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NILPOTENTS IN SEMIGROUPS OF
PARTIAL TRANSFORMATIONS

R.P. SULLIVAN

In 1987, Sullivan determined when a partial transformation a of an infinite set X
can be written as a product of nilpotent transformations of the same set: he showed
that when this is possible and the cardinal of X is regular then « is a product of
3 or fewer nilpotents with index at most 3. Here, we show that 3 is best possible
on both counts, consider the corresponding question when the cardinal of X is
singular, and investigate the role of nilpotents with index 2. We also prove that
the nilpotent-generated semigroup is idempotent-generated but not conversely.

1. INTRODUCTION

Throughout this paper X will denote an infinite set with cardinal m, and if n is
any cardinal then n’ will denote the successor of n (that is, the least cardinal greater
than n). All notation and terminology will be from [1] and [3] unless specified otherwise.
In particular, 7(X) denotes the full transformation semigroup on X. If a € T(X),
we let r(a) denote the rank of a (that is, |Xa|) and put

D(a) =X\ Xa, d(a) = |D(a)|,
S(a)={z € X:za #z}, s(a) = |S(e)],
Cla)=Jlya™: [ya!| 22},  cla) =[C(e)].

The cardinal numbers d{(a), s(a) and c(a) are called, respectively, the defect,
the shift and the collapse of a and were originally used by Howie [2] to characterise
the elements of 7(X) that can be written as a product of idempotents in 7(X). In
particular, he later showed [4] that the set

Qm = {a € T(X): d(0) = 5(a) = c(a) = m}

is an idempotent-generated subsemigroup of 7(X). Later still, in [6] Marques consid-
ered the Rees quotient semigroup Py, = Qm/Ly, where I, = {a € Qn: 7(a) < m}, an
ideal of @, .
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Among other things, she proved that for any infinite m, every element of P, is a
product of 4 or fewer idempotents and that 4 is best possible. Then in [5] the authors
showed that if m is a regular cardinal, the set

Kmn={a€Py: |ya~!| =m for some y € X} U {0}

equals the subsemigroup of P, generated by the nilpotents in P,. And in [7] the
authors proved that if m is singular (that is, non-regular) then the subsemigroup of
P,, generated by its nilpotents equals the set

Lm = {& € Pp: for each p < m, there exists y € X such that |ya™'| > p} U {0}.

Moreover, from [5] and [7] we know that each element of K,, and of L,, is a product
of 3 or fewer nilpotents with index 2 (that is, A # 0 and A% = 0) and that 3 is best
possible.

Let P(X) denote the semigroup of all partial transformations of X and if a €
P(X), write g(a) = |X \ doma| and call this the gap in «. In [9, Corollary 3], I
proved that if m is regular then the set

L(X)={aeP(X): d(a)=m, g(a) > 1,
and Iya_l U (X \doma)| =m for some y € X}

is the subsemigroup of P(X) generated by the nilpotents in P(X). Moreover, in this
case, L£(X) is regular and each of its elements equals a product of 3 or fewer nilpotents
with index at most 3. In this paper, we show that £(X) is idempotent-generated;
and provide bounds on the number of nilpotents (and their indices) required to express
each element of £(X) as a product of nilpotents: we show, for example, that both
the product 3 and the index 3 just mentioned are best possible. We also investigate
analogous questions when m is singular.

2. NILPOTENTS AS GENERATORS: THE REGULAR CARDINAL CASE

We extend the convention introduced in {1, vol.2, p.241]: namely, if o € P(X) is

(=)

a=

Z;

and take as understood that the subscript ¢ belongs to some (unmentioned) index set
I, that the abbreviation {z;} denotes {z;: ¢ € I}, and that Xa = ran a = {z;},
A; = ;a7 and doma = [ 4;.

To compare the results in {9, Section 3] with those in [5] and [7], we let ¢ ¢ X,
put X¢= X U¢ and

non-zero then we write

Fy = {a € T(X¢): da = ¢},
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and define 8: P(X) — Fy, o = af, where z(af) = za if z € doma and z(af) = ¢
otherwise. Clearly, 6 is an isomorphism and, when m is regular, the image of £(X)
under @ is the semigroup

Ly={a € Fy: d(a)=m, [¢pa™!| > 2, and |ya™!| = m for some y € X?}.

Note that Ly contains the ideal Iy = {a € Ly: r(a) < m} and the Rees quotient
semigroup Ls/I4 can be identified with {& € Lys: r(a) = m} U0, where 0 represents
the zero of Ly/I4. In this way, Ly/Is can be regarded as the semigroup

Km(#) = {a € Kn(X?): da=¢ and |pa™!| =2} U0

In [5] the authors showed that every non-zero o € Km(X?) equals a product
of nilpotents in K,,(X?¢) with index 2. This is also true of K (¢). For, if o, 8 €
Kn(X?) and ¢af = ¢ then there exist o/ € Km(X?) and 8 € Kn(#) such that
aff = &'(', kera = kera’ and ¢a’ = ¢. To see this, suppose ¢a = a, ¢8 = b and
consider two cases. If ¢ ¢ Xa, we let za/ = ¢ for = € aa™! and za' = za otherwise,
and let z8' = ¢ for z € ¢~ U ¢ and z' = zfB otherwise. On the other hand, if
¢ € Xa\ a, we choose d ¢ Xo and let zo/ = ¢ for z € aa™ !, za/ = a for z € ¢pa!
and zo/ = za otherwise, and let z3' = ¢ for z € (¢f~'\a)UdUd, zf' = b for
T € (bﬂ"1 \ ¢) Ua and z8' = z0 otherwise. It is now easy to check that, in both cases,
o and (' possess the required properties. Moreover, since there is little difference
between the ranges of @ and o (and the kernels of 8 and #') it is clear that o is
nilpotent in K, (X?) if and only if o is (likewise for 8 and f'). Consequently, if
a € K,,(¢) then « is a product of nilpotents with index 2 in K,, (X ¢) and, by the
foregoing remark, these can be assumed to lie in K,,(¢).

Having said all this, it will transpire from what follows that Ly, the inverse image
of Kn(4) under the natural map Ly — Ly/I4, is not generated by its nilpotents
with indez 2 (that is, A € Ly such that A2 = ¢ but A # ¢ where, in this context,
¢ denotes the constant transformation in Ly). In particular, it will be clear that if

X ={a;}U{b;} Uz then
~ A= (1 B )
by =z é

cannot be written as a product of nilpotents in Ly with index 2 but, as already shown,
as an element of K,,(¢) it does equal a product of nilpotents in K,,(¢) with index 2.
In addition, whereas K,,(¢) is 0-bisimple (compare [7, Theorem 2.1]) the same is not
true of Ly. That is, very little information about Ly can be obtained directly from [5]
and (7], so we continue to work within £(X) itself.

The cofinality of m, cf (m), plays a fundamental role in what follows: since it
is difficult to find an elementary account of the relevant facts in the literature, we
summarise them in the following way, using [10, Theorem A.3.9] as our authority.
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THEOREM 2.1. Suppose m is an arbitrary infinite cardinal. Then cf (m) is the
least cardinal n such that m can be expressed as a sum of n cardinals each less than
m. Hence, cf (m) < m where equality occurs if and only if m is regular. In particular,
both cf (m) and m' are regular cardinals. If m is singular then cf (m) is infinite and
m can be expressed as the sum of a strictly increasing sequence of cf (m) cardinals each
less than m.

For convenience, we recall the following result from [9, Theorem 3, p.336 and
p.341).

THEOREM 2.2. If m is a regular cardinal then the semigroup L£{X) is regular
and each o € L(X) equals a product of 3 or fewer nilpotents with index at most 3.
Moreover, L(X) contains the ideal I}, = {a € P(X): r(a) < m}.

The proof of Theorem 2.2 involves two cases: namely whether g(a) = m or g(a) <
m, and in the first case o can be written as a product of 3 or fewer nilpotents with
index 2. We begin by characterising precisely when « is a product of nilpotents with
index 2: besides its intrinsic interest, the next result shows that the index 3 in Theorem
2.2 is best possible.

THEOREM 2.3. Suppose m is an arbitrary infinite cardinal and o € P(X) is
non-zero. Then « is a product of nilpotents with index 2 if and only if d(a) = m and
g(c) = r(a). Moreover, when this occurs, a is a product of 3 or fewer nilpotents with
index 2.

PROOF: If A2 =0 then XA C X \domA\: that is, 7(}) < g(}) and, by [9, Lemmas
11 and 13] (compare Lemma 3.2 below), d(\) = m. Hence, any nilpotent with index 2
satisfies the given conditions. Consequently, if A; ...\, is a product of such nilpotents
then d(\;...\.) =m and

(A1 ) S 7(A1) € g(A) < g(A1...Ay)

since d(B) < d(ef) and r{af) < min(r(a), r(B)) for all o, B € P(X).

Conversely, suppose o satisfies the given conditions: what follows is essentially the
argument in the first paragraph of the proof of [9, Theorem 3]. Suppose Xa = {z;}
and 4; = z;a!. If |[(X \rana)N (X \doma)| > r(a) then we can choose c; €
(X \rana)N (X \ doma) and write

(@) ()

a= o

(&1 h

where each transformation on the right is nilpotent with index 2. Suppose instead
that |[(X \rana)N (X \domea)| < r(a). In this event, if r{(a) is finite, we choose

https://doi.org/10.1017/50004972700034092 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034092

(5] Nilpotents in semigroups of partial transformations 457

¢; € X\domo and d; € (X \ Xa) \ {«}, and put

= () (@) ()

where each transformation on the right is again nilpotent with index 2. On the other
hand, if r(a) is infinite then |[Xa N (X \ doma)| = r(a), so we can choose ¢; € Xan
(X \doma) and d; € X \ Xo to ensure that the above decomposition of & remains
valid. 0

To show that 3 is best possible in the above result, we need to characterise when
a is a product of 2 nilpotents with index 2, and for this we need to describe Green’s
relations on £(X). The following characterisation of Green’s relations on P(X) is
well-known: its proof is entirely similar to that given in [1, vol. 1, pp.52-53] for 7(X),
and so is omitted.
LEMMA 2.4. If a, B € P(X) then
(a) aLp ifand only if Xa= X,
(b) oaRp if and only if ker a = ker 3,
(¢) aDg if and only if r(a) = r(8), and
d D=J
The regularity of £{X) when m is regular was established in [9, p.341]. For what
follows, we need a more general result.
LEMMA 2.5. If m is an arbitrary infinite cardinal then L£(X) is a regular semi-
group.
PROOF: We suppose m is singular and let o € £(X). Write Xa = {z;} and
A; = r;a7!. Choose a; € A; and define a transformation 3 by letting dom g = {a;}
and ¢;08 = z; for each ¢ € I. Then g(8) = m since d(a) = m, and d(8) = m whenever
r(a) < m. If r(e) = m then, by [9, Theorem 4], g(a) = m or a is spread over m.
In the former case, d(8) = m; and in the latter case, we know || JA,| = m for some
P C I with |P| = cf (m): that is, X \ X8 contains |J(A4p\ ap), a set with cardinal
m. Hence, by [9, Corollary 4], 8 is a product of nilpotents and clearly, a = afc. 0
Since £(X) is a regular subsemigroup of P(X), it follows from {3, Proposition
I1.4.5] that the £ and R relations on £(X) can be described just as in Lemma 2.4.
The reason for noting this fact will be apparent after we quote the following result from
[5, Lemma 2.5].

LEMMA 2.6. Let T be a regular semigroup with a zero 0. If a € T and a = =y
for some nilpotents =, y in T with index 2 then a = x1y, for some nilpotents 1, 11
in T with index 2 such that 1Ra and y,La.

The next result should be compared with [5, Proposition 2.4] and [7, Lemma 2.2).
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THEOREM 2.7. Suppose m is an arbitrary infinite cardinal and a € P(X)
is non-zero. Then « is a product of 2 nilpotents with index 2 if and only if
[(X \rana) N (X \ doma)| = r(a).

PROOF: The second paragraph in the proof of Theorem 2.3 shows that if the
condition holds then o can be written as a product of two nilpotents with index 2.
So, we suppose a = A\ # () where A2 = 42 = §. By Lemma 2.6, we can also assume
ker A = kera and Xp = Xa. Let Xa = {z;}, Ai = ;07! and A;A = y;. Since
A2 = 0, we know {y;} € X \domA = X \ doma. Suppose, for contradiction, that
(X \rana)N (X \doma)| < r(a). Then {y:} N Xa # @ where each y; € dompy.
Hence, we have Xu? = (Xa)u 2O ({u;} N Xa)u # 0, contradicting p? = 0. 1

It remains to note that there exist a € P(X) with d(a) = m and g(e) > r(e) but
[(X \rana) N (X \ doma)| < r(a). To see this, write X = {z;} U {a;} U {b;} U {c;}
where |I| = m > |J| and put
L
a= (2 3).

Note also that there are a € P(X) which cannot be written as a product of nilpotents
with index 2. For example, if X = {a;} U{b;} Uz then

S

is a nilpotent with index 3 which does not satisfy the conditions of Theorem 2.3 (the
need to consider such nilpotents did not arise in [5] and [7]).

The second case in the proof of Theorem 2.2 leads to o being written as a product
of 3 of fewer nilpotents, the first of which has index 3 and the other two have index
2. We now show this occurs whenever o does not belong to K(X), the subsemigroup
of L(X) generated by the nilpotents in L(X) with indezr 2.

THEOREM 2.8. If m is regular and o ¢ K(X) then a is the product of 3 or
fewer nilpotents, the first of which has index 3 and lies outside K(X) and the other
two have index 2.

PrOOF: If a ¢ K(X) then g(a) < r(a) and so g(a) < m. Hence, by [9, Corollary
3], some za~! has cardinal m. Then the second paragraph in the proof of [9, Theorem
3], shows that « is a product of 3 nilpotents, the first having index 3 and the other
two having index 2, and clearly the first cannot belong to K(X). 0

It is often possible to do better in the above result and write o ¢ K(X) as a
product of just two nilpotents, the first having index 3 and the second having index
at most 3. The next result characterises when this occurs and at the same time shows
that the product 3 is best possible in Theorem 2.2.
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THEOREM 2.9. Suppose m is regular and ¢ ¢ K(X). Then a is a product
of two nilpotents with index at most 3 if and only if there exists z € X such that
|za=' N (X \ Xa)| 2 r(e) and (X \doma) \ z is non-empty.

PROOF: Suppose o = Ap where A and p are nilpotent with index at most 3. If
A has index 2 then g(A) > r()\): an argument similar to that in the first paragraph
in the proof of Theorem 2.3 then shows that a must satisfy the same inequality, in
which case o € K(X). Hence, A must have index 3. Let Xa = {z;} and A; = ;a7 ".
If 7(a) < m then |[(X \ Xa)N A;| = m for some ¢ € I since m is regular and, by
supposition, |(X \ Xa)N (X \doma)| < m and d(a) = m. Hence, we now assume
r(a) =m.

Let B; = z;p~! and note this is non-empty since Xa C Xpu. Let ker A = {D;}
where |J| = m (since 7(A\) > r(a) = m). Then each A; is a union of some D; and
A;\ C B; for each i € I. Fix some b; € A;A and write b;A~! = D;. Note that {b;} C
dom g, and g maps {b;} in a one-to-one fashion onto {z;}. Now, since @ ¢ X(X) and
X \domA C X \dome, |{b;}NX \domA| < m and hence ||J({b:} ND;)| = m. If
{b:}ND; # 0 for m of the D; then |{b;}A| = m: that is, r(A?) = m, contradicting
the fact that XA%2 C X \ dom A which has cardinal less than m. Hence, if K = {j €
J: {b;} N D; # 0} then |K| < m. But then |J({b;} N Dg) has cardinal m and so
|{b;} N Dy| = m for some index 0 € K (since m is regular). Note that Dy is contained
in some A; since g(a) < m. Write {;} N Do = {bp} and suppose, for contradiction,
that |(X \ Xa)N A;| < m for all i € I. Then in particular, |(X \ Xa)N{by}| < m
and s0 Xa N {bp} = {byp1} say, has cardinal m. Note that {by;}x has cardinal m.
Since {bp1} C {z:}, by the choice of the b; we know there exist ¢, € {b;} such that
cpit = bp1. We now repeat the foregoing argument with {c,} replacing {b;}. That is,
{cp} must intersect less than m of the D; and so there is an index 1 € J such that
[{cp} N D1| = m. Once again, note that D, is contained in some A; and if {c,}ND; =
{dp} then Xan{dy} = {by2} say, has cardinal m. Then {bp2}u? has cardinal m and
we need only repeat the argument one more time to reach a contradiction (since p has
index at most 3).

In the last two paragraphs we have shown that |(X \ Xa) N Ag| > r(a) for some
index 0 € I. We now prove that we can assume (X \doma) \ z¢ is non-empty.
For, suppose X \ doma = zo (recall that g(a) > 1). Then @ # (XA)A C X\
dom A = zo implies that zoA~! = Y say, contains X\ and so its cardinal is at least
r(a). In addition, since g(a) < r(a), zp must belong to dompu, zou = z; say. If
IXAN (X \ Xa)| = r(a) then |A;N(X \ Xa)| > r(a) since A; = z1a7! contains
Y. Since z; # zo (p is nilpotent) and X \ doma = z¢ by supposition, the set
A, possesses the desired properties. Thus, we assume |[XAN (X \ Xa)| < r(a) and
deduce that XA N Xa = {z,} say, is non-empty (possibly r(c) is finite). But then
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there exist e, € XA C Y such that e,p = z, and |[{e,} N (X \ Xa)| < r(a) implies
{ep} N Xa = {z,} say, is non-empty. Once again, there exist e, € XA such that
eqi = T4 and now {eg}u® = ({ep} N Xe)p is non-empty (since each e, € domp).
Clearly, this argument can be repeated once more to find that u® # 0, a contradiction.
Conversely, suppose Y = za™! and |[Y N (X \ Xa)| > r(a). Let Xa\ 2z = {z;}
and A; = z;a~'. Choose b; € Y N (X \ Xa) and c € (X \ doma) \ z, and note that

A,‘ Y b,‘ c
o= o
b,‘ c Try 2
where the first transformation on the right is nilpotent with index 3 and the second is
nilpotent with index at most 3 (one z; may equal c). 0

It remains to note that there exist a ¢ X(X) which do not satisfy the conditions
of Theorem 2.9: for example, the transformation defined in (1).

3. NILPOTENTS AS GENERATORS: THE SINGULAR CARDINAL CASE

Throughout this section m will be a singular infinite cardinal. In this context, we
say a € P(X) is spread over its rank if, for each p < r(a), some za~! has cardinal
greater than p. In [7] the authors showed that, when m is singular, the set

L., = {a € P,: a is spread over m} U {0}

equals the subsemigroup of P,, generated by the nilpotents of P,,. Moreover, each
a € L, is a product of 3 or fewer nilpotents with index 2 in P,,,.and 3 is best
possible. This is comparable with the following result from [9, Theorem 4]: note that
the proof in [9, p.340] involves a nilpotent A which is stated to have index 3 but in
fact has index 4.

THEOREM 3.1. Suppose m is singular and a € P(X). Then a € L(X) if and
only if g(a) > 1, d(a) = m and either g(a) > r(a) or o is spread over its rank.
Moreover, when this occurs, a can be written as a product of 4 or fewer nilpotents
with index at most 4.

In Section 2, we characterised when a € P(X) is a product of nilpotents with
index 2 and X is an arbitrary infinite set. Since some nilpotents with index 3 lie in
K(X), we shall determine when o € P(X) equals a product of nilpotents with index
at most 3. In order to do this, it will be important to know that d(A) = m for any
nilpotent A. We therefore begin by giving a proof of this fact that is simpler than the
one in [9, Lemma 13].
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LEMMA 3.2. If m is singular and A is a nilpotent then d(\) = m and hence,
any product of nilpotents has defect m.

PROOF: If r(A) < m then d(A) = m. So, we assume r(\) = m. Then, by the
first paragraph in the proof of [9, Lemma 13], either g(A\) = m or A is spread over
m. If the former occurs, we follow the third paragraph in the proof of [9, Lemma
11] (with cf (m) replaced by m throughout) to conclude that d(A) = m. Hence,
we assume A is spread over m and suppose, for contradiction, that d(A\) < m. Let
XX ={z;} and A; = z;A~!. Since Rq is regular, we therefore know there exists Ao
with |Ap| > max (Rg, d(\)). Write A9 = B and |[B]|=n > Rg. If [XAN B| < n then
n = |(X\ XA)N B| < d(}), a contradiction. Hence, | XAN B| =n and BA # (. Let
J={iel:z; € B}, so|J| =n. Choose a; € A; and suppose |XAN{a;}| < n.
Then n = [(X \ Xa) N {a;}| < d(A), a contradiction as before. So |[XAN {a;}| =n
and {a;})? # 0. Repeating the argument, we let K = {i € I: z; € {a;}}, s0 |K| =n.
If ar € Ax then |XAN{ax}| < n provides a contradiction, so |{XAN{ax}| = n and
{a;j}A3 # 0. Clearly, this cannot stop: that is, A" # @ for all r > 1, contradicting the
fact that A is nilpotent. Hence, d(A) = m as required. ad

We can now turn to the proof of the following result.

THEOREM 3.3. Suppose m is singular and o € P(X). Then «a is a product of
nilpotents with index at most 3 if and only if g(a) 2 1, d(a) =m and
(a) g(a) 2r(a),or
(b) |2a7}| > r(a) for some z € X, or
(¢) g(a) = cf(m) and a is spread over its rank.

Moreover, when one of (a) — (c) occurs, a can be written as a product of 3 or fewer
nilpotents, the first of which may have index 3 and the others have index 2.

PROOF: If )\ is a nilpotent and 7(A) < m then d()\) = m; and if r(A) = m > cf (m)
then d(A) = m by [9, Lemma 13]. Also, if A has index 2 then X\ C X \dom A implies
that (a) is true. Suppose instead that A has index 3 and neither (a) nor (b) hold.
Then r(A\) = m since |X| < r(A) + r(A)? by supposition. Hence, by [9, Lemma
13]), A is spread over m. Let kerA = {4;} and J = {¢ € I: XAN A; # 0}. If
g(A) < cf (m) then |J| < cf (m) since XA2 C X \dom A and |J| < |XA?%|. In addition,
|XANdom A| = m: that is, |J(XAN 4;)| =m where |J| < cf(m). It follows that not
every XAN A; can have cardinal less than m (otherwise we invalidate a property of
cf (m): see Theorem 2.1) and so some zA~! has cardinal m, contradicting our original
supposition. Therefore, g(A) > cf (m) and part (c) holds. That is, nilpotents with
index 2 or 3 satisfy the specified conditions. Now suppose « is a product of such
nilpotents and write @ = A where X is one of them. If g(a) < r(a) then g(A) < r(}A),
so A must satisfy (b) or (c). Suppose some [z2A~!| > r(A) 2 r(a). If z ¢ domp
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then r(a) < Iz)\‘ll € g(a) < r(a) is a contradiction. So, 2 € domf and then
|(z,8)a’1| > r(a). On the other hand, if g(A) > cf (m) then r(c) > g(a) > cf (m) and
so, by [9, Theorem 4], a is spread over its rank.

By Theorem 2.3, the converse certainly holds whenever (a) holds. For the other
two possibilites, let Xa = {z;} and A; =z;a~!. If some |Ag| > r(a), write J =I\0
and consider two sub-cases. If |49 N X \ Xa| = m, choose distinct y;, 2;, c € Ag\ Xa
as well as b ¢ doma and note that

()2 )
y; b 2 ¢ T; To
where the first transformation on the right is nilpotent with index 3 and the other
two are nilpotent with index 2. On the other hand, if |AgN X \ Xa| < m then
(X \ Ao) N (X \ Xa)| = m, so we can choose z; and c, each different from b, in-
side (X \ Ag) N(X \ Xa). Then, if y; € Ag, the above decomposition of a will have
the same features as before.

Now suppose (c¢) holds. Since m is singular, it is the sum of cf (m) cardinals
k, < m and, for each p, some A, has cardinal greater than k,. That is, | JAp| =m
and we again consider two sub-cases. Put Q@ = I\ P. If |(U4,)N (X \ Xa)| = m,
choose distinct yq, 24, 2p € (U Ap) N (X \ Xa) as well as y, ¢ doma. Then

o= <Aq Ap) o (yq yp) o (zq zp)
Yo Up 2q 2% Zq Zp
where the first trasnformation on the right is nilpotent with index 3 and the other two
are nilpotent with index 2. If instead |(lJAp) N (X \ Xa)| < m then |(JA4,) N Xa| =

m. So, we can choose yq € (JAp) N X and 2z, 2, € (X \ Xa) \ {yp} to ensure that
the above decomposition of « remains valid. 1

To show the product 3 is best possible in the above result, we consider the trans-
formation a defined in (1). By Theorem 3.3 (b), a certainly belongs O(X), the sub-
semigroup of L£L(X) generated by all nilpotents with index at most 3. Suppose a = Ay
where A, p are nilpotents with index at most 3. If A has index 2 then r(A) < g(\) and
so m = r(a) < g(e) =1, a contradiction. Hence, A has index 3, X \dom A = {z}, and
A acts on {a;} in a one-to-one fashion. Let a;A = ¢;, {bi}A = {¢;} and ¢;A~! = A;.
Then = ¢ {c;} since {¢c;}p = z and zp # z (u is nilpotent). Hence, A;A% # @ but
(A;A%)A = 0: that is, £ = ¢, for some index 1 € I and ¢; = a, for each j € J.
Consequently, |J| =1 and ¢, # = forall k € K = I'\1. If ¢, € {ax} U {b;} then
arA® = cxA? € ({cx} Ua1)X # 0 is a contradiction. Thus, ¢ = a; for all k¥ and this
contradiction finally proves that a cannot be written as a product of just two nilpotents
with index at most 3.
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Before leaving this section, we show that there are & € £(X) which do not satisfy
the conditions of Theorem 3.3. For this, choose ¥ = {z,} € X with |Q| = cf (m) as
well as some z € X' \Y . Then we can write X\ (Y Uz) = BUC where |B| =|C|=m.
Since m is singular, there is a a partition {A,} of C' where each |Ay| < m. Finally,
let {Ap} be a partition for B, choose z, € C and put

o) az(Ap A Y)

Tp Ty 2

Clearly this is a nilpotent with index 4 that does not satisfy the conditions of Theorem
3.3; so, the index 4 in Theorem 3.1 is best possible.

4. NILPOTENTS AS PRODUCTS OF IDEMPOTENTS

We now turn to the question of whether £(X) is idempotent-generated. In [8,
Section 4], the authors characterised when a € P(X) is a product of idempotents in
P(X) by extending the notion of collapse and shift as follows.

C*(a) =C(a) UX \doma c*(a) = [C*(a)]

S*(a) = S{a) U X \doma s*(a) = |S*(a)|
If m is regular and @ € £(X) then d(a) = m and either g(a) = m or some za~1!
has cardinal m: that is, ¢*(c) = m and it follows that s*(a) = m. Hence, by [8,
Theorem 8], every element of £(X) is a product of idempotents in P(X): the problem
is whether these idempotents can be chosen from £(X) itself. Note, for example, that

if X = {a;} U {b;} and
P ({ai(;ibi})

then ¢ is an idempotent which lies outside £(X). As a first step in answering this
problem, we now determine when nilpotents in £(X) with index 2 can be written as a
product of idempotents in L£(X).

At the end of [7, Section 2], the authors noted that K,,(Y’) forms a semigroup for
any infinite cardinal m = |Y|. And, with this generality in {7, Proposition 3.4}, they
characterised when a nilpotent with index 2 in K,,(Y) is a product of two idempotents
in K,,(Y). With this in mind, let w be the composition of the isomorphism §: £(X) —
Ly and the natural map Ly — Ly \ Iy = K,,(¢) defined in Section 2. If a2 = 0 in
L(X) and a = €&, for some idempotents €1, €2 in £(X) then aw is a product of two
idempotents in K., (X?). In addition, if r(a) = m then ow is a nilpotent with index 2
in Km(X*?). Consequently, by (7, Proposition 3.4], |C(aw) \ X (aw)| = m. But, since
g(a) = 1, we always have C(aw) = C*(a)U ¢ and clearly X(aw) = Xa U ¢. Hence,
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|C*(a) \ Xa| = m when r(a) = m. On the other hand, if r(a) < m then d(a) = m
and so s*(a) = m. Therefore, by [8, Theorem 8], ¢*(a) = m since « is a product of
idempotents in P(X), and so [C*(a) \ Xa| = m since r(a@) < m. That is, we have
proved half the following result.

THEOREM 4.1. Suppose m is an arbitrary infinite cardinal and a € P(X) is
nilpotent with index 2. Then « is a product of two idempotents in K(X) if and only
if |[C*(a)\ Xa| =m.

PROOF: It remains to assume the condition holds and deduce that « is a product
ot two idempotents. To do this, write

(%)
T Vq

where each B; contains at least two elements and {z;} U {vs} C X \ doma. Choose

b, € B, and put
_ Bt uq
= ( be “q)

_ <{bt, z:}  {ug “q})
Eqg = .
T, Vg

Then kere; = kera. Also, d(e1) = m = g(ez2) if |T| = m since then |J(B; \ b;) has
cardinal m and is contained in X \ Xe; as well as X \ dome,. On the other hand, if
|T'| < m then (C*(ea)\ Xa) \ {b:} has cardinal m and is contained in the same two
sets.. Also, d(ez) = d(a) = m. That is, 1, 2 € K(X) and clearly, a = €1¢5. 0

Note that if X = {a;}U{b;} and « is the transformation with doma = {a;} such
that a;a = b; then « is a nilpotent with index 2 which does not satisfy the condition
of Theorem 4.1. Despite this, « is a product of idempotents in (X). For, suppose
« is any nilpotent with index 2 and rank m, and write Xa = {z;} and A; = z;a~!.
Choose a; € A;, and write {a;} = {b;} U{c}Uy and X \ doma = {d;} U {e;} Uz
(possible since Xa C X \ doma). Then

A e di e bi ¢
Q= o [s]
d; =z b; =z Ty
where each transformation on the right is a nilpotent with index 2 that satisfies the
condition of Theorem 4.1. This leads us to the following result.
THEOREM 4.2. If m is an arbitrary infinite cardinal then K(X) is idempotent-

generated.

PROOF: Suppose « is nilpotent with index 2. If 7(a) < m then |(doma) \ C(a)| <
m, so ¢*(a) = m since X = (doma)\C(a)UC*(a). Hence, |C*(a) \ Xa| = m. There-
fore, by Theorem 4.1, « is a product of idempotents in X(X) and, by the above remark,
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the same conclusion holds if 7(«) = m. Hence, every element of X(X) is a product of
idempotents in X(X).

We now proceed to show that £(X) is also idempotent-generated. To do this, we
recall that the proof of Theorem 2.2 (see (9, Theorem 3] shows that when m is regular
any o € L(X) can be written as a product of nilpotents, one of which may have index

3 and take the form:
A=
G T

where {¢;} C Y and z ¢ dom ). Since the other nilpotents in the product have index 2,
by Theorem 4.2 it will suffice to prove that the above A is a product of idempotents in
L(X). So, choose a; € A; and fix an index 0 € I. If r(\) < m then |C*()\) \ X}| = m,
so we can choose d; € (C*(A)\ XA) \ ({ai} U {co, z}) since this set has cardinal m.
Now, observe that

X\ A Y ({ai, di} {co, $}> o ({di, ci} x)
a; Co d; T ci z/
where the first transformation on the right has non-zero gap and same kernel as A,
so it belongs to £(X). In addition, the other two transformations on the right have

gap equal to m, so they belong to K(X). On the other hand, if r(A\) = m, we write
{ci} = {¢;} U {cx} where |J| = |K|= m and note that

N A Y o [ {co, z} o {aj, c;} ar = o (¢ {ak, ek} =z
a; Cp a; T Cj ar < Cj Ck T
where, as before, each transformation on the right is idempotent and belongs to £(X).
Note in particular that the above decompositions of A as a product of idempotents are
valid for any infinite m. That is, we have proved part of the following result.
THEOREM 4.3. If m is an arbitrary infinite cardinal then £(X) is idempotent-
generated.
PROOF: It remains to consider the case when m is singular. In this situation, the
proof of Theorem 3.1 (see [9, Theorem 4]) shows that any a € £(X) can be written as

a product of nilpotents, one of which may have index 4 and take the form of (2). But,
with the same notation as in (2), we can choose a, € 4, a4 € Ag, y €Y and put

(A,, A, Y)
€1 =
ap aq Y

a, ag Y
€2 = P ? .
Tp Tq 2
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Then kere; = kero, and d(e;) = m = g(e2) since (|JA,) \ {aq} has cardinal m. In
addition, d(ez) = d(a) = m by Lemma 3.2. That is, ¢, is an idempotent in £(X) and,
since €2 € K(X) by Theorem 2.3, it is a product of idempotents in X(X) by Theorem
4.2. Since the other nilpotents in the decomposition of o have index at most 3, the
result follows from Theorem 4.2 and the above remark. 1]

5. FURTHER OBSERVATIONS

A slight modification to the proof of Lemma 2.5 shows that £(X) is regular. For,
with the same notation as used there, if o € X(X) then g(8) = d(e) = m by [9,
Corollary 3 or Theorem 4]. In addition, d(8) = m by the argument in [9, p.341] when
m is regular, and by that in the proof of Lemma 2.5 when m is singular. Hence, by [9,
Corollary 4], 8 belongs to K{X). The same argument shows that O(X) is also regular.

THEOREM 5.1. If X is infinite then K(X) C O(X) C L(X) are regular sub-
semigroups of P(X), with the second containment being equality when |X| is regular.

As a matter of interest,’ we remark that there are transformations with rank less
than m at each level in the hierarchy K(X) C O(X) C L£(X). For, if m is singular,
there is a partition {A;} U {y} of X with |JA;| = m but each |4;] < m and |I| =
cf (m). Then, any transformation having {A;} as its kernel must be spread over its
rank cf (m) and have defect m, in which case it lies in £(X)\ O(X). And, when m is
regular, it is even easier to find transformations belonging to O(X) \ X(X). In other
words, we cannot write K(X) or O(X) as the disjoint union of I}, (see Theorem 2.2)
and another subsemigroup of L£(X).

In the previous three sections, we have often used the characterisation of when an
element a of Z(X), the symmetric in inverse semigroup on X , is a product of nilpotents
in Z(X) provided in [9, Corollary 4]: namely, it occurs if and only if d(a) = g(a) =m
where |X| = m is an arbitrary infinite cardinal. And, under these conditions, « is a
product of 3 or fewer nilpotents in Z(X) with index 2. An argument identical to that
in Theorem 2.7 establishes our next result: it shows that the 3 just mentioned is best
possible.

THEOREM 5.2. Suppose m is an arbitrary infinite cardinal and a € I(X) is
non-zero. Then « is a product of 2 nilpotents in T(X) with index 2 if and only if
[(X \rana) N (X \ doma)| > r(a).
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