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Abstract

Quantitative extensions of logic programming often require the solution of so called second level
inference tasks, that is, problems that involve a third operation, such as maximization or nor-
malization, on top of addition and multiplication, and thus go beyond the well-known weighted
or algebraic model counting setting of probabilistic logic programming under the distribution se-
mantics. We introduce Second Level Algebraic Model Counting (2AMC) as a generic framework
for these kinds of problems. As 2AMC is to (algebraic) model counting what forall-exists-SAT
is to propositional satisfiability, it is notoriously hard to solve. First level techniques based on
Knowledge Compilation (KC) have been adapted for specific 2AMC instances by imposing vari-
able order constraints on the resulting circuit. However, those constraints can severely increase
the circuit size and thus decrease the efficiency of such approaches. We show that we can exploit
the logical structure of a 2AMC problem to omit parts of these constraints, thus limiting the
negative effect. Furthermore, we introduce and implement a strategy to generate a sufficient
set of constraints statically, with a priori guarantees for the performance of KC. Our empirical
evaluation on several benchmarks and tasks confirms that our theoretical results can translate
into more efficient solving in practice.

KEYWORDS: design, analysis and implementation of languages, logic programming
methodology and applications

1 Introduction

Especially in recent years, research on quantitative extensions in Logic Programming

has flourished. ProbLog (De Raedt et al. 2007), PITA (Riguzzi and Swift 2011),

smProbLog (Totis et al. 2021) and others (Baral et al. 2009; Lee and Yang 2017) al-

low for probabilistic reasoning, DeepProbLog (Manhaeve et al. 2018), NeurASP (Yang
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archives.
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et al. 2020) and SLASH (Skryagin et al. 2021) additionally integrate neural networks into

programs.

Algebraic Prolog (Kimmig et al. 2011), algebraic model counting (AMC) (Kimmig et al.

2017) and algebraic answer set counting (Eiter et al. 2021) define general frameworks

based on semirings to express and solve quantitative first level problems, which compute

one aggregate over all models, for example, counting the number of models, or summing

or maximizing values associated with them, such as probabilities or utilities. Kimmig et al.

(2017) showed that we can solve first level problems by compiling the logic program into

a tractable circuit representation, on which evaluating an AMC task is in polynomial

time if the semiring operations have constant cost.

However, many interesting tasks require two kinds of aggregation, and thus are sec-

ond level problems that go beyond AMC. Examples include Maximum A Posteriori

(MAP) inference in probabilistic programs, which involves maximizing over some vari-

ables while summing over others, inference in SLASH and smProbLog, and optimization

tasks in decision-theoretic or constrained probabilistic programming languages such as

DTProbLog (Van den Broeck et al. 2010; Derkinderen and De Raedt 2020) and SC-

ProbLog (Latour et al. 2017).

While second level problems stay hard on general tractable circuit representations,

DTProbLog and SC-ProbLog are known to be polynomial time on X-constrained SDDs.

The key idea is to ensure that all variables of the outer aggregation appear before those of

the inner one in the circuit so that we can perform both aggregations sequentially. This,

however, comes at a high cost: circuits respecting this constraint may be exponentially

larger than non-constrained ones, resulting in significantly slower inference. Additionally,

certain optimization techniques used in knowledge compilation, such as unit propagation,

may cause constraint violations.

In this paper, we generalize the AMC approach to second level problems, and show

that we can often weaken the order constraint using definability : A variable Y is defined

by a set of variables X and a propositional theory T if the value of Y is functionally

determined by the assignment to X in every satisfying assignment to T . For example,

a is defined by b in the theory {a ↔ b}. Informally, if a variable participating in the

inner aggregation becomes defined by the variables of the outer aggregation at any point

during compilation, we can move that variable to the outer aggregation. This can allow

for exponentially smaller circuits and consequently faster evaluation, and additionally

justifies the use of unit propagation.

Our main contributions are as follows:

• We introduce second level algebraic model counting (2AMC), a semiring-based

unifying framework for second level quantitative problems, and show that MAP,

DTProbLog and smProbLog inference are 2AMC tasks.

• We weaken X-firstness, the constraint that the variables in X need to occur first,

to X-firstness modulo definability and show that this is sufficient for solving 2AMC

tasks under weak additional restrictions.

• We lift methods for generating good variable orders statically from tree decompo-

sitions to the constrained setting.

• We implement our contributions in the algebraic answer set counter aspmc (Eiter

et al. 2021) and the probabilistic reasoning engine ProbLog2 (Fierens et al. 2015).

• We evaluate our contributions on a range of benchmarks, demonstrating that dras-

tically smaller circuits can be possible, and that our general tools are competitive
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with state of the art implementations of specific second level tasks in logic pro-

gramming.

2 Preliminaries

We consider propositional theories T over variables X. For a set of variables Y, we denote

by lit(Y) the set of literals over Y, by int(Y) the set of assignments y to Y and by

mod(T ) those assignments that satisfy T . Here, an assignment is a subset of lit(Y), which

contains exactly one of a and ¬a for each variable a ∈ Y. Given a partial assignment

y ∈ int(Y) for a theory T over X, we denote by T |y the theory over X \Y obtained by

conditioning T on y. We use |= for the usual entailment relation of propositional logic.

Algebraic Model Counting (AMC) is a general framework for quantitative reasoning

over models that generalizes weighted model counting to the semiring setting (Kimmig

et al. 2017).

Definition 1 (Monoid, Semiring)

A monoid M = (M,⊗, e⊗) consists of an associative binary operation ⊗ with neutral el-

ement e⊗ that operates on elements of M . A commutative semiring S = (S,⊕,⊗, e⊕, e⊗)
consists of two commutative monoids (S,⊕, e⊕) and (S,⊗, e⊗) such that ⊗ right and left

distributes over ⊕ and e⊕ annihilates S, that is ∀s ∈ S : s⊗e⊕ = e⊕ = e⊕⊗s.

Some examples of well-known commutative semirings are

• P = ([0, 1],+, ·, 0, 1), the probability semiring,

• Smax,· = (R≥0,max, ·, 0, 1), the max-times semiring,

• Smax,+ = (R ∪ {−∞},max,+,−∞, 0), the max-plus semiring,

• EU = ({(p, eu) | p ∈ [0, 1], eu ∈ R},+,⊗, (0, 0), (1, 0)), the expected utility

semiring, where addition is coordinate-wise and (a1, b1)⊗(a2, b2) = (a1 ·a2, a2 ·b1 +

a1 ·b2).

An AMC instance A = (T ,S, α) consists of a theory T over variables X, a commutative

semiring S and a labeling function α : lit(X)→ S. The value of A is

AMC (A) =
⊕

M∈mod(T )

⊗
l∈Mα(l).

A prominent example of AMC is inference in probabilistic logic programming, which

uses the probability semiring P and a theory for a probabilistic logic program (PLP).

A PLP L = F ∪ R is a set F of probabilistic facts p :: f and a set R of rules h ←
b1, . . . , bn, not c1, . . . , not cm such that each assignment (world) f to F leads to exactly

one model. By abuse of notation, we use L also for a propositional theory with the

same models. We denote the Herbrand base, that is, the set of all ground atoms in

L, by H. The success probability of a query q is SUCC (q) =
∑

h∈mod(L|q) P (h), the

sum of the probabilities P (h) =
∏

l∈h α(l) of the models h where q succeeds. Here,

α(f) = p, α(¬f) = 1− p for p ::f ∈ F and α(l) = 1, otherwise.

Example 1 (Running Example)

We use the following probabilistic logic program Lex throughout the paper.

0.4::a c← a 0.6::b d← b

Its four worlds are f1 = {a, b}, f2 = {a,¬b}, f3 = {¬a, b}, f4 = {¬a,¬b}, and the prob-

abilities of their models h1,h2,h3,h4 are P (h1) = 0.24, P (h2) = 0.16, P (h3) = 0.36
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Fig. 1. Two sd-DNNFs for Lex. Mixed nodes for partition {a, b}, {c, d} are circled red and
pure nodes are boxed blue or boxed green, when they are from {a, b} or {c, d}, respectively.

and P (h4) = 0.24. The query c succeeds in the models h1 and h2, thus SUCC(c) =

P (h1) + P (h2) = 0.4.

Kimmig et al. (2017) showed that Knowledge Compilation (KC) to sd-DNNFs solves

any AMC problem. sd-DNNFs are special negation normal forms (NNFs). An NNF

(Darwiche 2004) is a rooted directed acyclic graph in which each leaf node is labeled

with a literal, true or false, and each internal node is labeled with a conjunction ∧
or disjunction ∨. For any node n in an NNF graph, Vars(n) denotes all variables in

the subgraph rooted at n. By abuse of notation, we use n also to refer to the formula

represented by the graph n. sd-DNNFs are NNFs that satisfy the following additional

properties:

Decomposability (D): Vars(ni)∩Vars(nj) = ∅ for any two children ni and nj of an

and-node.

Determinism (d): ni ∧nj is logically inconsistent for any two children ni and nj of an

or-node.

Smoothness (s): Vars(ni) = Vars(nj) for any two children ni and nj of an or-node.

In order to solve second level problems, we need Constrained KC (CKC), that is, an

additional property on NNFs, apart from s, d and D, that restricts the order in which

variables occur.

Definition 2 (X-Firstness)

Given an NNF n on variables partitioned into X,Y, we say an internal node ni of n is

pure if Vars(ni) ⊆ X or Vars(ni) ⊆ Y and mixed otherwise. n is an X-first NNF, if for

each of its and-nodes ni either all children of ni are pure nodes, or one child is mixed

and all other children nj of ni are pure with Vars(nj) ⊆ X.

Note that X-first NNFs contain a node nx equivalent to n |x for each x ∈ int(X).

Example 2 (cont.)

The NNFs in Figure 1 are both sd-DNNFs and equivalent to Lex. The left sd-DNNF is

furthermore an {a, b}-first sd-DNNF, whereas the right is not.

3 Second Level Algebraic Model Counting

We now introduce Second Level Algebraic Model Counting (2AMC), a generalization of

AMC that provides a unified view on second level problems.

https://doi.org/10.1017/S147106842200014X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842200014X


Efficient knowledge compilation beyond Weighted Model Counting 509

Definition 3 (Second Level Algebraic Model Counting (2AMC))

A 2AMC instance is a tuple A = (T ,XI ,XO, αI , αO,SI ,SO, t), where

• T is a propositional theory,

• (XI ,XO) is a partition of the variables in T ,
• Sj = (Sj ,⊕j ,⊗j , e⊕j , e⊗j ) for j ∈ {I,O} is a commutative semiring,

• αj : lit(Xj)→ Sj for j ∈ {I,O} is a labeling function for literals, and

• t : SI → SO is a weight transformation function that respects t(e⊕I ) = e⊕O .

The value of A, denoted by 2AMC(A), is defined as

2AMC(A) =
⊕O

xO∈int(XO)

⊗O
x∈xO

αO(x)⊗Ot
(⊕I

xI∈mod(T |xO
)

⊗I
y∈xI

αI(y)
)
.

An AMC instance is a 2AMC instance, where XO = ∅ and t is the identity function,

meaning we only sum up weights over SI . Intuitively, the idea behind 2AMC is that we

solve an inner AMC instance over the variables in XI for each assignment to XO. Then

we apply the transformation function to the result, thus replacing the inner summation

by a corresponding element from the outer semiring, and solve a second outer AMC

instance over the variables in XO.

Example 3 (cont.)

Consider the question whether it is more likely for c to be true or false in Lex from

Example 1, that is, we want to find argmaxc∈int(c) SUCC (c). To keep notation simple,

we consider max rather than argmax (see the discussion below Definition 5 for full

details). Denoting the label of literal l by α(l) as in the definition of SUCC , the task

corresponds to

max
c∈int(c)

α(c)
∑

h∈mod(Lex|c)

∏
l∈h

α(l).

We thus have a 2AMC task with outer variables {c}, inner variables {a, b, d} and the

probability semiring and max-times semiring as inner and outer semiring, respectively,

and both kinds of labels given by α. The formal definition of this 2AMC instance is

Aex = (Lex, {a, b, d}, {c}, αI , αO,P,Smax,·, id), where αI(l) is the probability of l if l ∈
lit({a, b}) and 1 if l ∈ lit({d}), and αO(l) = 1, l ∈ lit({c}). We can further evaluate the

value as follows:

2AMC(Aex) = max
c∈int(c)

1 ·
∑

a∈int({a}),b∈int(b),d∈int(d)
a=c,b=d

1 · αI(a) · αI(b)

= max{αI(a)αI(b) + αI(a)αI(¬b), αI(¬a)αI(b) + αI(¬a)αI(¬b)}
= max{0.4 · 0.6 + 0.4 · 0.4, 0.6 · 0.6 + 0.6 · 0.4} = max{0.4, 0.6} = 0.6

that is, the most likely value is 0.6 and corresponds to ¬c.

Before we further illustrate this formalism with tasks from the literature, we prove that

2AMC can be solved in polynomial time on XO-first sd-DNNFs. A similar result is al-

ready known for DTProbLog (Derkinderen and De Raedt 2020) and SC-ProbLog (Latour

et al. 2017).
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Theorem 4 (Tractable 2AMC with XO-first sd-DNNFs)

Let A = (T ,XI ,XO, αI , αO,SI ,SO, t) be a 2AMC instance, where T is an XO-first sd-

DNNF. Then, we can compute 2AMC(A) in polynomial time in the size of T assuming

constant time semiring operations.

Proof (Sketch)

Consider a subgraph n of T with exactly one outgoing edge for each or-node and all

outgoing edges for each and-node. As T is XO-first and smooth, there is a node n′ in n

such that Vars(n′) = XI , that is, exactly the outer variables occur above n′ (see also the

lowest and-nodes of the left NNF in Figure 1). Thus, n′ is equivalent to T |xO
for some

assignment xO to the outer variables, for which n′ computes the value of the inner AMC

instance. As evaluation sums over all these subgraphs, it obtains the correct result.

We illustrate 2AMC with three tasks from quantitative logic programming.

Maximum a Posteriori Inference A typical second level probabilistic inference task is

maximum a posteriori inference, which involves maximizing over one set of variables

while summing over another, as in Example 3.

Definition 5 (The MAP task)

Given a probabilistic logic program L, a conjunction e of observed literals for the set of

evidence atoms E, and a set of ground query atoms Q

Find the most probable assignment q to Q given the evidence e, with R = H \ (Q∪E):

MAP(Q|e) = argmax
q

P (Q = q|e) = argmax
q

∑
r

P (Q = q, e,R = r)

MAP as 2AMC. Solving MAP requires (1) summing probabilities over the truth values

of the atoms in R (with fixed truth values for atoms in E ∪ Q), and (2) determining

truth values of the atoms in Q that maximize this inner sum. Thus, we have XO = Q

and XI = E ∪R.

The inner problem corresponds to usual probabilistic inference, that is, SI = P and

αI assigns 1 to the literals in e and 0 to their negations, p and 1− p to the positive and

negative literals for probabilistic facts p ::f that are not part of E, and 1 to both literals

for all other variables in XI .

We choose SO = (R≥0×2lit(Q),⊕,⊗, (0, ∅), (1, ∅)) as the max-times semiring combined

with the subsets of the query literals lit(Q) to remember the assignment that was used.

Here, (r1, S1)⊕(r2, S2) is (r1, S1) if r1 > r2 and (r2, S2) if r1 < r2. To ensure commuta-

tivity, if r1 = r2, the sum is (r1,min>(S1, S2)) where > is some arbitrary but fixed total

order on 2lit(Q). The product (r1, S1)⊗(r2, S2) is defined as (r1 · r2, S1 ∪ S2). The weight

function is given by αO(l) = (p, {l}) if l = f for probabilistic fact p ::f , αO(l) = (1−p, {l})
if l = ¬f for probabilistic fact p ::f , and αO(l) = (1, {l}) otherwise. The transformation

function is the function t(p) = (p, ∅).

Maximizing Expected Utility Another second level probabilistic task is maximum ex-

pected utility (Van den Broeck et al. 2010; Derkinderen and De Raedt 2020), which

introduces an additional set of variables D whose truth value can be arbitrarily chosen

by a strategy σ(D) = d,d ∈ int(D), and is neither governed by probability nor logical

rules. A utility function u maps each literal l to a reward u(l) ∈ R for l being true.
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Definition 6 (Maximum Expected Utility (MEU) Task)

Given A program L = F ∪R ∪D with a utility function u

Find a strategy σ∗ that maximizes the expected utility:

σ∗ = argmax
σ

∑
M∈mod(F∪R∪σ(D))

(
∏
l∈M

α(l))(
∑
l∈M

u(l)),

where the label α(l) of literal l is as defined for SUCC .

Example 4 (cont.)

Consider the program LEU obtained from Lex by replacing 0.4::a by a decision variable

? ::a, with u(c) = 40, u(¬d) = 20 and u(l) = 0 for all other literals. Setting a to true, we

have models {a, b, c, d} with probability 0.6 and utility 40 and {a, c} with probability 0.4

and utility 60, and thus expected utility 0.6·40+0.4·60 = 48. Similarly, we have expected

utility 0.6·0 + 0.4·20 = 8 for setting a to false. Thus, the MEU strategy sets a true.

MEU as 2AMC. Solving MEU involves (1) summing expected utilities of models over

the non-decision variables (with fixed truth values for D), and (2) determining truth

values of the atoms in D that maximize this inner sum. Thus, we have XO = D and

XI = H \D.

The inner problem is solved by the expected utility semiring SI = EU , with αI map-

ping literal l to (pl, pl ·u(l)) if l is a probabilistic literal with probability pl, and to (1, u(l))

otherwise.

The basis for solving the outer problem is the max-plus semiring Smax,+, with αO

the utility function u, and the transformation function t((p, pu)) = pu, if p �= 0 and

t((0, pu)) = −∞. This is extended to argmax using the same idea as for MAP.

Probabilistic Inference with Stable Models A more recent second level probabilistic task

is probabilistic inference with stable model semantics (Totis et al. 2021; Skryagin et al.

2021). Inference of success probabilities reduces to a variant of weighted model counting,

where the weight of a (stable) model of a program L = R ∪ F is normalized with the

number of models sharing the same assignment f to the probabilistic facts F:

SUCCsm(q) =
∑

h∈mod(L|f ),f∈int(F)

|mod(L |f∪{q})|
|mod(L |f )|

·
∏
l∈h

α(l),

where the label α(l) of literal l is as defined for SUCC .

Example 5 (cont.)

For Lex, each assignment f introduces exactly one stable model, that is SUCCsm equals

SUCC. In the extended program Lsm = Lex ∪ {e ← not f.f ← not e.}, however,

all assignments have two stable models, one where e is added and one where f is

added. Therefore, for each assignment F = f it holds that |mod(Lsm |f )| = 2 but

|mod(Lsm |f∪{e})| = 1. Thus SUCCsm(e) = 0.5.

SUCCsm as 2AMC. Computing SUCCsm requires (1) counting the number of models for

a given total choice and those that satisfy the query q, and (2) summing the normalized

probabilities. Thus, we have XO = F and XI = H \ F. SI is the semiring over pairs of

natural numbers, SI = (N2,+, ·, (0, 0), (1, 1)), where operations are component-wise. αI
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maps ¬q to (0, 1) and all other literals to (1, 1). The first component thus only counts

the models where q is true (|mod(L |f∪{q})|), whereas the second component counts all

models (|mod(L |f )|). The transformation function is given by t((n1, n2)) = n1

n2
. The

outer problem then corresponds to usual probabilistic inference, that is, SO = P, and
αO assigns p and 1 − p to the positive and negative literals for probabilistic facts p :: f ,

respectively, and 1 to all other literals.

4 Weakening X-firstness

While any 2AMC problem can be solved in polynomial time on an XO-first sd-DNNF

representing the logical theory T , such an sd-DNNF can be much bigger than the smallest

(ordinary) sd-DNNF for T , as the X-firstness may severely restrict the order in which

variables are decided. In the following, we show that for a wide class of transformation

functions, we can exploit the logical structure of the theory to relax theXO-first property.

Recall that a 2AMC task includes an AMC task for every assignment xO to the outer

variables, which sums over all assignments xI to the inner variables that extend xO to

a model of the theory. Consider the CNF T = {y ∨ ¬x,¬y ∨ x} and let XO = {y} and
XI = {x}. The value of the outer variable y already determines the value of the inner

variable x. Distributivity allows us to pull x out of every inner sum, as each such sum

only involves one of the literals for x. If it does not matter whether we first apply the

transformation function and then multiply or the other way around, we have a choice

between keeping x in the inner semiring, or pushing its transformed version to the outer

semiring. Thus, we can decide between an XO-first or an XO ∪ {x}-first sd-DNNF.

Naturally, the more such variables we have, the more freedom we gain.

This situation might also occur after we have already decided some of the variables.

Consider the CNF T ′ = {z∨y∨¬x, z∨¬y∨x} and let XO = {z, y} and XI = {x}. If we
set z to true, both y and x can take any value, therefore the value of x is not determined

by z and y. However, if we set z to false, we are in the same situation as above and can

move x to XO on a local level.

We formalize this, starting with definability to capture when a variable is determined

by others.

Definition 7 (Definability Lagniez et al. 2016)

A variable a is defined by a set of variables X with respect to a theory T if for every

assignment x of X it holds that x∪T |= a or x∪T |= ¬a. We denote the set of variables

that are not in X and defined by X with respect to T by D(T ,X).

Example 6 (cont.)

In Lex the atoms c and d are defined by {a, b} since c holds if a holds, and d holds if b

holds.

Definition 8 (X-Firstness Modulo Definability)

Given an NNF n on variables partitioned into X,Y, we say an internal node ni of n is

pure modulo definability if Vars(ni) ⊆ X∪D(ni,X) or Vars(ni) ⊆ Y and mixed modulo

definability, otherwise. n is an X-first NNF modulo definability, X/D-first NNF for short,

if for each of its and-nodes ni either all children of ni are pure modulo definability, or one
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child of ni is mixed modulo definability and all other children nj of ni are pure modulo

definability and Vars(nj) ⊆ X ∪D(ni,X).

The intuition here is that we can decide variables from Y earlier, if they are defined by

the variables in X in terms of the theory T conditioned on the decisions we have already

made. Thus, we only decide the variables in X-first modulo definability.

Example 7 (cont.)

In Figure 1, the left NNF is an {a, b}-first NNF and therefore also an {a, b}/D-first NNF.

The right NNF is not an {a, b}-first NNF but an {a, b}/D-first NNF since D(Lex, {a, b})
contains c.

The following lemma generalizes this example from 2 to n pairs of equivalent variables.

Lemma 9 (Exponential Separation)

Let T =
∧n

i=1 Xi ↔ Yi, X = {X1, . . . , Xn} and D = {Y1, . . . , Yn}, then the size of the

smallest X-first sd-DNNF for T is exponential in n and the size of the smallest X/D-first

sd-DNNF for T is linear in n.

Proof (Sketch)

Since D(T ,X) = Y, every sd-DNNF for T is an X/D-first sd-DNNF. As T has treewidth

2, there exists an sd-DNNF of linear size. On the other hand, an X-first sd-DNNF must

contain a node that is equivalent to T |x for each of the 2|X| assignments x ∈ int(X).

We see that X/D-first sd-DNNFs can be much smaller than X-first sd-DNNFs, even

on very simple propositional theories. It remains to show that we maintain tractability.

As in the beginning of this section, we want to regard defined inner variables as outer

variables. For this to work it must not matter whether we first multiply and then apply

the transform t or the other way around, that is, t must be a homomorphism for the

multiplications of the semirings.

Definition 10 (Monoid Homomorphism, Generated Monoid)

Let Mi = (Mi,�i, e
i) for i = 1, 2 be monoids. Then a monoid homomorphism from

M1 toM2 is a function f : M1 →M2 such that

for all m,m′ ∈M1 f(m�1 m′) = f(m)�2 f(m′) and f(e
1) = e
2 .

Furthermore, for a subset M ′ ⊆ M of a monoidM = (M,�, e
) the monoid generated

by M ′, denoted 〈M ′〉M, is M∗ = (M∗,�, e
), where M ′ ⊆ M∗ and M∗ is the subset

minimal set such thatM∗ is a monoid.

Example 8 (cont.)

Consider again the 2AMC instance Aex from Example 3. Since a is defined in terms of

c, we want to argue that the following equality holds, allowing us to see a as an outer

variable:

maxxO∈int({c}) αO(xO) · id
(∑

xI∈mod(Lex|xO
)

∏
y∈xI

αI(y)
)

=maxxO∈int({c}),xO′∈int({a}) αO(xO) · id(αI(xO′)) · id
(∑

xI∈mod(Lex|xO∪x
O′ )

∏
y∈xI

αI(y)
)
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Here, this is easy to see since id is a homomorphism between the monoid ([0, 1], ·) of the
inner probability semiring and the monoid (R≥0, ·) of the outer max-times semiring, as

id : [0, 1]→ R≥0, for any p, q ∈ [0, 1], id(p · q) = p · q = id(p) · id(q), and id(1) = 1.

In general, instead of applying the transform to a sum of products of literal labels for a set

of variables, we want to apply it independently to (1) the literal labels of a defined variable

and (2) the inner sum restricted to the remaining variables. It is therefore sufficient if the

equality is valid for the monoid generated by the values we encounter in these situations,

rather than for all values from the inner monoid’s domain. As we will illustrate for MEU

at the end of this section, the transform of some 2AMC tasks only satisfies this weaker

but sufficient condition. The following definition captures this idea, where the two subsets

of O(A) correspond to the values observed in cases (1) and (2), respectively:

Definition 11 (Observable Values)

Let A = (T ,XI ,XO, αI , αO,SI ,SO, t) be a 2AMC instance. Then the set of observable

values of A, denoted O(A) is

{αI(l) | xO ∈ int(XO), y ∈ D(T ∪ xO,XO), l ∈ {y,¬y}}
∪{

⊕I
xI∈mod(T |xO

)

⊗I
y∈xI

αI(y) | xO ∈ int(XO ∪D∗),D∗ ⊆ D(T ∪ xO,XO)}.

With this in mind, we can state our main result.

Theorem 12 (Tractable AMC with X/D-first sd-DNNFs)

The value of a 2AMC instance A = (T ,XI ,XO, αI , αO,SI ,SO, t) can be computed

in polynomial time, assuming constant time semiring operations, under the following

conditions:

• T is an X/D-first sd-DNNF

• t is a homomorphism from the monoid 〈O(A)〉(RI ,⊗I ,e⊗I ) generated by the observ-

able values to (RO,⊗O, e⊗O ).

Proof (Sketch)

The proof of this theorem exploits (a) distributivity and the form of the transformation

function to move defined variables to the outer semiring as outlined at the start of this

section, and (b) the fact that when we decide an outer variable, then we get two new

2AMC instances, where the theory T is conditioned on the truth of the decided variable.

On these new instances, we can also use definability in the same fashion as before.

Despite the fact that checking which variables are defined for each partial assign-

ment x is not feasible, as checking definability is co-NP-complete and there are more

than 2|XO| partial assignments, this result does have implications for constrained KC in

practice.

Firstly, we can check which variables are defined by XO in terms of the whole theory

T , and use this to generate a variable order for compilation that leads to an X/D-first

sd-DNNF with a priori guarantees on its size. We discuss this in Section 5.

Secondly, as entailment is a special case of definability, Theorem 12 justifies the use of

unit propagation during compilation, which dynamically adapts the variable order when

variables are entailed by the already decided ones, and thus may violate X-firstness.
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We still need to verify that our three example tasks satisfy the preconditions of The-

orem 12, that is, their transformation functions are monoid homomorphisms on the ob-

servable values. For MAP and SUCCsm this is easy to prove, as the transformation is

already a homomorphism on all values. For MEU, however, the restriction to the monoid

generated by the observable values is crucial, as the transformation function is only a

homomorphism for tuples (p, pu) with p ∈ {0, 1}, which may not be the case in general.

In the DTProbLog setting, however, assignments to decision facts and probabilistic facts

are independent, and every assignment to both sets extends to a single model of the the-

ory. Together with the (1, u)-labels of the remaining atoms, this ensures that the result

of the inner sum is of the form (1, x), and MEU thus meets the criteria.

5 Implementation

The general pipeline of PLP solvers takes a program, grounds it and optionally simplifies

it or breaks its cycles. Using standard KC tools, this program is then compiled into a

tractable circuit either directly or via conversion to CNF. We extended this pipeline in

aspmc (Eiter et al. 2021) and smProbLog (Totis et al. 2021) to compile programs, via

CNF, into X/D-first circuits.

To obtainX/D-first circuits we need to specify a variable order in which all variables in

X are decided first modulo definedness. Preferably, the chosen order should also result in

efficient compilation and thus a small circuit. Korhonen and Järvisalo (2021) have shown

how to generate variable orders from tree decompositions of the primal graph of the

CNF that result in (unconstrained) sd-DNNFs whose size is bounded by the width of the

decomposition. We adapt this result to our constrained setting, where we need to ensure

that the tree decomposition satisfies an additional property that allows compilation to

essentially consider the non-defined inner variables and the outer variables independently.

We first define the necessary concepts.

Definition 13 (Primal Graph, Tree Decomposition)

Let T be a CNF over variables X. The primal graph of T , denoted by PRIM(T ), is
defined as V (PRIM(T )) = X and (v1, v2) ∈ E(PRIM(T )) if v1, v2 occur together in

some clause of T .
A tree decomposition (TD) for a graph G is a pair (T, χ), where T is a tree and χ is a

labeling of V (T ) by subsets of V (G) s.t. (i) for all nodes v ∈ V (G) there is t ∈ V (T ) s.t.

v ∈ χ(t); (ii) for every (v1, v2) ∈ V (E) there exists t ∈ V (T ) s.t. v1, v2 ∈ χ(t) and (iii)

for all nodes v ∈ V (G) the set of nodes {t ∈ V (T ) | v ∈ χ(t)} forms a connected subtree

of T . The width of (T, χ) is maxt∈V ′ |χ(t)| − 1.

Next, we show that restricted TDs allow X/D-first compilation with performance guar-

antees:

Lemma 14

Let T be a CNF over variables Y and (T, χ) a TD of PRIM(T ) of width k. Furthermore,

let X ⊆ Y and D = D(T ,X). If there exists t∗ ∈ V (T ) such that (1) χ(t∗) ⊆ X∪D and

(2) χ(t∗) is a separator of X and Y\(X∪D), that is, every path from X to Y\(X∪D) in

PRIM(T ) uses a vertex from χ(t∗), then we can compile T into an X/D-first sd-DNNF

in time O(2k · poly(|T |)).
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Proof (Sketch).

The performance guarantee is due to Korhonen and Järvisalo (2021) and holds when

we decide the variables in the order they occur in the TD starting from the root. X/D-

firstness can be guaranteed by taking t∗ as the root of the TD and, thus, first deciding all

variables in χ(t∗). From condition (2) it follows that afterwards the CNF has decomposed

into separate components, which either only use variables from X∪D or use no variables

from X. Thus, their compilation only leads to pure NNFs.

To find a TD of small width for which the lemma applies, we proceed as follows. Given

a CNF T and partition XI ,XO of the variables in inner and outer variables, we first

compute D(T ,XO) by using an NP-oracle. Lagniez et al. (2016) showed that this is

possible. As the width of a suitable TD is at least the size of the separator minus one, we

first approximate a minimum size separator S ⊆ X∪D(T ,X) using clingo (Gebser et al.

2014) with a timeout of 30 s. To ensure that the TD contains a node t′ with S ⊆ χ(t′),

we add the clique over the vertices in S to the primal graph, that is, we generate a

tree decomposition (T, χ) of PRIM(T ) ∪ Clique(S). For this, we use flow-cutter (Dell

et al. 2017) with a timeout of 5 s. The resulting TD either already contains a node with

S = χ(t′) and thus satisfies the preconditions of Lemma 14, or can be modified locally

to one that does by splitting the node with S ⊂ χ(t′).

aspmc: 1We use the above strategy to generate a variable order, which is then given to

c2d (Darwiche 2004) or miniC2D (Oztok and Darwiche 2015) together with the CNF to

compile an X/D-first circuit, on which we evaluate the 2AMC task. We stress that c2d

– contrary to miniC2D – always uses unit propagation during compilation, and thus can

only be used due to Theorem 12.

Currently, aspmc supports DTProbLog, MAP and smProbLog programs as inputs.

smProbLog: 2The smProbLog implementation of Totis et al. (2021) uses dsharp (Aziz

et al. 2015) to immediately compile the logic program to a d-DNNF, which prevents a

direct application of our new techniques. Our adapted version obtains a CNF T and

variable ordering as in aspmc, which it then compiles to SDD (Darwiche 2011) using

the PySDD library3 as in standard ProbLog. SDDs can be seen as a special case of

sd-DNNFs. The main difference is that for each branch the variables are decided in the

same order.

6 Experimental evaluation

Our experimental evaluation addresses the following questions:

Q1: How does exploiting definedness influence the efficiency of 2AMC solving?

Q2: How does aspmc compare to task-specific solvers from the PLP literature?

Q3: How does our second level approach compare to the first level approach when

definedness reduces 2AMC to AMC?

1 aspmc is open source and available at github.com/raki123/aspmc.
2
smProbLog is open source and available at github.com/PietroTotis/smProblog.

3 github.com/wannesm/PySDD.
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6.1 General setup

To answer these questions, we consider logic programs from the literature on the three

example 2AMC tasks. To eliminate differences on how different solvers handle n-ary

random choices (known as annotated disjunctions) and 0/1-probabilities, we normalize

probabilistic programs to contain only probabilistic facts and normal clauses, and replace

all probabilities by values chosen uniformly at random from 0.1, 0.2, ..., 0.8, 0.9.

For MAP, we use the growing head, growing negated body, blood and graph examples

of Bellodi et al. (2020), with a subset of the probabilistic facts of uniformly random

size as query atoms and the given evidence. For MEU, we use the Bayesian networks

provided by Derkinderen and De Raedt (2020) as well as the viral marketing example

from Van den Broeck et al. (2010) on randomly generated power law graphs that are

known to resemble social networks (Barabási and Bonabeau 2003). For SUCCsm, we use

an example from Totis et al. (2021) that introduces non-probabilistic choices into the

well-known smokers example (Fierens et al. 2015).

Besides this basic set, we also use the original smokers example, where SUCCsm reduces

to SUCC, for Q3. For Q1, we use the grid graphs of Fierens et al. (2015) as an additional

MAP benchmark. Here, we control definedness by choosing the MAP queries as the

probabilistic facts for the edges that are reachable in k steps from the top left corner, for

all possible values of k, and use the existence of a path from the top left to the bottom

right corner as evidence.

We compare the following systems:

aspmc with c2d as default knowledge compiler

ProbLog in different versions: ProbLog2 (version 2.1.0.42) in MAP and default (SUCC)

mode, the implementation of Derkinderen and De Raedt (2020) for MEU, and our

implementation of smProbLog for SUCCsm

PITA (Bellodi et al. 2020, version 4.5, included in SWI-Prolog) for MAP and MEU

clingo (Gebser et al. 2014, version 5.5.0.post3) as an indicator of how an enumeration

based approach not using knowledge compilation might perform. Note that this

approach does not actually compute the 2AMC value of the formula, but only

enumerates models.

We limit each individual run of a system to 300 s and 4Gb of memory. When plotting

running time per instance for a specific solver, we always sort instances by ascending

time for that solver, using 300 s for any instance that did not finish successfully within

these bounds.

The instances, results and benchmarking scripts are available at

github.com/raki123/CC.

6.2 Results

Q1: How does exploiting definedness influence the efficiency of 2AMC solving? To an-

swer the first question, we use all proper 2AMC benchmarks, and focus on the 2AMC

task itself, that is, we start from the labeled CNF corresponding to the instance. We

consider four different settings obtained by independently varying two dimensions: con-

straining compilation to either X-first or X/D-first, and compiling to either sd-DNNF

using c2d or to SDD using miniC2D.
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Fig. 2. Q1: Comparison of tree decomposition width for X-first and X/D-first variable order,
across all 2AMC instances (left) and for solved 2AMC instances only (right). We solve 822 of

the 825 instances with X/D-width at most 20, 118 of the 219 instances with X/D-width
between 21 and 40, and 7 of the 353 instances with X/D-width above 40.

On the left of Figure 2, we plot the width of the tree decompositions the solver uses to

determine the variable order in the X-first or X/D-first case, respectively. Recall from

Lemma 14 that this width appears in the exponent of the compilation time bound. The

optimal tree decomposition’s width in the X/D-first case is at most that of the X-first

case, and would thus result in points on or below the black diagonal only. In practice, we

observe many points close to the diagonal, with two notable exceptions. MAP instances

with high width tend to be slightly above the diagonal, whereas MAP grids are mostly

clearly below the diagonal. These results can be explained by the shape of the problems

and the fact that we only approximate the optimal decomposition, as this is a hard task.

We note that for many of the benchmarks, the amount of variables defined in terms of

the outer variables (decision variables for MEU, query variables for MAP, probabilistic

facts for SUCCSM ) is limited. The exception are the MAP grids, where the choice of

queries entails definedness.

We plot the same data restricted to the instances solved within the time limit on the

right of Figure 2, along with summary statistics on the number of instances solved for

three ranges of X/D-width in the caption. We observe that almost no instances with

X/D-width above 40 are solved. At the same time, almost all instances with X/D-width

below 20 are solved, including many cases with X-width above 40, where we thus see a

clear benefit from exploiting definedness.

In Figure 3, we plot the running times per instance for the different solvers. Given

the width results, we distinguish between MAP grids and the remaining cases. On the

grids, taking into account definedness results in clear performance gains when compiling

SDDs (using miniC2D). On the other hand, compiling sd-DNNFs with c2d shows only a

marginal difference betweenX andX/D variable orders. The reason is that c2d implicitly

exploits definedness even when given theX-first order through its use of unit propagation.

SDD compilation, on the other hand, cannot deviate from the given order, and only
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Fig. 3. Q1: Running times per instance for different configurations on MAP grids (left) and all
other 2AMC instances (right).

benefits from definedness if it is reflected in the variable order. On the other benchmarks,

with fewer defined variables, the variable order has little effect within the same circuit

class, but sd-DNNFs outperform SDDs, likely because unit propagation can also exploit

context-dependent definedness. In the following we thus use c2d.

Q2: How does aspmc compare to task-specific solvers from the PLP literature? We first

consider the efficiency of the whole pipeline from instance to solution on the MAP and

MEU tasks, which are addressed by both ProbLog and PITA. From the plots of running

times in Figure 4, we observe that all solvers outperform clingo’s model enumeration.

ProbLog is slower than both aspmc and PITA except on the MAP graphs. Among aspmc

and PITA, aspmc outperforms PITA on MEU, and vice versa on MAP. This can be

explained by the different overall approach to knowledge compilation taken in the various

solvers. aspmc always compiles a CNF encoding of the whole ground program, including

all ground atoms, ProbLog compiles a similar encoding, but restricted to the part of the

formula that is relevant to the task at hand, while PITA directly compiles a circuit for the

truth of atoms of interest in terms of the relevant ground choice atoms. As MAP queries

are limited to probabilistic facts, this allows PITA to compile a circuit for the truth of

the evidence in terms of relevant probabilistic facts only, which especially for the graph

setting can be significantly smaller than a complete encoding. For MEU, PITA needs one

circuit per atom with a utility, which additionally need to be combined, putting PITA

at a disadvantage.

For SUCCsm, we plot running times on the modified smokers setting for the clingo

baseline, aspmc and three variants of the dedicated ProbLog implementation, namely

the original implementation of Totis et al. (2021) that compiles to d-DNNF as well as

our modified implementation compiling to X-first and X/D-first SDDs. These problems

appear to be hard in general, but we observe a clear benefit from the constrained com-

pilation enabled in our approach.

Q3: How does our second level approach compare to the first level approach when de-

finedness reduces 2AMC to AMC? On the regular smokers benchmark, smProbLog and

ProbLog semantics coincide, that is, all inner variables of the 2AMC task are defined,
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Fig. 4. Q2: Running times of different solvers on MAP problem sets (top), indicated above
each plot, MEU problems (bottom left) and SUCCSM (bottom right).

Fig. 5. Q3: Running times of different solvers on SUCC programs.
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and it thus reduces to AMC. In Figure 5, we plot running times for the AMC and 2AMC

variants of both aspmc and ProbLog. For ProbLog, there is a clear gap between the two

approaches, which is at least in part due to the fact that ProbLog only compiles the

relevant part of the program, whereas smProbLog compiles the full theory. aspmc out-

performs ProbLog on the harder instances, with limited overhead for the second level

task.

7 Conclusion

2AMC is a hard problem, even harder than #SAT or AMC in general, as it imposes

significant constraints on variable orders in KC. Our theoretical results show that these

constraints can be weakened by exploiting definedness of variables. In practice, this allow

us to (i) introduce a strategy to construct variable orders for compilation into X/D-

first sd-DNNFs with a priori guarantees on complexity, and (ii) to use unit propagation

to decide literals earlier than specified by the variable order during compilation. Our

experimental evaluation shows that (ii) generally improves the performance and (i) can

boost it when many variables are defined. Furthermore, we see that compilation usually

performs much better than an enumeration based approach to solve 2AMC. Last but not

least, our extensions of aspmc and smProbLog are competitive with PITA and ProbLog,

the state of the art solvers for MAP, MEU and SUCCsm inference for logic programs,

and even exhibit improved performance on MEU and SUCCsm.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S147106842200014X.
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