ON SOME PROPERTIES OF FUNCTIONS ANALYTIC
IN A HALF-PLANE

P. G. ROONEY

1. Introduction. The spaces $,(w), w real, 1< p < =, consist of those
functions f(s), analytic for Re s > w, and such that u,(f; %) is bounded for
x > w, where

(1) w0 = 5= [ 1t + i a.

T J—

Doetsch (1) has shown that if e'(f) € L, (0, »), 1 < p < 2, and f is the
Laplace transform of ¢, that is,

f(s) = j:ce_” $(t)dt, Res > w,

then f € 9,(w), where
(1.2) prtgt =1,

and that conversely if f € 9,(w), 1 < p < 2, then there is a function ¢, with
e '¢(t) € L, (0, »), such that f is the Laplace transform of ¢.

The proofs of Doetsch’s theorems are based on a generalization of Plancherel’s
theorem due to Titchmarsh (5). Titchmarsh’s theorem states that if F €
L,(— ©, ®), 1 <p <2, then F has a Fourier transform G € L, (— =, «).

However, there are other extensions of Plancherel’s theorem due to Hardy
and Littlewood (3). They have shown thatif F € L, (— =, ®),1 < p < 2,
then F has a Fourier transform G such that |x|"~*?G(x) € L, (— «, «), and
that conversely if |x|'=‘F(x) € L, (— », ®), ¢ > 2, then F has a Fourier
transform G € L, (— =, o)—for this form of Hardy and Littlewood’s
theorems see (7, Theorems 79 and 80). One might expect that a theory
similar to Doetsch’s theory could be constructed from these theorems, and
this we shall do here.

To this end we define spaces H(w),1 < p < o, to consist of those func-
tions f(s) such that (s — w)=27f(s) € §,(w) (where (s — w)!~?” takes on its
principal value). This is equivalent to saying that »,(f; x, ») should be bounded
for x > w, where

(13) ix @) = 5 | e — ot P + i) P dy.

In § 3 we shall obtain theorems corresponding to Doetsch’s results for these
new spaces. It will be noticed that :(w) = H;(w), so that one would expect
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that our new theorems should reduce, for p = 2, to Doetsch’s theorems. This
is actually the case.

In an earlier paper (4) we generalized Doetsch’s theory. In order to obtain
theorems dealing with the Laplace transformation of functions, of the form
Pé(t), where e« (t) € L, (0, ) and X > 0, we ‘‘generalized”’ the spaces
Oy (w) to spaces Hi p(w). We can carry out a similar programme here, and to
this end we define spaces 4 ,(w) as follows. #; ,(0) = A, (w); if A > 0,
H ,(w) consists of those functions f in #,(w’) for every o > w such that
v (f; w) is finite, where

(1.4) z/; (fiw) = J:o(x — w)p)‘_l v, (f; %, w) dx.

The theorems corresponding to the results of (4) are obtained in § 4.
In § 2 we prove certain preliminary lemmas concerning the properties of
functions in 7 (w).

2. Preliminary lemmas.
LEMMA 1. If f € H)(w), 1 < p < o, then
flw +dy) = lim f(x +izy)
Zow+

exists for almost all y, and |y|'*?f(w + 1y) € L, (— «, ). Further,
(x — o 4+ ) 727f(x + 1y) converges in mean of order p to (iy)'~¥?f(w + 1y)
as x = w+. Also, v, (f; x, w) tends steadily from below, as x - w+, to

f; ly[P~* £ (w + i) | dy.

Proof. The statement follows on applying (1, Lemma 7) to
F&) = (& — )= (2).

LeEMMA 2. Let f(s) be analytic for Re s > w, and suppose
[ e =i+ Py

1s bounded for x1 < x < x2, where p > 1, x1> w. Then as y—> £ =, f(x + 1y) =
o(|y|=%9), uniformly in x for x1 + 6 < x < x2 — 8, where 0 < § < §(x2 — x1).

Proof. Let ®(¢) = (— 10)72?f(0 — 1§), where ¢ = &£ + o9, and (— 2t)1 727
has its principal value. Then if n > 0,

[T rinra= [ &+ -

= [l o P

which is bounded for x; — v < 7 < x; — w. Hence by (7, Lemma, p. 125),
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limg,, . ®(¢ + 77) = O uniformly ingforx; — w + 8 < 7 < x2 — w — 8. Thus,
setting x = 0w + 7, ¥y = —§,

lim (x — w+4y) " fx +iy) =0

Y=o
uniformly in x for x; + 6 < x < x2 — 4. But clearly
(x — o+ )2 = O(|y[*=*?) as y— *o,

uniformly in x for x in the same interval. Hence

lim |y f(x +dy) = 0

Y= too

uniformly in x for x in this interval; that is,

S + i) = o(lyl=0=29) = o(ly|i=0)
uniformly in x for x; + 6 < x < x2 — 4.
LEMMA 3. If f € A (w), ¢ > 2, and w < & < Res, then
_ L (7 &t )
=) it ™
Proof. Suppose first w < £ < Res. Let s = x 4+ 7y, and choose R and p
so that p > x, and R > |y|. Then

1

9 = o [£8)
the integral being taken around the rectangle with vertices £ 4= ¢R and
p =+ iR. The integral along the upper side of the rectangle is given by

1 * fla +iR)
25 cs— (a+1R)

But by Lemma 2, f(a 4+ 2R) = 0(R'"?”) as R — =, uniformly in « for
£ < a < p. Hence the integral along the upper side is 0(R~%/”) and conse-
quently tends to zero as R — «. Similarly, the integral along the lower
side of the rectangle tends to zero as R — «. Hence letting R — «,

1 (* fE+in) dn 1 (™ _fletin)
s — (E+ in) 21 J s — (o + 1) "

Now the second of these integrals tends to zero as p — «. For from Holder's
inequality it is smaller in modulus than

N }‘“’

1/¢q

' 5 T d .

(o(f5 py @) {27'_ s — (o + )] 1

The first term of this expression is bounded by hypothesis; since 1 < p < 2
the second term is smaller than

dg,

da.

&) =35
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(o — ) [ dn }1/1)
{ 2m -Lo((p =)+ (=)

b1 dn W
{ (P —-x)” 21|- __00(1 __I__ )1/21)} = O(p /)

as p — . Hence letting p — o
L("_fetin
S — (& + )

It remains to show that this equation remains true when £ = w. For this
we write the equation in the form

f()— w < § < Res.

) —w . \1-2/p
76) = 5z |1 = o i s+ W{(i S }d”'

The first term of the integrand of this last integral converges in mean of
order ¢ to (in)=¥!f(w + in) as £ = w+. We shall show that the second term
of the integrand converges in mean of order p to (in)"*?/(s — (w + 43)) as
£ — w+. Clearly it tends to this limit pointwise. Further, since 1 < p < 2,
we have if § < vy <,

(E=oti)™" @) [
s — (E+m) s — (0 +n)
< 2;:{ (¢~ o)’ +49)'” [ }
D (P ey ey e (g Ly ey

i

< 2IJ+1 . ,77 5
= (=" + @ —»H"™”
which is in L;(— o, «) as a function of 5. Hence by Lebesgue's theorem of
dominated convergence,

(t—o4+m)'™” @)
s— &+  s— (04 in)

Thus, letting ¢ — w+ we obtain from (6, § 12.5, example (iv)))

< + \1-2/p
fGs) = -21—,, f_m (@)™ f (o + in)}{—%q:m}

4

dn = 0.

Iim
5wt

L (T fletam)
21 J s — (w + 1) g

LemMa 4. If f € Hw), ¢ > 2, and if £ > w and Res < &, then

1 (" _f(E+ )
o) s— Gt =0

Proof. The statement follows much as in the previous lemma.
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3. The spaces 7, (w). Theorems 1 and 2 correspond to Theorems 2 and 3
respectively of Doetsch (1).

THEOREM 1. If e () € L, (0, ), 1 < p <2, and

56 = | e o) an Res > a,
then f € H(w) and if x > w,

n(fix, ) <K | e o) dt,
0
where K depends on p alone.

Proof. If x > o,
S —iy) = [ e o)) ar
0
that is, for each fixed x > w, f(x — 1y) is the Fourier transform of a function
in L, (0, »). Hence by (7, Theorem 80), since 1 < p <'2,
1 . g .
iz w) = o | e — ot P |G+ )P dy

1 oc

<z ) Iy 7% fle — i) P dy

<K—@fwe"’“ le®) 7 dt < %@fwe“”“" l¢(t)|? dt,
™ 0 ™ 0
so that f € ) (w) and the stated inequality holds with K = K(p)/2r.

THEOREM 2. If f € H(w), ¢ > 2, then there is a function ¢, with e=='¢(f) €
L,(0, ), suck that

£Gs) = f e () dt, Res> w.
0
Further, iof x > o,
f o) Y < K lf v, 0),
0

where K depends on g alone.
Also for x > w and for almost all t,

S O . _{¢(t),t>0
e < 27r.[_ae S+ in) dn = 0,t<0

a—

(where R, denotes the limit in mean of order q).

Proof. By Lemma 1, |y|"%%(w + 4¢y) € L, (— «, =). Hence by (7, Theorem
79), f(w 4+ 7y) has a Fourier transform F € L, (— », =), given by the
formula
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Fi) = ¢, (2—1)-;] ¢ F(w + in) d.

a— —a

Let ¢(f) = (2m)~}e*'F(f). Clearly e~ (f) € L, (—o, ),
Now for each s with Res # w, (s — (w+ 1)1 €L, (—o, ®) as a

function of . Also a straightforward calculation shows that if Re s > w,

— @21 e 1> 0,Res < w

1 oc itn .
2m)° (P)J‘_ s — (ew+in) dn = 1 @2m) e’ ™t <0,Res >
’ 0, (Res — w) t >0,

so that the Fourier transform of ((s — (w + 47))~! is given by this expression.
Hence from Lemma 3 and (7, Theorem 81), if Re s > o,

56 = 5= [ HeEm S gy - Gl [ B

___1_‘ oo—sl i _ oo_st
= (2’"_)%‘[) e "¢ F(t)dt = J; e " o(t) dt,

so that f is the Laplace transform of a function ¢ with e (¢) € L, (0, »).
Also from Lemma 4 and (7, Theorem 81), if Re s < o,

Sl TSk g L (" g
=) et e e e

IR S T
- (21)’1; e.m(b( ) db

that is, the Laplace transform of ¢(—1¢), with variable —s, vanishes. Hence
by (2, chapter 2, § 9, Theorem 4) ¢(—¢t) = 0 a.e. for ¢ > 0, or equivalently
¢(t) = 0 a.e. for t <0,

Further, from (7, Theorem 79),

G [ o0l a = Grw [ 1O a

<BL " bt o+ P ay.

Now sinceqg > 2,ifw < o' < xandgé€ H, (), then vo(g; %, 0') < vo(g; %, w),
so that g € #,(w'). Hence if x > w, f € H#,(x) so that by what we have
just proved there is a function ¢, with e*%¢,(¢) € L, (0, »), satisfying (3.1)
with w replaced by x, such that for Re s > x,

f(s) = fme'” ¢:(t) dt, Res > =,

and so that for almost all ¢

R s e flx + in) dn = {

a-c0 2 ™ —a

¢I(t)7 t > 0
0, t<0
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But by (2, chapter 2, § 9, Theorem 4), ¢.(t) = ¢(¢) a.e. for ¢ > 0. Hence for
any ¥ > w and almost all ¢

zt _1_fa ity . _ {¢(t), t> Oy
¢ G%Zc ™ —ae f(x + 17’) d") - O,t <0.

Finally from (3.1), with o replaced by x, we obtain, since ¢ > 2,
00 —az o0 e K o0 _ .
Jemsora= [Tesora <KL [y + iray
<K Vq(f; X, w),
where K = K(q)/2r.

4. The spaces 4 ,(w). Theorems 3 and 4 correspond to Theorems 1 and
2 of (4).

TaeoREM 3. If e (t) € L, (0, ©), 1 < p <2, X >0, and
f6) = [ o) an, Res >,
0
then f € I ,().

Proof. If X = 0 the statement reduces to that of Theorem 1. Hence we
may assume A > 0. If o' > w, then since tre~«@'~9! is bounded for ¢ > 0,
e Pp(t) € L, (0, »), and hence by Theorem 1 f € H#, (o), and if x > o’

n(fix, o) <K fowe"’“ 2 o) dt.
Let x > w, and choose o’ so that w < ' < x. Then since 1 < p < 2,
W(fime) <nlfin ) <K [ o0
Hence
Mo = | = 0P i )i
<K f(x — o)™ dx Lme“”” ()P di

> @ 1 —pzr KT (pA e _
=k [[Pls0ra (@ o era = KN [Ty pa,

and f € I ,(w).

THEOREM 4. If f € I ,(w), ¢ > 2, X\ > 0, then there is a function ¢, with
et (t) € L, (0, ), such that

f(s) = J; et o(t) dt.

Proof. Since f € H, (') for every o’ > w, by Theorem 2 if o’ > w there
is a function ¢, with

e—w't d’w’ (t) E Lq(Or oo),
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such that
f(s) = J‘ e ' du(t)dt, Res > o',
0

But by (2, chapter 2, § 9, Theorem 4), if " and «" are larger than o,
¢u () = ¢urr () a.e. for t > 0. Hence if ¢, is any one of these functions and
Re s > w, then choosing ' so that w < o’ < Re s we obtain

56 = [T e = e o

Also from Theorem 2, since ¢ > 2, if x > w and &’ is chosen so that w < o’ < x
S opa = [ low@Pat < Knin, ) < Kol w).
0 0

Hence, if we multiply this inequality by (x — »)?! and integrate from
w to =, we obtain

r(x - w)“)—ldxf e P o) |%dt < Kf (x — @)™y (f; x, w)dx
w 0 ®

= K (f; 0).
But the integral on the left-hand side of this inequality is equal to

f(x — ) dx J;me‘““ |$o(t)|dt = J;mwo(t)l“dt fj(x — )Ml gy

= ——F;%A ) L go®)

so that

© gt —ar q qq)\KVq(fs ®) ©
fo e |oo(d)|dt <—_———F(q)\) <

Hence if we let ¢(f) = t¢o(f), then e (t) € L, (0, »), and if Re s > w
f(s) = f e o(b)dt.
0
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