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Abstract. In this paper we study the ergodic properties of the geodesic flows on
compact manifolds of non-positive curvature. We prove that the geodesic flow is
ergodic and Bernoulli if there exists a geodesic y such that there is no parallel
Jacobi field along y orthogonal to y. In particular, this is true if there exists
a tangent vector v such that the sectional curvature is strictly negative for all
two-planes containing v, or if there exists a tangent vector v such that the
second fundamental form of the horosphere determined by v is definite at the
support of v.

Let M be a compact connected smooth n-dimensional Riemannian manifold of
non-positive sectional curvature. Denote by g' the geodesic flow in the unit tangent
bundle SM of M. It is well-known that g' preserves the natural Liouville measure
in SM which is the direct product of the Riemannian volume on M and the Lebesgue
measure on S""1.

THEOREM 1. / / there is a geodesic y such that there is no non-zero parallel Jacobi
field along y orthogonal to y, then g' is ergodic and Bernoulli.

COROLLARY 1. / / there is a tangent vector v e SMsuch that the horosphere determined
by v is strictly convex (i.e., the second fundamental form of the horosphere is definite
at the support of v), then the geodesic flow is ergodic and Bernoulli.

Proof. There is no parallel Jacobi field along the geodesic determined by v.

COROLLARY 2. If there is a tangent vector \eSM such that the sectional curvature
is strictly negative for all two-planes containing v, then g' is ergodic and Bernoulli.

Proof. If / is a non-zero parallel Jacobi field along a geodesic y and orthogonal to
y, then the sectional curvature of the plane (y(t), J(t)) vanishes for all t.
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Proof of theorem 1. Let \eSM arid weTySM, vv^O. Define the characteristic
exponents of w by the formulae

+(v, w) = lim sup (-In ^dg'w\\),

/I
X (v, w) = lim sup I — In \\dg \

t^-ao \ t

Let Gy be the vector field on SM corresponding to the geodesic flow and let

A+ = {v e SM|*+(v, w) # 0 for every w e TySM, w*0,w± Gy},

A" = {ve SM\x~{\, w) # 0 for every w € rySM, w ¥= 0, H> 1 Gv}.

Taking into account the natural identification of the tangent spaces TySM and
T-ySM we get

V (— V M/^ = V f v W ^
A V *> rv / A V T » f V / »

and hence,

It follows from the Oseledec multiplicative ergodic theorem that A+ = A" =
A (mod 0), where A is the set of regular points of g' in SM with all exponents
non-zero (see [4] and [5], § 3).

LEMMA 1. If the hypothesis of theorem 1 is satisfied, then A+ (and, hence, also A~
and A) has positive measure.

Proof. Let K(\, u) be the sectional curvature of the plane («, v), and for ve SM let
yv be the geodesic determined by v. A Jacobi field J(t) along a geodesic y is called
asymptotic if J(t)±y(t)^&nd ||/(f)||<||/(0)|| for all t>0. For every vl'y(O) there
exists a unique asymptotic Jacobi field Jy(t) along yv such that /v(0) = v.

We will show now that there exists a geodesic y such that

K(y(t),J(t))<0 fora? = f(/)>0

for every asymptotic Jacobi field / along y. Suppose this is not true. Then for any
v 6 SM there is an asymptotic Jacobi field 7V along yv such that

K(yy(t),Jy(t)) = 0 forallf>0.

Set vn = g~nv,neN. Renormalizing JYn, if necessary, we can assume that |(/¥n (n )|| = 1.
The vectors /Vn(n) are orthogonal to v, and a subsequence of {/»„(«)} converges.
The asymptotic Jacobi field / along -yv determined by the limit satisfies

K(yy(t),J(t)) = 0 forallreR.

It follows that / is parallel. Indeed, {R(X,yy)yy,X)<0 for every X, since the
curvature is. non-positive (R is the Riemann tensor). Hence, (R(X,yy)yy,X) = 0
implies R (X, -yv)yv = 0. Therefore, V2/ = V2/+/?(/, yv)yv = 0, and thus VJ is
parallel. Let {Xi} be a basis of parallel fields along yv. Then V/ = £ a,Jf, and hence
J — E («if + Pi)X(. Since / is asymptotic, a{ = 0 for all /, and / is parallel. Conversely,
if / is a parallel Jacobi field along a geodesic y, then K(y(t), J(t)) = 0 for all t e R.
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We conclude that for the geodesic y given by the hypothesis of theorem 1

K(y(t),J(t))<0 foraf

for every asymptotic Jacobi field / along y.
Because / depends continuously on /(0), by compactness there exist T>0 and

b <0 such that

f K(y(t),J(t))dt<b<0
Jo

for all asymptotic Jacobi fields / along y. Since the limit of a sequence of asymptotic
Jacobi fields is an asymptotic Jacobi field, there is an open neighbourhood U of
•y(O) in SM such that for every ve(7

f K{g'y,
Jo

J(t))dt<b<0

for every asymptotic Jacobi field / at v.
According to the Birkhoff ergodic theorem, for almost every vector v e U the

trajectory g'v will return to U regularly, i.e.

1 r'
lim inf - xu(gsv) ds > 0,

r-»<x> t J Q

where xu is the characteristic function of U. Every such vector v is contained in
the set

T = I v e SM lim sup — K (g'v, J{t)) dt<0 for every asymptotic Jacobi field / [ .

I T-roo i JO J

By theorem 10.5 in [5] we have

rcA+.
Therefore, A+ has positive measure. Lemma 1 is proved. •

We shall show now that g' is ergodic and Bernoulli. In [6] Pesin proved that g'
is ergodic and Bernoulli if F has positive measure and M satisfies the visibility
axiom (see [2]). The rest of our argument is a modification of his proof.
LEMMA 2. The flow g' is topologically transitive.

Proof. By assumption there is a geodesic which does not bound a flat strip. By [1]
(see theorem 4.7), g' is topologically transitive. The lemma is proved. •

Let H be the universal cover of M.

LEMMA 3. Let U be a bounded open subset of H, V an open subset of the absolute
H(<x>) whose complement has a non-empty interior, and W a neighbourhood in
H u H(°o) of a point z e //(oo).

Then there exists an element 4> of TTI(M) such that <j>(UuV)c\V.

Proof. This follows immediately from lemma 4.4 in [1]. •
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For each v eSH denote by Ws(\) the set of vectors y'eSH supported on the
horosphere determined by v, perpendicular to the horosphere, and pointing in the
same direction as v. Let W(\) = - Ws(-v).

LEMMA 4. Let veA and o be an open neighbourhood of -v in W(—\). Then the
set {yv{<x>)\v'eo} contains an open neighbourhood of yv(-oo).

Proof. The geodesic yy does not bound a flat strip since v e A. It follows from lemma
2.2 in [1] that for any xeH(°o) sufficiently close to y¥(-°o) there exists a geodesic
yx such that yx(-oo) = yv(oo) and yx(<x>) = x. We can parametrize yx in such a way
thatyx(0)e Wu(-v).

If the assertion of the lemma is not true, then it follows from the above that
there exists a sequence of geodesies yn such that

(i) yn(oo) = yv(oo);
(ii) Yn(—°°) -* Tv(-°°) asn->oo;
(iii) d(yn(0), yT(0)) > C > 0.

It follows from [1, lemma 2.1] that yv bounds a flat strip. This is a contradiction.
The lemma is proved. •

The rest of the proof of theorem 1 proceeds as in [6] (see theorem 9.1).
The main ideas of Pesin's proof are the following. Consider all objects on the

universal cover H of M. For almost every veA the strong stable and unstable
manifolds of v (see [5] or [6] for the definition) are exactly Ws(\) and W(y) (see
[6, lemma 9.4]). Obviously, A+ consists of entire stable manifolds and A~ consists
of entire unstable manifolds. Since A+ = A~ = A (mod 0) by Oseledec theorem
[4], A consists mod 0 of entire stable and unstable manifolds. Hence, by the absolute
continuity of the stable and unstable foliations, for almost every veA we have
W(\) c A and Ws(v) <= A mod 0 with respect to the Lebesgue measure on W"(\)
and Ws(v). The set A+ consists of entire stable manifolds and is g'-invariant,
therefore, A+ consists of entire weak stable manifolds

WOs(v)= U Ws(g'y).
—ao<r<co

/OsSince the foliation W s is absolutely continuous on A, the set A consists mod 0 of
entire weak stable manifolds. Call a point veA 'good' if W(v) almost entirely
belongs to A. Almost every point of A is 'good', therefore we can find a leaf WOs(v),
veA, which consists mod 0 of 'good' points, i.e.

A= U W"(v')cA(modO).
v'eWOs(v)

The set UVEW!W yA~°°) contains an open neighbourhood of -y¥(-oo) in H{oo)
(see lemma 4). Lemma 3 shows that SH <=• A mod 0. The ergodicity now follows
from theorem 9.5 in [5] since g' is topologically transitive (lemma 2).

THEOREM 2. / / A+ is not empty, then g' is ergodic and Bernoulli.

Proof. If v e A+, then there is no parallel Jacobi field along the geodesic yv determined
by v. •

https://doi.org/10.1017/S0143385700001632 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001632


Ergodicity of geodesic flows 315

COROLLARY 3. / / either of the assumptions of theorem 1 or 2 is satisfied, then the
number of geometrically distinct closed geodesies grows exponentially with the length
and vectors determining closed geodesies are dense in the tangent bundle.

Proof. This follows from [3]. The density of closed geodesies also follows from [1].
Namely, the set X of v such that there is no non-zero parallel Jacobi field along
yy orthogonal to yv is open and, as we assume, not empty. Since X is invariant
under g\ it follows from [1, theorem 4.7], or from theorem 1 above, that X is
dense in SM. By [1, theorem 4.7], every veSM is the limit of vectors which
determine closed geodesies. The corollary is proved. •
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