be narrowed 
further without narrowing the range of V max' Unfortunately, definitive velocity data are 
scarce. 

A UNIQ,UENESS PROBLEM 

Suppose we have field measurements of velocity v(s) on a path of known geometry, can we 
compute fL (S) and M ID (s)? The answer is no, because referring back to Equation (13), we 
note ' there are infinitely many combinations of fLt and (M ID )t which satisfy the given data 
ViA, VtB, Lt, and 8t for the ith segment. In other words, the unfortunate fact is that even with 
a complete set of velocity measurements from start to stop-measurements that are presently 
rare and not easy to obtain-we still cannot determine uniquely how fL and M ID vary on a 
given path. This uniqueness problem, intrinsic to two-parameter models such as {fL, M ID} 
or Voellmy's {fL, gH}, or for that matter any model based on any two terms from Equation 
(17), is apparently subtle enough not to have been emphasized previous to our paper. 

It is not difficult to construct an alternative model based on one parameter that can be 
determined uniquely from velocity data. We return to Equation (8), introduce one generalized 
parameter for R+v2 (dM/ds) , say C, and we have in place of Equation ( 12 ) 

I dv2 C 
2ds =gsin8- M · (19) 

Now, given the same data for the ith segment (VtA, VtB, Lt, and 8t), and assuming (CIM), 
is constant for the length of the segment, we obtain the unique value 

(C(M)i = g sin 8t-[(VtB)2_(VtA)2] /2Lt. (2 0) 

With enough data it should eventually be possible to correlate ClivI with such factors as 
velocity and slope angle in order to test statistically the v2 assumption and whether "friction" 
is actually proportional to normal force (Mg cos 8) . 

CONCLUSIONS 

Voellmy's model is encumbered by the need to choose a mid-slope reference position for 
the computation of terminal velocity and run-out distance. Results depend on where the 
reference is located, however there is usually no firm reason for selecting one reference 
position in preference to another. To overcome this flaw, we have derived a differential 
equation which describes the motion of the centre of mass of an avalanche from start to stop 
down a slope of arbitrary geometry. Numerical solu tions depend critically on two parameters: 
a friction coefficient fL' and a dynamic resistance parameter M ID which is the ratio of avalanche 
mass M to dynamic drag D. The equation and solutions are analogous to Voellmy's two­
parameter model which assumes an avalanche is an endless fluid. The analogy follows 
because both theories include a dynamic resistance proportional to v2• 
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The ranges of p- and MID (or Voellmy's p- and gH) are not presently known to useful 

precision. It is possible to compute a p- and M ID that best predict the stopping position of a 
group of paths, but this is an unstable computation in the sense that widely different pairs of 
I-' and MID rank closely as predictors of identical stopping positions. More refined estimates 
of I-' and MID depend on avalanche velocity data in addition to measurements of stopping 
position. 

Even with complete velocity data for a given path, it is not possible to compute uniquely 
how p- and MID vary on the given path. This is due to the mathematical redundancy of a 
two parameter model. 
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