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Abstract
We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Ap-
plications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions
of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and
study the corresponding pullback map on (equivariant) cohomology rings.
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2 D. Anderson

1. Introduction

Schubert polynomials represent the classes of Schubert varieties in the cohomology ring of a flag
variety. For 𝐹𝑙 (C𝑛), Schubert varieties Ω𝑤 are indexed by permutations 𝑤 ∈ S𝑛, and their classes
form an additive basis of the cohomology ring. The ring 𝐻∗𝑇 𝐹𝑙 (C

𝑛) has a Borel presentation as
Z[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛]/𝐼, so some choices are involved in lifting a class to a polynomial. Among
these choices, the polynomials 𝔖𝑤 (𝑥;−𝑦), introduced by Lascoux and Schützenberger in 1982, are
widely accepted as the nicest representatives for [Ω𝑤 ] because of their many wonderful combinatorial,
algebraic and geometric properties [22].

One of these properties is stability with respect to embeddings of flag varieties: the same polynomial
represents Ω𝑤 , whether one considers the permutation w in S𝑛, or in S𝑛+1, or in any S𝑚 for 𝑚 ≥ 𝑛. As
part of a search for analogous Schubert polynomials for flag varieties of other types, Fomin and Kirillov
enumerated a list of desirable properties possessed by 𝔖𝑤 , including a version of stability among them
[12]. Around the same time, Billey and Haiman used stability (of a subtly different sense from that of
[12]) as a defining property for Schubert polynomials in classical types [8].

The operative fact used by Billey and Haiman is this: in the limit, the relations defining cohomology
rings disappear, and one obtains canonical polynomials representing Schubert classes. In type C, one
builds an infinite isotropic flag variety starting with a union of Lagrangian Grassmannians. The Billey-
Haiman polynomials are, by definition, stable Schubert classes in the limiting cohomology ring, which
is a polynomial ring over a nontrivial base ring Γ. The analogous construction in type A leads not to
the Lascoux-Schützenberger polynomials, but rather to the enriched Schubert polynomials to be studied
here. (A more precise description of the analogy is at the end of this introduction.) These polynomials,
denoted S𝑤 (𝑐; 𝑥; 𝑦), have coefficients in a nontrivial base ring Λ, and they specialize to 𝔖𝑤 (𝑥;−𝑦)
under a canonical quotient Λ → Z. The same holds also for the (essentially equivalent) back-stable
Schubert polynomials recently studied by Lam, Lee and Shimozono, building on ideas of Buch and
Knutson, although there the perspective is reversed, the correspondence with Schubert classes being a
theorem rather than a definition [21, §6].

The subject of this article is a variation on [21] and [5]. Using the geometry of certain infinite-
dimensional flag varieties, we provide an alternative construction of the back-stable Schubert polynomi-
als – in the guise of enriched Schubert polynomials [5]. These constructions lead naturally to alternative
proofs of basic properties of these polynomials, and we include some of these arguments.

When discussing infinite-dimensional flag varieties, some care must be taken to distinguish among
several constructions. The main players in our story will be the Sato flag variety and Sato Grassmannian.
All the other flag varieties embed in these, including varieties parametrizing finite-dimensional (or finite-
codimensional) subspaces and infinite isotropic (type C) flag varieties. The affine flag varieties and
Grassmannians also embed, as described in [2], where they are used to compute the integral equivariant
cohomology of the affine flag variety and Grassmannian.

All our infinite-dimensional flag varieties are limits of finite-dimensional ones, so they may be
regarded as devices for keeping track of stability: one can always translate statements about infinite-
dimensional varieties into statements about compatible sequences of finite-dimensional varieties. This
is sometimes worked out explicitly, and sometimes left implicit; given the statements, there is generally
little trouble in supplying proofs.

Some new features are more salient in the infinite setting, though. Here we focus on morphisms
among various Grassmannians and flag varieties, and their effect on Schubert polynomials. The direct
sum morphisms are particularly interesting: we use them to study a coproduct on equivariant cohomology
(§8). For instance, the coproduct of a Schubert class [Ω𝜆] in the Sato Grassmannian is

[Ω𝜆] ↦→
∑
𝜇,𝜈

�̂�𝜆𝜇,𝜈 (𝑦) [Ω𝜇] ⊗ [Ω𝜈],

for some polynomials �̂�𝜆𝜇,𝜈 (𝑦), called dual Littlewood-Richardson polynomials [24]. Computing the
coproduct via the direct sum morphism, we give a direct proof that these polynomials (and variations
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of them) satisfy Graham-positivity (Theorems 8.5, 8.7 and 9.3). The first of these positivity results was
proved in [21] by passing through the quantum-affine correspondence. The second involves two sets of
equivariant parameters y and 𝑦′, and was suggested in [21], but not proved. The third is an analogue in
type C and appears to be new.

The direct sum morphism also leads to a way of computing the equivariant coproduct coefficients
�̂�𝜆𝜇,𝜈 (𝑦), by expanding a product of one double Schur polynomial by a double Schur with permuted
y-variables; a similar method computes the flag variety variants (Proposition 8.11). While the idea of
using direct sum in relation to coproduct has many antecedents (e.g., [7, 9, 20, 21, 27]), I do not know
of instances where it has been used in the equivariant setting.

Much of this article has close parallels in [21]. Two technical points of contrast are worth highlighting.
First, as will be made clear in the constructions of §3, the Sato flag variety Fl considered here is larger
than that of [21]; this has the effect of making the equality 𝐻∗𝑇 Fl = Λ[𝑥; 𝑦] a calculation rather than
a convention, and it also allows the affine flag variety to embed in Fl. Second, and perhaps more
substantially, we do not insist on a ‘GKM’-type description of equivariant cohomology, although we do
include a discussion of fixed points. Instead, cohomology rings are presented in terms of Chern class
generators. This allows us to use smaller torus actions, with larger fixed loci, which are needed in the
construction of the direct sum morphisms.

The re-interpretation of back-stable Schubert polynomials was not the original motivation for this
work; the connection became apparent (to me) only after the fact. The constructions were forced by
requiring that the stability one sees in the type C polynomials of Billey-Haiman should be compatible
with natural embeddings of the symplectic Grassmannians and flag varieties inside the usual (type A)
ones. This basic notion guides much of what we do here. As a preview, let us index a basis for C2𝑛 as
𝑒−𝑛+1, . . . , 𝑒0, 𝑒1, . . . , 𝑒𝑛, and define a symplectic form so that

〈𝑒1−𝑖 , 𝑒𝑖〉 = −〈𝑒𝑖 , 𝑒1−𝑖〉 = 1

for 𝑖 > 0, and all other pairings are 0. The inclusions

C2𝑛 ↩→ C2𝑛+2 = C · 𝑒−𝑛 ⊕ C2𝑛 ⊕ C · 𝑒𝑛+1

lead to embeddings of Lagrangian Grassmannians 𝐿𝐺 (𝑛,C2𝑛) ↩→ 𝐿𝐺 (𝑛 + 1,C2𝑛+2), defined by
𝐸 ↦→ C · 𝑒−𝑛 ⊕ 𝐸 . The same maps define embeddings of ordinary Grassmannians, so that the diagram

𝐿𝐺 (𝑛,C2𝑛) 𝐿𝐺 (𝑛 + 1,C2𝑛+2)

𝐺𝑟 (𝑛,C2𝑛) 𝐺𝑟 (𝑛 + 1,C2𝑛+2)

commutes. Taking appropriate limits of cohomology rings, for the type A Grassmannian, one sees the
ring of symmetric functions Λ, and for the Lagrangian Grassmannian, the ring Γ of Q-functions. In the
limit, pullback by the embedding 𝐿𝐺 (C2𝑛) ⊂ 𝐺𝑟 (𝑛,C2𝑛) corresponds to a canonical surjection Λ� Γ.
(In symmetric function theory, one often sees an inclusion Γ ↩→ Λ; this also arises from a morphism
between infinite Grassmannians, but a less natural one from our perspective. See Remark 9.2.)

Similar maps define embeddings of flag varieties. The system of embeddings for symplectic (type C)
varieties is what Billey and Haiman use to define type C Schubert polynomials. The limit of the
compatible embeddings in type A leads directly to the Sato flag variety, and to enriched Schubert
polynomials S𝑤 (𝑐; 𝑥; 𝑦) corresponding to Schubert classes. When one evaluates the c variables as
certain symmetric functions (in an infinite variable set), these polynomials become the back-stable
Schubert polynomials of [21].

Many basic properties of these polynomials were enumerated in [5], inspired by similar properties
of the back-stable polynomials. In summary, the overall aim of this article is to examine those aspects
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4 D. Anderson

of Schubert polynomials for which the geometry of infinite flag varieties provides a new or useful
perspective – particularly, what happens to Schubert classes under various morphisms of flag varieties.

2. Preliminaries

2.1. Permutations

With some modifications, we follow [21] for permutations.
We write Bij(𝑋) for the group of all bijections of a set X to itself. We will only consider subsets

𝑋 ⊆ Z, and we focus on the subgroup SZ ⊆ Bij(Z) consisting of all w such that {𝑖 ∈ Z | 𝑤(𝑖) ≠ 𝑖} is
finite – that is, w fixes all but finitely many integers. Some variations will be discussed in §6.

The subgroup S≠0 is S+ × S−, where S+ = SZ ∩ Bij(Z>0) and S− = SZ ∩ Bij(Z≤0). That is, S≠0 is
the subgroup of SZ preserving the subsets of positive and non-positive integers.

For finite intervals [𝑚, 𝑛], we usually write S[𝑚,𝑛] = Bij([𝑚, 𝑛]), and S𝑛 = S[1,𝑛] for 𝑛 > 0. We have

S+ =
⋃
𝑛>0

S[1,𝑛] , S− =
⋃
𝑛>0

S[−𝑛,0] , and SZ =
⋃
𝑛>0

S[−𝑛,𝑛] .

Elements 𝑤 ∈ SZ are written in one-line notation: choose an interval [𝑚, 𝑛] so that 𝑤(𝑖) = 𝑖 for all i
outside [𝑚, 𝑛], and write 𝑤 = [𝑤(𝑚), . . . , 𝑤(𝑛)].

Bruhat order on SZ is defined as follows. For each 𝑝, 𝑞 ∈ Z and 𝑤 ∈ SZ, we set

𝑘𝑤 (𝑝, 𝑞) = #{𝑎 ≤ 𝑝 | 𝑤(𝑎) > 𝑞}.

Then 𝑣 ≤ 𝑤 in SZ if 𝑘𝑣 (𝑝, 𝑞) ≤ 𝑘𝑤 (𝑝, 𝑞) for all 𝑝, 𝑞 ∈ Z.
An element 𝑤 ∈ SZ is Grassmannian if it has no descents except possibly at 0, so 𝑤(𝑖) < 𝑤(𝑖 + 1)

for all 𝑖 ≠ 0. Grassmannian elements are in correspondence with partitions 𝜆: given a Grassmannian
permutation w, the partition 𝜆 = (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0) is defined by 𝜆𝑘 = 𝑤(1 − 𝑘) − 1 + 𝑘 , for 𝑘 > 0.
Conversely, given 𝜆, one defines 𝑤 = 𝑤𝜆 by setting 𝑤𝜆 (𝑘) = 𝜆1−𝑘 + 𝑘 for 𝑘 ≤ 0, and then filling in the
positive values with the unused integers in increasing order.

The length ℓ(𝑤) of 𝑤 ∈ SZ is the cardinality of the (finite) set {𝑖 < 𝑗 | 𝑤(𝑖) > 𝑤( 𝑗)}.
The element 𝑤∞◦ ∈ Bij(Z) defined by 𝑤∞◦ (𝑖) = 1− 𝑖 does not lie in SZ, but conjugation by 𝑤∞◦ defines

a length-preserving outer automorphism 𝜔 of SZ:

𝜔(𝑤) (𝑖) = (𝑤∞◦ 𝑤𝑤
∞
◦ )(𝑖) = 1 − 𝑤(1 − 𝑖).

2.2. Vector spaces

Let V be a countable-dimensional vector space with basis 𝑒𝑖 for 𝑖 ∈ Z. For any interval [𝑚, 𝑛], there is
a subspace 𝑉[𝑚,𝑛] with basis 𝑒𝑖 for 𝑖 ∈ [𝑚, 𝑛]. For semi-infinite intervals we usually write 𝑉≤𝑛, or 𝑉>𝑚.
The standard flag 𝑉≤• in V has components 𝑉≤𝑘 with basis 𝑒𝑖 for 𝑖 ≤ 𝑘 , for each 𝑘 ∈ Z. The opposite
flag𝑉>• is comprised of spaces𝑉>𝑘 spanned by 𝑒𝑖 for 𝑖 > 𝑘 . Clearly,𝑉 = 𝑉≤0 ⊕𝑉>0 (and𝑉 = 𝑉≤𝑘 ⊕𝑉>𝑘

for any k).
When the context is clear, we use the same notation for standard and opposite flags in 𝑉(𝑚,𝑛] – for

instance, writing 𝑉≤𝑘 ⊆ 𝑉(𝑚,𝑛] instead of 𝑉(𝑚,𝑘 ] ⊆ 𝑉(𝑚,𝑛] .
A torus T acts on V, so that 𝑒𝑖 is scaled by the character 𝑦𝑖 , for 𝑖 ∈ Z. So T also acts on each subspace

𝑉[𝑚,𝑛] . We generally take T to be the countable product 𝑇 =
∏

𝑖∈ZC∗, so that its classifying space is∏
𝑖∈ZP∞. This is an inverse limit of finite products of P∞, so the T-equivariant cohomology of a point

is a polynomial ring in the y variables:

𝐻∗𝑇 (pt) = Z[𝑦] = Z[. . . , 𝑦−1, 𝑦0, 𝑦1, . . .] .

(For those who prefer finite dimensional groups, one may also take T to be any torus, with weights 𝑦𝑖 , for
𝑖 ∈ Z. By taking T sufficiently large, any given finite set of y’s can be made algebraically independent.)
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2.3. Flag varieties

For any vector space W, the flag variety 𝐹𝑙+(𝑊) is the space of all complete flags of finite-dimensional
subspaces of W. That is, a point of 𝐹𝑙+(𝑊) is 𝐸• = (0 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ 𝑊), where dim 𝐸𝑖 = 𝑖.
When W is finite-dimensional, this is the usual complete flag variety. In general, it is a limit of finite-
dimensional flag varieties: to construct 𝐹𝑙+(𝑊), for each 𝑑 > 0, one forms 𝐺𝑟 (𝑑,𝑊) as the union
of 𝐺𝑟 (𝑑,𝑈) over finite-dimensional subspaces 𝑈 ⊂ 𝑊 ; then 𝐹𝑙+(𝑊) embeds naturally in the product∏

𝑑>0 𝐺𝑟 (𝑑,𝑊). So 𝐹𝑙+(𝑊) inherits its topology from the product topology on the Grassmannians.
This is the same as the inverse limit topology with respect to projections onto partial flag varieties.

There is also a variety 𝐹𝑙−(𝑊) parametrizing flags of finite-codimensional subspaces of W, but here
an extra requirement is imposed: one fixes a flag 𝑊• of finite-codimensional subspaces of W. Then
a point of 𝐹𝑙−(𝑊) is 𝐸• = (· · · ⊂ 𝐸2 ⊂ 𝐸1 ⊂ 𝑊), where 𝐸 𝑖 has codimension i in W, and each
𝐸 𝑖 contains some 𝑊 𝑗 . (Often we negate indices and write 𝐸−𝑖 = 𝐸 𝑖 for such flags.) Equivalently, let
𝐾𝑖 = 𝑊/𝑊 𝑖 , and consider the restricted dual space 𝑊∗

′
=

⋃
𝑖 𝐾
∗
𝑖 . (This is finite-dimensional when W

is, and countable-dimensional if dim𝑊 is infinite.) Then 𝐹𝑙−(𝑊) = 𝐹𝑙+(𝑊
∗′).

In our setting, an equivalent construction of these varieties is as follows. The flag variety
𝐹𝑙 (1, . . . , 𝑛;𝑉>0) is a union of finite-dimensional partial flag varieties 𝐹𝑙 (1, . . . , 𝑛;𝑉[1,𝑚] ) over 𝑚 ≥ 𝑛,
with respect to standard embeddings coming from 𝑉[1,𝑚] ⊂ 𝑉[1,𝑚+1] .

The finite-dimensional flag varieties have tautological bundles 𝑆𝑖 , and T acts, restricting its action
on V. Taking the graded inverse limit of cohomology rings, one has

𝐻∗𝑇 𝐹𝑙 (1, . . . , 𝑛;𝑉>0) = Z[𝑦] [𝑥1, . . . , 𝑥𝑛],

where 𝑥𝑖 restricts to −𝑐𝑇1 (𝑆𝑖/𝑆𝑖−1) on each finite-dimensional variety.
Next we take the inverse limit of 𝐹𝑙 (1, . . . , 𝑛;𝑉>0) over n, using natural projections. (So it is a ‘pro-

ind-variety’: the inverse limit of a direct limit of algebraic varieties.) Its equivariant cohomology is the
direct limit of rings Z[𝑦] [𝑥1, . . . , 𝑥𝑛] as 𝑛→∞, so

𝐻∗𝑇 𝐹𝑙+(𝑉>0) = Z[𝑦] [𝑥1, 𝑥2, . . .] .

Similarly, the construction of 𝐹𝑙−(𝑉≤0) (with respect to the standard flag 𝑉≤•) realizes it as a limit
of the flag varieties 𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚;𝑉(−𝑚,0] ), which have tautological bundles 𝑆𝑖 of codimension −𝑖,
for 𝑖 ≤ 0. Its equivariant cohomology is

𝐻∗𝑇 𝐹𝑙−(𝑉≤0) = Z[𝑦] [𝑥0, 𝑥−1, . . .],

where again 𝑥𝑖 restricts to −𝑐𝑇1 (𝑆𝑖/𝑆𝑖+1) on each finite-dimensional variety, for 𝑖 ≤ 0.

Remark 2.1. One sometimes sees yet another limit, taking a union
⋃

𝑛>0 𝐹𝑙 (𝑉[1,𝑛] ) over the standard
embeddings 𝑉[1,𝑛] ⊂ 𝑉[1,𝑛+1] . This leads to what might be called a restricted flag variety 𝐹𝑙 ′+(𝑉>0),
parametrizing flags 𝐸• of finite-dimensional subspaces which are eventually standard: 𝐸𝑘 = 𝑉≤𝑘 for all
𝑘 � 0. As a direct limit, its cohomology is

𝐻∗𝑇 𝐹𝑙
′
+(𝑉>0) = Z[𝑦] [[𝑥]]gr,

the ring of graded power series in x with coefficients in y. (For example, the infinite sum
∑

𝑖>0 𝑥𝑖 is
an element of this ring.) The embedding 𝐹𝑙 ′+(𝑉>0) ↩→ 𝐹𝑙+(𝑉>0) corresponds to the inclusion of the
polynomial ring Z[𝑦] [𝑥] ↩→ Z[𝑦] [[𝑥]]gr.

We will not make use of these restricted varieties, except to mention their appearance in the literature.
One of several advantages of working with 𝐹𝑙+(𝑉>0) rather than 𝐹𝑙 ′+(𝑉>0) is that elements of its
cohomology are automatically polynomials.
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2.4. A technical note on limits

For a rising union of spaces 𝑋 =
⋃

𝑋𝑛, the direct limit topology is defined so that a subset𝑈 ⊂ 𝑋 is open
exactly when each intersection𝑈∩𝑋𝑛 is open. For an inverse system of spaces · · · → 𝑋𝑛 → 𝑋𝑛−1 → · · · ,
the inverse limit topology on 𝑋 = lim

←−−
𝑋𝑛 is the coarsest topology so that the projections 𝑋 → 𝑋𝑛 are

continuous; in our context, this is a subspace of the product topology on
∏

𝑋𝑛.
From the contravariance of cohomology, one may naively expect that

𝐻∗
(⋃

𝑋𝑛

)
= lim
←−−

𝐻∗(𝑋𝑛) and 𝐻∗
(
lim
←−−

𝑋𝑛

)
= lim
−−→

𝐻∗(𝑋𝑛).

Using Čech-Alexander-Spanier cohomology, and for the relatively nice topological spaces we encounter,
these naive expectations hold. For finite-dimensional algebraic varieties, this cohomology theory agrees
with the more familiar singular cohomology. These facts may be gleaned from standard algebraic
topology texts; see also [6, Appendix A].

3. Sato Grassmannians and flag varieties

The primary focus of this article is on a different type of infinite-dimensional flag variety. The Sato
Grassmannian parametrizes subspaces of V which are infinite in both dimension and codimension (but
satisfy some other requirements). It can also be described as a certain union of finite-dimensional Grass-
mannians. The Sato flag variety similarly parametrizes flags of spaces belonging to Sato Grassmannians.
The constructions presented in this section are variations on ones found in [21], which in turn are based
on Kashiwara’s construction of thick flag manifolds [17], as well as certain Hilbert manifolds used as
models for loop groups [25].

Fixing our base flag 𝑉≤• as before, and an integer k, the Sato Grassmannian Gr𝑘 is the set of all
subspaces 𝐸 ⊆ 𝑉 such that

(1) 𝑉≤−𝑚 ⊆ 𝐸 ⊆ 𝑉≤𝑚 for some 𝑚 > 0 (and hence, all 𝑚 � 0), and
(2) dim 𝐸/(𝐸 ∩𝑉≤0) − dim𝑉≤0/(𝐸 ∩𝑉≤0) = 𝑘 .

The first condition implies that both 𝐸/(𝐸 ∩ 𝑉≤0) and 𝑉≤0/(𝐸 ∩ 𝑉≤0) are finite-dimensional, so the
second condition makes sense.

This space depends on the base flag, and occasionally it is useful to indicate this dependence in the
notation, writing Gr𝑘 (𝑉 ;𝑉≤•). We use the case 𝑘 = 0 frequently, so we sometimes drop the superscript
and write Gr = Gr0.

Condition 3 means that 𝐸 ⊂ 𝑉 comes from a point in 𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] ) for some m and k, by
mapping 𝐸𝑚+𝑘 ⊆ 𝑉(−𝑚,𝑚] to 𝑉≤−𝑚 ⊕ 𝐸𝑚+𝑘 ⊆ 𝑉≤−𝑚 ⊕ 𝑉(−𝑚,𝑚] = 𝑉≤𝑚. Condition 3 specifies k.

Using this observation, for 𝑘 = 0, one constructs (and topologizes) the Sato Grassmannian Gr = Gr0

as the union

Gr =
⋃
𝑚≥0

𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] )

of finite-dimensional Grassmannians, using the embeddings𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) ↩→ 𝐺𝑟 (𝑚+1, 𝑉(−𝑚−1,𝑚+1] )
which map an m-dimensional subspace 𝐸𝑚 of𝑉(−𝑚,𝑚] to the (𝑚 +1)-dimensional subspace C · 𝑒−𝑚 ⊕ 𝐸
of 𝑉(−𝑚−1,𝑚+1] .

Similarly, for any 𝑘 ∈ Z, one has

Gr𝑘 =
⋃

𝑚≥ |𝑘 |

𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] ).

(Without changing the result, these limits could be refined to run over𝐺𝑟 (𝑚+𝑘;𝑉(−𝑚,𝑚′ ] ), for𝑚, 𝑚′ ≥ 0,
since these are co-final with 𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] ).)
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These unions are compatible with actions of T, so T acts on Gr. Since Gr is a direct limit of finite-
dimensional Grassmannians, the cohomology ring 𝐻∗𝑇 Gr is the (graded) inverse limit:

𝐻∗𝑇 Gr = lim
←−−
𝑚

𝐻∗𝑇𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) = Z[𝑦] [𝑐1, 𝑐2, . . .] = Λ[𝑦] .

Here Λ = Z[𝑐1, 𝑐2, . . .] is a polynomial ring; the variable 𝑐𝑖 restricts to 𝑐𝑇𝑖 (𝑉≤0 − 𝑆0) on each
𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ), where 𝑆0 ⊆ 𝑉(−𝑚,𝑚] is the tautological bundle of rank m. From now on, we sim-
ply write 𝑐𝑖 = 𝑐𝑇𝑖 (𝑉≤0 − 𝑆0), with the notation 𝑆0 standing for a tautological bundle on some large
enough Grassmannian.

A similar calculation produces the same result for 𝐻∗𝑇 Gr𝑘 , with variables 𝑐 (𝑘)𝑖 = 𝑐𝑇𝑖 (𝑉≤𝑘 − 𝑆𝑘 ), so
on each 𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] ), 𝑆𝑘 ⊆ 𝑉(−𝑚,𝑚] is the tautological bundle of rank 𝑚 + 𝑘 .

The Sato flag variety is

Fl =
{
𝐸• = (· · · ⊂ 𝐸−1 ⊂ 𝐸0 ⊂ 𝐸1 ⊂ · · · ) | 𝐸𝑘 ∈ Gr𝑘

}
,

so it is a subvariety of
∏

𝑘∈Z Gr𝑘 . Using the natural projections to
∏
|𝑘 | ≤𝑛 Gr𝑘 , it can be written as an

inverse limit of a union of finite-dimensional partial flag varieties:

Fl = lim
←−−
𝑛

⋃
𝑚

𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚, . . . , 𝑚 + 𝑛;𝑉(−𝑚,𝑚] ).

Each such partial flag variety has a tautological flag of subbundles,

𝑆−𝑛 ⊂ · · · ⊂ 𝑆0 ⊂ · · · ⊂ 𝑆𝑛 ⊆ 𝑉(−𝑚,𝑚] ,

with 𝑆𝑖 of rank 𝑚 + 𝑖. (As with the Grassmannians, the limit can be taken over partial flag varieties
𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚′ + 𝑛′;𝑉(−𝑚,𝑚′ ] ).)

The cohomology ring of the limit is computed as

𝐻∗𝑇 Fl = lim
−−→
𝑛

lim
←−−
𝑚

𝐻∗𝑇 𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚, . . . , 𝑚 + 𝑛;𝑉(−𝑚,𝑚] )

= Λ[𝑦] [. . . , 𝑥−1, 𝑥0, 𝑥1, . . .] = Λ[𝑥; 𝑦],

where 𝑥𝑖 = −𝑐𝑇1 (𝑆𝑖/𝑆𝑖−1) and 𝑐𝑖 = 𝑐𝑇𝑖 (𝑉≤0 − 𝑆0).
Like the Sato Grassmannian, the Sato flag variety depends on the choice of base flag 𝑉≤•, and we

sometimes write Fl(𝑉 ;𝑉≤•) for Fl. The precise dependence is this: given two Z-indexed flags 𝐸• and
𝐸 ′• of subspaces of V, one has Fl(𝑉 ; 𝐸•) = Fl(𝑉 ; 𝐸 ′•) if and only if 𝐸• ∈ Fl(𝑉 ; 𝐸 ′•) and 𝐸 ′• ∈ Fl(𝑉 ; 𝐸•).
(This is just the condition that 𝐸• and 𝐸 ′• are cofinal in both their ascending and descending sequences.)
The same condition describes when Gr𝑘 (𝑉 ; 𝐸•) = Gr𝑘 (𝑉 ; 𝐸 ′•).

A bit more generally, for any increasing sequence of integers 𝒑, indexed so that 𝑝𝑖 ≤ 0 for 𝑖 ≤ 0 and
𝑝𝑖 > 0 if 𝑖 > 0, there is a partial Sato flag variety

Fl( 𝒑) =
{
𝐸• = (· · · ⊂ 𝐸𝑝−1 ⊂ 𝐸𝑝0 ⊂ 𝐸𝑝1 ⊂ · · · ) | 𝐸𝑝𝑘 ∈ Gr𝑝𝑘

}
,

a subspace of
∏

𝑘 Gr𝑝𝑘 . Its cohomology ring is naturally identified with a subring of 𝐻∗𝑇 Fl = Λ[𝑥; 𝑦],
by taking polynomials that are symmetric in groups of x-variables {𝑥𝑝𝑘+1, . . . , 𝑥𝑝𝑘+1 }. (The elementary
symmetric polynomials in these variables correspond to Chern classes of (𝑆𝑝𝑘+1/𝑆𝑝𝑘 )

∗.)

Remark 3.1. Our definition of Gr is the same as that of [21, §6], but our Fl is larger than theirs, which
may be considered a restricted Sato flag variety, Fl′ ⊂ Fl. This Fl′ is a union of finite-dimensional flag
varieties, so its cohomology ring is an inverse limit: it is 𝐻∗𝑇 Fl′ = Λ[𝑦] [[𝑥]]gr, the ring of formal series
in x, of bounded degree, with coefficients in Λ[𝑦]. Pullback by the embedding Fl′ ↩→ Fl corresponds to
the inclusion Λ[𝑥; 𝑦] ↩→ Λ[𝑦] [[𝑥]]gr. We prefer to work with polynomials, and hence with Fl.
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4. Schubert varieties and Schubert polynomials

Schubert varieties in Fl are defined with respect to the opposite flag𝑉>•. For each 𝑤 ∈ SZ, and 𝑝, 𝑞 ∈ Z,
recall that

𝑘𝑤 (𝑝, 𝑞) = #{𝑎 ≤ 𝑝 | 𝑤(𝑎) > 𝑞}.

An example is shown in Figure 1. The Schubert variety is

Ω𝑤 = {𝐸• | dim(𝐸𝑝 ∩𝑉>𝑞) ≥ 𝑘𝑤 (𝑝, 𝑞) for all 𝑝, 𝑞}.

The conventions are set up so that Ω𝑤 is a compatible limit of similarly defined loci in the finite-
dimensional varieties 𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚 + 𝑛;𝑉(−𝑚,𝑚] ).

The Rothe diagram and essential set of a permutation 𝑤 ∈ SZ are determined just as in [14]: the
diagram is what remains when one strikes out boxes below and right of each dot, and the essential set
is the set of (𝑘, 𝑝, 𝑞) where (𝑝, 𝑞) is a southeast corner of the diagram and 𝑘 = 𝑘𝑤 (𝑝, 𝑞). An example
is shown in Figure 1. The conditions dim(𝐸𝑝 ∩ 𝑉>𝑞) ≥ 𝑘 , for (𝑘, 𝑝, 𝑞) in the essential set of w, suffice
to define Ω𝑤 ; this follows from the analogous statement for finite-dimensional Schubert varieties.

Schubert varieties in Gr are defined similarly, by

Ω𝜆 = {𝐸 | dim(𝐸 ∩𝑉>𝜆𝑘−𝑘 ) ≥ 𝑘 for all 𝑘},

for a partition 𝜆 = (𝜆1 ≥ · · · ≥ 𝜆𝑠 ≥ 0). As usual, it suffices to impose such conditions for 1 ≤ 𝑘 ≤ 𝑠,
or even for those k such that 𝜆𝑘 > 𝜆𝑘+1 (since corners of the Young diagram determine the essential
conditions). These conditions also define the Schubert variety Ω𝑤𝜆 ⊆ Fl, where 𝑤𝜆 is the Grassmannian
permutation associated to 𝜆.

By taking limits of finite-dimensional varieties, there is a well-defined class [Ω𝑤 ] in 𝐻∗𝑇 Fl.

Definition 4.1. The enriched Schubert polynomial S𝑤 (𝑐; 𝑥; 𝑦) is the (unique) polynomial representing
the class of the Schubert variety Ω𝑤 ⊆ Fl. That is,

S𝑤 (𝑐; 𝑥; 𝑦) = [Ω𝑤 ]

in Λ[𝑥; 𝑦] = 𝐻∗𝑇 Fl, by definition.

The enriched Schubert polynomials, by definition, are polynomials in c, x and y. Also by defini-
tion, if m and 𝑚′ are large enough so that w fixes all integers outside of (−𝑚, 𝑚′], the polynomial
S𝑤 (𝑐; 𝑥; 𝑦) restricts to a Schubert class in the finite-dimensional flag variety 𝐹𝑙 (𝑉(−𝑚,𝑚′ ] ). So for

Figure 1. The permutation w in SZ given in one-line notation as [2,−2, 3, 1, 0,−3, 4,−1]. The value
of the rank function 𝑘𝑤 (3,−1) = 5 is illustrated as the number of dots enclosed by the dashed line, at
left. The diagram and essential set are shown at right.
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𝑤 ∈ S(−𝑚,𝑚′ ] , the polynomial S𝑤 (𝑐; 𝑥; 𝑦) depends only on 𝑥𝑖 and 𝑦𝑖 for −𝑚 < 𝑖 ≤ 𝑚′, and the
(Lascoux-Schützenberger) Schubert polynomials 𝔖𝑣 (𝑥;−𝑦) give formulas for these Schubert classes.
Under this restriction, 𝑐 = 𝑐𝑇 (𝑉≤0 − 𝑆0) maps to 𝑐 (𝑚) = 𝑐𝑇 (𝑉(−𝑚,0] − 𝑆0) =

∏0
𝑖=−𝑚+1

1+𝑦𝑖
1−𝑥𝑖 , and taken

together, this proves the following:
Proposition 4.2. Suppose 𝑤 ∈ S𝑚′ . Then

S𝑤 (𝑐
(𝑚) ; 𝑥; 𝑦) = 𝔖1𝑚×𝑤 (𝑥−𝑚+1, . . . , 𝑥𝑚′ ;−𝑦−𝑚+1, . . . ,−𝑦𝑚′ ),

where 𝑐 (𝑚) =
∏0

𝑖=−𝑚+1
1+𝑦𝑖
1−𝑥𝑖 .

(The fact that the right-hand side is supersymmetric in the non-positive x and y variables, and
therefore may be written in terms of 𝑐 (𝑚) variables, can be found in [11, Corollary 2.5].)

For example, if 𝑘 > 0, we have

S𝑠𝑘 (𝑐
(𝑚) ; 𝑥; 𝑦) = 𝑥−𝑚+1 + · · · + 𝑥𝑘 + 𝑦−𝑚+1 + · · · + 𝑦𝑘

= 𝔖𝑠𝑚+𝑘 (𝑥−𝑚+1, . . . , 𝑥𝑘 ;−𝑦−𝑚+1, . . . ,−𝑦𝑘 ).

For general 𝑤 ∈ SZ, one can use translation operators to relate S𝑤 to 𝔖𝑣 , for some 𝑣 ∈ S+, as in
§7.3. (See also [5, 21].)

The inverse formula

S𝑤 (𝑐; 𝑥; 𝑦) = S𝑤−1 (𝜔(𝑐); 𝑦; 𝑥), (1)

where 𝜔(𝑐) = 1/(1 − 𝑐1 + 𝑐2 − · · · ), follows by transposing the flags in the definition of Ω𝑤 ; see [5,
Proposition 1.2].

Finite-dimensional Schubert classes form Z[𝑦]-module bases for each cohomology ring
𝐻∗𝑇 𝐹𝑙 (𝑚 − 𝑛, . . . , 𝑚 + 𝑛;𝑉(−𝑚,𝑚] ). So in the limit, the classes of Ω𝑤 ⊆ Fl form a Z[𝑦]-basis for 𝐻∗𝑇 Fl.
(As usual, one may think about compatible sequences of finite-dimensional Schubert varieties instead.)
It follows that the polynomials S𝑤 form a basis for Λ[𝑥; 𝑦] over Z[𝑦], as w ranges over SZ. In fact,
these considerations prove a more refined statement:
Proposition 4.3. Fix positive integers 𝑛, 𝑛′.

(i) If 𝑤(𝑖) < 𝑤(𝑖 + 1) for all 𝑖 < 𝑛 and all 𝑖 > 𝑛′, then S𝑤 (𝑐; 𝑥; 𝑦) lies in the subalgebra
Z[𝑐, 𝑦] [𝑥−𝑛+1, . . . , 𝑥𝑛′ ]. As w varies over such permutations, the enriched Schubert polynomials
S𝑤 (𝑐; 𝑥; 𝑦) form a basis for this subalgebra, considered as a module over Z[𝑦].

(ii) If 𝑤−1 (𝑖) < 𝑤−1 (𝑖 + 1) for all 𝑖 < 𝑛 and all 𝑖 > 𝑛′, then S𝑤 (𝑐; 𝑥; 𝑦) lies in the subalgebra
Z[𝑐, 𝑥] [𝑦−𝑛+1, . . . , 𝑦𝑛′ ]. As w varies over such permutations, the enriched Schubert polynomials
S𝑤 (𝑐; 𝑥; 𝑦) form a basis for this subalgebra, considered as a module over Z[𝑥].

(The first statement is proved by considering the Schubert basis for the partial flag variety 𝐹𝑙 ( 𝒑), where
𝒑 = (−𝑛+1, . . . , 𝑛′). The second statement is equivalent to the first by applying the inverse formula (1).)

For Chern series c, 𝑐′ and c with c = 𝑐 · 𝑐′, there is a Cauchy formula

S𝑤 (c; 𝑥; 𝑦) =
∑
𝑣𝑢 �=𝑤

S𝑢 (𝑐; 𝑥; 𝑡) S𝑣 (𝑐
′;−𝑡; 𝑦), (2)

where 𝑣𝑢 �=𝑤 means 𝑣𝑢 = 𝑤 and ℓ(𝑢) + ℓ(𝑣) = ℓ(𝑤) [5, 21].
Following [21, §4.6], by specializing 𝑥𝑖 = −𝑦𝑖 for all i, one obtains the double Stanley polynomials

𝐹𝑤 (𝑐; 𝑦) = S𝑤 (𝑐;−𝑦; 𝑦). (3)

More generally, there are polynomials 𝐹𝑣
𝑤 (𝑐; 𝑦) = S𝑤 (𝑐;−𝑦𝑣 ; 𝑦) obtained by specialization 𝑥𝑖 = −𝑦𝑣 (𝑖) .

Further specializing the y variables to zero recovers the ‘stable Schubert’ formulation of the Stanley
symmetric functions, 𝐹𝑤 (𝑐) = S𝑤 (𝑐; 0; 0).
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For Grassmannian permutations, the Schubert polynomials have a determinantal (Kempf-Laksov)
formula [18, Theorem 5]:

S𝑤𝜆 (𝑐; 𝑥; 𝑦) = det(𝑐(𝑖)𝜆𝑖−𝑖+ 𝑗 )1≤𝑖, 𝑗≤𝑠 , (4)

where

𝑐(𝑖) = 𝑐 ·

∏
𝑗≤𝜆𝑖−𝑖 (1 + 𝑦𝑖)∏
𝑗≤0 (1 + 𝑦𝑖)

= 𝑐 · 𝑐𝑇 (𝑉≤𝜆𝑖−𝑖 −𝑉≤0).

These evaluate to double Schur functions1 𝑠𝜆(𝑐 |𝑦), with (4) becoming a variation of the Jacobi-Trudi
formula.

More generally, any vexillary permutation 𝑤 = 𝑤(𝝉) in SZ has a similarly explicit determinantal
formula (see [5]); for example, for any 𝑚 < 𝑛, the permutation 𝑤 (𝑚,𝑛)

◦ = [𝑛, 𝑛 − 1, . . . , 𝑚] is vexillary.
Any 𝑤 ∈ SZ lies in S[𝑚,𝑛] for some 𝑚 < 𝑛, so 𝑤 ≤ 𝑤 (𝑚,𝑛)

◦ . Any enriched Schubert polynomial may
therefore be computed from the explicit formula for S

𝑤
(𝑚,𝑛)
◦

using the divided difference recursion

𝜕𝑖S𝑤 =

{
S𝑤𝑠𝑖 if 𝑤𝑠𝑖 < 𝑤;
0 if 𝑤𝑠𝑖 > 𝑤.

Here, for 𝑖 ≠ 0, 𝜕𝑖 is the usual divided difference operator acting on x variables, so for any 𝑓 ∈ Z[𝑐, 𝑥, 𝑦],

𝜕𝑖 𝑓 =
𝑓 (. . . , 𝑥𝑖 , 𝑥𝑖+1, . . .) − 𝑓 (. . . , 𝑥𝑖+1, 𝑥𝑖 , . . .)

𝑥𝑖 − 𝑥𝑖+1
.

For 𝑖 = 0, the operator 𝜕0 acts in the same way on x variables, but it also acts on c variables by

𝜕0𝑐𝑘 = 𝑐𝑘−1 + 𝑥1𝑐𝑘−2 + 𝑥
2
1𝑐𝑘−3 + · · · + 𝑥

𝑘−1
1 .

(To understand and remember this formula, consider the evaluation 𝑐 ↦→
∏

𝑖≤0
1+𝑦𝑖
1−𝑥𝑖 .)

The enriched Schubert polynomials S𝑤 (𝑐; 𝑥; 𝑦) specialize to the back stable Schubert polynomials
←−
𝔖𝑤 (𝑥;−𝑦) of [21]. To do this, one evaluates 𝑐 =

∏
𝑖≤0

1+𝑦𝑖
1−𝑥𝑖 . There are several ways to see that this

evaluation sends S𝑤 (𝑐; 𝑥; 𝑦) to
←−
𝔖𝑤 (𝑥;−𝑦). One can argue directly from the definition given in [21,

(4.9)]:

←−
𝔖𝑤 (𝑥;−𝑦) = lim

𝑚,𝑚′→∞
𝔖1𝑚×𝑤 (𝑥−𝑚+1, . . . , 𝑥𝑚′ ;−𝑦−𝑚+1, . . . ,−𝑦𝑚′ ).

(The limit over 𝑚′ stabilizes as soon as w fixes all integers greater than 𝑚′.) The polynomials appearing
on the RHS are precisely the specializations of S𝑤 (𝑐; 𝑥; 𝑦) at 𝑐 (𝑚) , by Proposition 4.2.

Another argument uses [21, Theorem 4.7] to see that
←−
𝔖𝑤 (𝑥;−𝑦) is the unique series specializing to

the Schubert class [Ω𝑤 ] in 𝐻∗𝑇 𝐹𝑙 (𝑉(−𝑚,𝑚] ) when variables with index outside (−𝑚, 𝑚] are set to 0, for
every m; this is a defining property of S𝑤 (𝑐; 𝑥; 𝑦). For other reasons, and further context, see [5].

However, this series interpretation is not logically necessary for us, and except when making the
connection with the back stable polynomials of [21], we generally avoid this notation, since it assigns a
double role to non-positive x and y variables.

In what follows, we study further algebraic properties of the polynomials S𝑤 using the geometry of Fl.

1Under the evaluation 𝑐 =
∏

𝑖≤0
1+𝑦𝑖
1−𝑥𝑖 , some authors write these as 𝑠𝜆 (𝑥/𝑦 ||−𝑦) , notation we avoid in the present context.
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5. Degeneracy loci

The enriched Schubert polynomials represent classes of degeneracy loci. By taking a sufficiently general
base variety X, they may be characterized uniquely by this property. Precedents for the setup we consider
can be traced to [14], and especially [10].

On a nonsingular variety X, consider a vector bundle V of rank 𝑚 + 𝑛, with flags

𝐸• : · · · ⊂ 𝐸−1 ⊂ 𝐸0 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ 𝑉

and

𝐹• : · · · ⊂ 𝐹1 ⊂ 𝐹0 ⊂ 𝐹−1 ⊂ 𝐹−2 ⊂ · · · ⊂ 𝑉,

indexed so that rk 𝐸0 = rk 𝐹0 = 𝑚. (So rk 𝐸𝑝 = 𝑚 + 𝑝 and rk 𝐹𝑞 = 𝑚 − 𝑞.)
For 𝑤 ∈ S(−𝑚,𝑛] , there is a degeneracy locus

𝐷𝑤 (𝐸• ∩ 𝐹•) = {𝑥 ∈ 𝑋 | dim(𝐸𝑝 ∩ 𝐹𝑞) ≥ 𝑘𝑤 (𝑝, 𝑞) for all 𝑝, 𝑞}

in X. As usual, it suffices to impose conditions dim(𝐸𝑝 ∩ 𝐹𝑞) ≥ 𝑘 for (𝑘, 𝑝, 𝑞) in the essential set.

Theorem 5.1. Assume 𝐷𝑤 (𝐸• ∩ 𝐹•) ⊆ 𝑋 has codimension ℓ(𝑤). Under the evaluations

𝑐 ↦→ 𝑐(𝑉 − 𝐸 − 𝐹), 𝑥𝑖 ↦→ −𝑐1(𝐸𝑖/𝐸𝑖−1), 𝑦𝑖 ↦→ 𝑐1 (𝐹𝑖−1/𝐹𝑖),

the enriched Schubert polynomial S𝑤 (𝑐; 𝑥; 𝑦) maps to the class [𝐷𝑤 (𝐸• ∩ 𝐹•)] in 𝐻∗𝑋 .

This is proved in [5]. It can also be deduced directly from the formula for [Ω𝑤 ], as follows. Choose
an approximation of the classifying space B for T so that the vector bundle V and flag 𝐹• are pulled
back from tautological bundles on B, and 𝐹𝑞 is the pullback of 𝑉>𝑞 . Take the flag bundle Fl→ B over
that classifying space, constructing 𝑓 : 𝑋 → Fl so that 𝐸• is pulled back from the tautological 𝑆•. Then
𝐷𝑤 (𝐸• ∩ 𝐹•) = 𝑓 −1Ω𝑤 . More details appear in [6, Chapters 11–12].

6. Fixed points

Recall that 𝑇 =
∏

𝑖∈ZC∗ acts on V by scaling coordinates. To describe the T-fixed points of the various
infinite flag varieties, we need to say more about permutations of Z.

First, for any sets X and Y, let Inj(𝑋,𝑌 ) be the set of all injections from X into Y, and let Inj(𝑋) be
the monoid of injections from X into itself. So Bij(𝑋) ⊂ Inj(𝑋) is a subgroup.

As usual, we are concerned with subsets of Z. The submonoid Inj0 (Z) ⊂ Inj(Z) consists of all w
such that

#{𝑖 ≤ 0 | 𝑤(𝑖) > 0} = #{𝑖 > 0 | 𝑤(𝑖) ≤ 0},

and both these sets are finite. (That is, w has finitely many sign changes, and they are balanced.) Any
𝑤 ∈ Inj0 (Z) also has #{𝑖 ≤ 𝑘 | 𝑤(𝑖) > 0} − #{𝑖 > 𝑘 | 𝑤(𝑖) ≤ 0} = 𝑘 for any integer k.

The set Inj(Z>0) may be constructed as the inverse limit of Inj([1, 𝑛],Z>0) over 𝑛 > 0. This
mirrors the construction of 𝐹𝑙+(𝑉>0), and shows that the T-fixed points of 𝐹𝑙+(𝑉>0) are indexed by
𝑤 ∈ Inj(Z≤0): they are precisely the flags determined by the ordered bases 𝑒𝑤 (1) , 𝑒𝑤 (2) , . . ., so the
k-dimensional component is the span of 𝑒𝑤 (𝑖) for 1 ≤ 𝑖 ≤ 𝑘 .

Similarly, the T-fixed points of 𝐹𝑙−(𝑉≤0) are indexed by 𝑤 ∈ Inj(Z≤0), so the codimension k
component is defined by 𝑒∗

𝑤 (𝑖)
= 0 for −𝑘 < 𝑖 ≤ 0. Equivalently, it is the span of 𝑒𝑤 (𝑖) for 𝑖 ≤ 𝑘 ,

together with all 𝑒𝑖 for 𝑖 ≤ 0 not in the image of w. So the flag varieties 𝐹𝑙+ and 𝐹𝑙− have uncountably
many fixed points.
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The fixed points of the Sato Grassmannian are (countably) indexed by partitions 𝜆, or equivalently
by Grassmannian elements 𝑤𝜆 ∈ SZ. The fixed subspace corresponding to 𝜆 is spanned by 𝑒𝑤𝜆 (𝑖) for
𝑖 ≤ 0. (See also [25, §7].)

The fixed points of the Sato flag variety Fl are indexed by 𝑤 ∈ Inj0 (Z). A fixed flag is determined
by the ordered basis . . . , 𝑒𝑤 (−1) , 𝑒𝑤 (0) , 𝑒𝑤 (1) , . . ., so its kth component is the span of 𝑒𝑤 (𝑖) for 𝑖 ≤ 𝑘 ,
together with all 𝑒𝑖 for 𝑖 ≤ 0 not in the image of w.

The formula defining 𝑘𝑤 (𝑝, 𝑞) works verbatim for any 𝑤 ∈ Inj0(Z), because the set it enumerates is
finite for such w. Using this, one can extend the definition of Bruhat order from SZ to Inj0(Z).

Generally, we write 𝑝𝑤 for the point corresponding to a fixed flag, also using 𝑝𝜆 = 𝑝𝑤𝜆 for points
in Gr.

From the definitions of Schubert varieties and Bruhat order, one sees that

𝑝𝑣 ∈ Ω𝑤 iff 𝑣 ≥ 𝑤.

Here, as usual, we assume 𝑤 ∈ SZ, but v varies over Inj0 (Z).
Formulas for restricting a Schubert class to a fixed point follow from the finite-dimensional case. We

have

[Ω𝑤 ] |𝑝𝑤 =
∏
𝑖< 𝑗

𝑤 (𝑖)>𝑤 ( 𝑗)

(𝑦𝑤 (𝑖) − 𝑦𝑤 ( 𝑗) ) (5)

and, for any 𝑣 ∈ Inj0(Z),

[Ω𝑤 ] |𝑝𝑣 = 0 if 𝑣 � 𝑤. (6)

For 𝑣 ∈ Inj0(Z), let

𝑐𝑣 =
∏

𝑖≤0,𝑣 (𝑖)>0
𝑗>0,𝑣 ( 𝑗) ≤0

1 + 𝑦𝑣 ( 𝑗)
1 + 𝑦𝑣 (𝑖)

and 𝑦𝑣𝑖 = 𝑦𝑣 (𝑖) .

(Note that 𝑐𝑣 is a finite product.)

Proposition 6.1. The enriched Schubert polynomial S𝑤 (𝑐; 𝑥; 𝑦) satisfies the specialization formulas

S𝑤 (𝑐
𝑤 ;−𝑦𝑤 ; 𝑦) =

∏
𝑖< 𝑗

𝑤 (𝑖)>𝑤 ( 𝑗)

(𝑦𝑤 (𝑖) − 𝑦𝑤 ( 𝑗) )

and, for 𝑣 ∈ Inj0 (Z),

S𝑤 (𝑐
𝑣 ;−𝑦𝑣 ; 𝑦) = 0 if 𝑣 � 𝑤.

These properties, as v ranges over SZ, determine S𝑤 (𝑐; 𝑥; 𝑦) uniquely.

The fact that these properties are satisfied follows from the corresponding properties of Schubert
classes. The proof that they uniquely determine a Schubert class also follows from the finite-dimensional
case, by taking a sufficiently large approximation. One only needs to let v vary over SZ (rather than
all fixed points), because specializations of S𝑤 (𝑐; 𝑥; 𝑦), involving only finitely many variables, are
insensitive to the difference between SZ and Inj0(Z).

Remark 6.2. Using the identification with T-fixed points of Fl, the topology induced on Inj0(Z) is not
discrete, but rather a limit of discrete sets. The subgroup SZ ⊂ Inj0(Z) is dense, and this is another
reason that fixed points indexed by SZ suffice to determine Schubert polynomials.
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Remark 6.3. Later we will need to consider smaller torus actions. Just as for finite-dimensional flag
varieties, such actions may have larger fixed loci. In particular, we will use T acting diagonally on
V = 𝑉 ⊕ 𝑉 , so each weight space is 2-dimensional. The fixed loci for the corresponding actions on
Gr(V) and Fl(V) have infinite-dimensional components.

7. Duality, projection and shift morphisms

A major advantage of working with Gr and Fl is that new morphisms become evident. As usual, these
can also be described using only finite-dimensional varieties, but it is often clearer to think about the
infinite flag varieties.

7.1. Duality

Fix a linear isomorphism 𝑓 : 𝑉 ∼
−→ 𝑉∗

′ , where as before, 𝑉∗′ ⊂ 𝑉∗ is the restricted dual defined with
respect to our chosen flag 𝑉≤•. For any subspace 𝐸 ⊆ 𝑉 , one has the associated orthogonal complement

𝐸⊥ = {𝑣 ∈ 𝑉 | 𝑓 (𝑢) (𝑣) = 0 for all 𝑢 ∈ 𝐸}.

This operation reverses inclusion, so the image of the standard flag is given by the spaces 𝑉⊥
≤−𝑘 .

There is a duality morphism

Gr𝑘 (𝑉 ;𝑉≤•) → Gr−𝑘 (𝑉 ;𝑉⊥≤−•),

by 𝐸 ↦→ 𝐸⊥.
The same formula defines an automorphism of Fl(𝑉), sending a flag with components 𝐸𝑘 to one

with components 𝐸⊥
−𝑘 .

From now on, we assume the isomorphism 𝑓 : 𝑉 → 𝑉∗
′ is given by the skew-symmetric form sending

𝑒𝑖 ↦→ 𝑒∗1−𝑖 for 𝑖 > 0, and 𝑒𝑖 ↦→ −𝑒
∗
1−𝑖 for 𝑖 ≤ 0. In this case, the duality morphism is an involution,

equivariant with respect to the automorphism of T defined on characters by 𝑦𝑖 ↦→ −𝑦1−𝑖 , and the standard
flag is preserved, with (𝑉≤𝑘 )⊥ = 𝑉≤−𝑘 . (All of this holds as well for a symmetric form.)

The induced automorphism 𝜔 of 𝐻∗𝑇 Fl = Λ[𝑥; 𝑦] is given by

𝜔(𝑐) = 1/(1 − 𝑐1 + 𝑐2 − · · · ), 𝜔(𝑥𝑖) = −𝑥1−𝑖 , 𝜔(𝑦𝑖) = −𝑦1−𝑖 .

The same notation is used for the automorphism of SZ, defined by 𝜔(𝑤) (𝑖) = 1−𝑤(1− 𝑖). One checks
that 𝑘𝜔 (𝑤) (𝑝, 𝑞) = 𝑘𝑤 (−𝑝,−𝑞), so the duality morphism sends Ω𝑤 to Ω𝜔 (𝑤) . It follows that

𝜔(S𝑤 (𝑐; 𝑥; 𝑦)) = S𝜔 (𝑤) (𝑐; 𝑥; 𝑦).

Following [21], one defines 𝔖𝑤 (𝑥; 𝑦) for any 𝑤 ∈ S≠0 using the duality involution: for 𝑤 = 𝑤− · 𝑤+,
with 𝑤− ∈ S− and 𝑤+ ∈ S+, one defines 𝔖𝑤 = 𝜔(𝔖𝜔 (𝑤−) ) ·𝔖𝑤+ .

7.2. Projections

For each k, there is a projection 𝜋𝑘 : Fl → Gr𝑘 , sending 𝐸• to 𝐸𝑘 . This is a fiber bundle, and the fiber
over 𝑉≤𝑘 ∈ Gr𝑘 is 𝐹𝑙−(𝑉≤𝑘 ) × 𝐹𝑙+(𝑉>𝑘 ). In particular, the inclusion Λ[𝑦] ↩→ Λ[𝑥; 𝑦] corresponds to
𝜋∗0, and the homomorphism

Λ[𝑥; 𝑦] → Z[𝑥; 𝑦], 𝑐 ↦→ 1

corresponds to restriction to the fiber over 𝑉≤0 ∈ Gr.
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Proposition 7.1. If 𝑤 ∈ SZ is not in S≠0, then S𝑤 (1; 𝑥; 𝑦) = 0. If 𝑤 = 𝑤+ ·𝑤− ∈ S≠0, then S𝑤 (1; 𝑥; 𝑦) =
𝔖𝑤 (𝑥;−𝑦).

Proof. For the first statement, we show that Ω𝑤 ∩ 𝜋−1
0 (𝑉≤0) is empty. It suffices to show the fixed-

point sets of Ω𝑤 and 𝜋−1
0 (𝑉≤0) are disjoint. Since 𝑤 ∉ S≠0, at least one 𝑖 ≤ 0 has 𝑤(𝑖) > 0. That is,

𝑘𝑤 (0, 0) > 0. The fixed points in 𝜋−1
0 (𝑉≤0) = 𝐹𝑙−(𝑉≤0) × 𝐹𝑙+(𝑉>0) are 𝑝𝑣 , for Inj(Z≤0) × Inj(Z>0).

Each such v has 𝑘𝑣 (0, 0) = 0. So 𝑣 � 𝑤, and therefore, 𝑝𝑣 ∉ Ω𝑤 .
The second statement follows from the fact that Ω𝑤 ∩ 𝜋−1

0 (𝑉≤0) = Ω𝑤− × Ω𝑤+ inside 𝜋−1
0 (𝑉≤0) =

𝐹𝑙−(𝑉≤0) × 𝐹𝑙+(𝑉>0), together with the definition of 𝔖𝑤 . �

7.3. Shift

Let sh : 𝑉 → 𝑉 be the linear automorphism given by 𝑒𝑖 ↦→ 𝑒𝑖−1. This induces shift morphisms, also
written sh : Gr𝑘 → Gr𝑘−1, sending 𝐸 ⊂ 𝑉 to sh(𝐸) ⊂ 𝑉 , and an automorphism sh: Fl → Fl, defined
by sh(𝐸•)𝑘 = sh(𝐸𝑘+1). The shift morphisms are equivariant with respect to a similar automorphism of
𝑇 =

∏
𝑖∈ZC∗, sending 𝑧𝑖 ↦→ 𝑧𝑖−1.

To construct the shift morphism from finite-dimensional varieties, one uses the system of maps

𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] ) ↩→ 𝐺𝑟 (𝑚 + 𝑘,𝑉(−𝑚−1,𝑚+1] )

(𝐸 ⊂ 𝑉(−𝑚,𝑚] ) ↦→ (sh(𝐸) ⊂ 𝑉(−𝑚−1,𝑚+1] ).

Taking the union over m on each side determines a morphism Gr𝑘 → Gr𝑘−1.
Pullback by the shift morphism gives the translation operator 𝛾 : Λ[𝑥; 𝑦] → Λ[𝑥; 𝑦] on cohomology.

Explicitly, 𝛾 = sh∗ is given by

𝛾(𝑥𝑖) = 𝑥𝑖+1,

𝛾(𝑦𝑖) = 𝑦𝑖+1, and

𝛾(𝑐𝑘 ) =
𝑘∑

𝑝=0
𝑐𝑝 𝑥

𝑘−𝑝
1 + 𝑦1

𝑘−1∑
𝑝=0

𝑐𝑝 𝑥
𝑘−1−𝑝
1 .

(The action on c variables can be written concisely as 𝛾(𝑐) = 𝑐 · 1+𝑦1
1−𝑥1

.) The action on x variables comes
from sh∗(𝑆𝑖) = 𝑆𝑖+1, and the y variables are determined by the automorphism of T. For the c variables,
one observes sh∗(𝑉≤0) = 𝑉≤1, so

sh∗ 𝑐𝑇 (𝑉≤0 − 𝑆0) = 𝑐𝑇 (𝑉≤1 − 𝑆1) = 𝑐𝑇 (𝑉≤0 − 𝑆0) · 𝑐
𝑇 (C · 𝑒1 − 𝑆1/𝑆0).

The homomorphism 𝛾 is invertible. For any 𝑚 ∈ Z, one has 𝛾𝑚 (𝑥𝑖) = 𝑥𝑖+𝑚 and 𝛾𝑚 (𝑦𝑖) = 𝑦𝑖+𝑚, with
the action on c variables determined by

𝛾𝑚 (𝑐) =

{
𝑐 ·

∏𝑚
𝑖=1

1+𝑦𝑖
1−𝑥𝑖 if 𝑚 ≥ 0;

𝑐 ·
∏0

𝑖=𝑚+1
1−𝑥𝑖
1+𝑦𝑖 if 𝑚 < 0.

For any 𝑤 ∈ Inj(Z), the injection 𝛾𝑚 (𝑤) is defined by 𝛾𝑚 (𝑤) (𝑖) = 𝑚 + 𝑤(𝑖 − 𝑚).

Proposition 7.2. We have 𝛾𝑚 (S𝑤 (𝑐; 𝑥; 𝑦)) = S𝛾𝑚 (𝑤) (𝑐; 𝑥; 𝑦), for any 𝑚 ∈ Z and 𝑤 ∈ SZ.

Proof. The diagram of 𝛾(𝑤) is obtained from that of w by shifting one unit in the southeast direction;
in particular, 𝑘𝛾 (𝑤) (𝑝 + 1, 𝑞 + 1) = 𝑘𝑤 (𝑝, 𝑞). Since sh∗(𝑆𝑝) = 𝑆𝑝+1 and sh∗𝑉>𝑞 = 𝑉>𝑞+1, it follows
that sh−1 Ω𝑤 = Ω𝛾 (𝑤) , and therefore, sh∗ [Ω𝑤 ] = [Ω𝛾 (𝑤) ]. �
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8. Direct sum morphism and coproduct

We will define and study a direct sum morphism

� : Gr𝑘 (𝑉) × Gr𝑙 (𝑉) → Gr𝑘+𝑙 (V),

as well as a similar one for flag varieties, giving an algebraic version of an H-space structure on Gr. We
pay special attention to the action of these morphisms on Schubert classes.

Here V is our usual vector space, with basis 𝑒𝑖 for 𝑖 ∈ Z, and V = 𝑉 ⊕ 𝑉 . Some care is required in
the specification of base flags for Gr and Fl. We fix an ordered basis for V = 𝑉 ⊕ 𝑉 by vectors e𝑖 , for
𝑖 ∈ 1

2Z. These are

e𝑖 =
{
(𝑒𝑖 , 0) for 𝑖 ∈ Z;
(0, 𝑒𝑖+ 1

2
) for 𝑖 ∈ Z + 1

2 .

So e− 1
2
= (0, 𝑒0), e0 = (𝑒0, 0), e 1

2
= (0, 𝑒1), etc. The torus T acts diagonally on V, so both e𝑖 and e𝑖− 1

2
are scaled by the character 𝑦𝑖 .

Standard subspaces, indexed by subsets of 1
2Z, are defined in the evident way. In particular, we have

a standard flag V≤•. Furthermore, V(𝑚,𝑚] = 𝑉(𝑚,𝑚] ⊕𝑉(𝑚,𝑚] and V≤𝑘 = 𝑉≤𝑘 ⊕𝑉≤𝑘 , when m and k are
integers.

8.1. Grassmannians

We will describe the setup and state some results for the Grassmannian first, and prove the more general
analogues for the flag variety in the following subsection.

As before, there is an isomorphism 𝐻∗𝑇 Gr(V) = Λ[𝑦]. Here we use the notation Λ = Z[c] =
Z[c1, c2, . . .], and the map identifies c𝑘 = 𝑐𝑇 (V≤0−S0), where S0 is the tautological bundle on Gr(V).
Similarly, one has 𝐻∗𝑇 Fl(V) = Λ[𝑥; 𝑦], with 𝑥𝑖 = −𝑐𝑇1 (S𝑖/S𝑖−1).

The direct sum morphism

� : Gr𝑘 (𝑉 ;𝑉≤•) × Gr𝑙 (𝑉 ;𝑉≤•) → Gr𝑘+𝑙 (V;V≤•)

given by �(𝐸, 𝐹) = 𝐸 ⊕ 𝐹 is readily checked to be well-defined and T-equivariant.

Proposition 8.1. The morphism

𝑓 : Gr(𝑉) → Gr(V), 𝐸 ↦→ 𝑉≤0 ⊕ 𝐸

induces the standard isomorphism Λ[𝑦] → Λ[𝑦] on cohomology rings, sending c𝑘 ↦→ 𝑐𝑘 .

Proposition 8.2. The homomorphism

𝐻∗𝑇 Gr(V) �
∗

−−→ 𝐻∗𝑇 (Gr(𝑉) × Gr(𝑉))

is identified with the homomorphism of Z[𝑦]-algebras

Λ[𝑦] = Z[c, 𝑦] Δ
−→ Λ[𝑦] ⊗Z[𝑦 ] Λ[𝑦] = Z[𝑐, 𝑐′, 𝑦],

given by c𝑘 ↦→ 𝑐𝑘 + 𝑐𝑘−1𝑐
′
1 + · · · 𝑐1𝑐

′
𝑘−1 + 𝑐

′
𝑘 . (Here 𝑐 = 𝑐𝑇 (𝑉≤0 − 𝑆0) comes from the first factor of

Gr(𝑉), and 𝑐′ = 𝑐𝑇 (𝑉≤0 − 𝑆
′
0) comes from the second factor, so c = 𝑐 · 𝑐′.)

The first of these propositions follows from the second, after replacing c by 𝑐′, since 𝑓 (𝐸) =
�(𝐸,𝑉≤0). And the second proposition is simply the equation �∗𝑐𝑇 (V≤0 − S0) = 𝑐𝑇 (𝑉≤0 +𝑉≤0 − 𝑆0 −
𝑆′0) = 𝑐𝑇 (𝑉≤0 − 𝑆0) · 𝑐

𝑇 (𝑉≤0 − 𝑆
′
0).
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Using the isomorphism 𝐻∗𝑇 Gr(𝑉) = 𝐻∗𝑇 Gr(V), the homomorphism �∗ = Δ determines a commuta-
tive coproduct structure on 𝐻∗𝑇 Gr(𝑉). This coproduct has been studied by many authors. It is induced
by the coproduct on Λ, and it is well known that this can be written in the Schur basis by

Δ (𝑠𝜆 (c)) =
∑
𝜇,𝜈

𝑐𝜆𝜇,𝜈𝑠𝜇 (𝑐) ⊗ 𝑠𝜈 (𝑐
′),

where 𝑐𝜆𝜇,𝜈 is the Littlewood-Richardson coefficient. So it can be computed from an expression in terms
of the Schur basis. (Using (4), the Schur function 𝑠𝜆(𝑐) is defined as the determinant

𝑠𝜆 (𝑐) = 𝑠𝜆(𝑐 |0) = det(𝑐𝜆𝑖−𝑖+𝑘 )1≤𝑖, 𝑗≤𝑠

for any partition 𝜆1 ≥ · · · ≥ 𝜆𝑠 ≥ 0.)
We are more interested in the Schubert basis. Schubert varieties in Gr(V) are defined with respect

to a flag V−• , where for 𝑞 ∈ Z,

V−𝑞 = 𝑉>0 ⊕ 𝑉>𝑞 . (7)

Then 𝛀𝜆 = {E | dim(E ∩ V−𝜆𝑖−𝑖
) ≥ 𝑖 for all 𝑖}. Under the embedding 𝑓 : Gr(𝑉) → Gr(V), we have

𝑓 −1𝛀𝜆 = Ω𝜆, so 𝑓 ∗ [𝛀𝜆] = [Ω𝜆] and

[𝛀𝜆] = S𝑤𝜆 (c; 𝑥; 𝑦) = 𝑠𝜆(c|𝑦). (8)

(To see 𝑓 −1𝛀𝜆 = Ω𝜆, note that (𝑉≤0 ⊕ 𝐸) ∩V−𝜆𝑖−𝑖
= (𝑉≤0 ⊕ 𝐸) ∩ (𝑉>0 ⊕ 𝑉>𝜆𝑖−𝑖) = 0 ⊕ (𝐸 ∩ 𝑉>𝜆𝑖−𝑖),

so the equations defining 𝛀𝜆 pull back to those defining Ω𝜆. The formula 𝑓 ∗ [𝛀𝜆] = [Ω𝜆], and implies
(8), although the latter can also be proved directly.)

Molev gives formulas for the structure constants here [24]. In our geometric context, we have

�∗ [𝛀𝜆] =
∑
𝜇,𝜈

�̂�𝜆𝜇,𝜈 (𝑦) [Ω𝜇] × [Ω𝜈],

for dual Littlewood-Richardson polynomials �̂�𝜆𝜇,𝜈 (𝑦) ∈ Z[𝑦]. In terms of Schubert polynomials, this is
equivalent to the Cauchy formula:

S𝑤𝜆 (c; 𝑥; 𝑦) =
∑

𝑢𝑣 �=𝑤𝜆

𝐹𝑢 (𝑐; 𝑦) · S𝑣 (𝑐
′; 𝑥; 𝑦)

=
∑

𝜇,𝜈⊂𝜆

�̂�𝜆𝜇,𝜈 (𝑦) S𝑤𝜇 (𝑐; 𝑥; 𝑦) · S𝑤𝜈 (𝑐
′; 𝑥; 𝑦).

(See [5, §5] and [21, §4.8].2) That is, for 𝑢 = 𝑤𝜆𝑤
−1
𝜈 , the Stanley function expands as 𝐹𝑢 (𝑐; 𝑦) =∑

𝜇 �̂�
𝜆
𝜇,𝜈 (𝑦) S𝑤𝜇 (𝑐; 𝑥; 𝑦). The polynomial S𝑤𝜆 (𝑐; 𝑥; 𝑦) = 𝑠𝜆(𝑐 |𝑦) is always independent of x since it

represents a class coming from 𝐻∗𝑇 Gr = Λ[𝑦].
The coefficients �̂�𝜆𝜇,𝜈 (𝑦) are Graham-positive; this is a special case of [21, Theorem 4.22]. We

will give an argument which establishes the general case (and also applies to this case) when proving
Theorem 8.5 below.

Proposition 8.3. Each �̂�𝜆𝜇,𝜈 (𝑦) is a nonnegative combination of terms which are products of linear
factors 𝑦𝑖 − 𝑦 𝑗 , for 𝑖 � 𝑗 , ordered so that the nonpositive indices are all greater than the positive ones.
(That is, 1 ≺ 2 ≺ · · · ≺ −2 ≺ −1 ≺ 0.)

2In the notation of [21], evaluating 𝑦 = −𝑎 and 𝑐 =
∏

𝑖≤0
1−𝑎𝑖
1−𝑥𝑖 sends S𝑤𝜆 (𝑐; 𝑥; 𝑦) to 𝑠𝜆 (𝑥 ||𝑎) . In particular, our �̂�𝜆𝜇,𝜈 (𝑦) is

their �̂�𝜆𝜇,𝜈 (−𝑎) . The translation to Molev’s notation is explained in [21, §A.4].
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Example 8.4. The nonzero coefficients for 𝜆 = (3, 1) are

�̂� (3,1)
∅, (3,1) = �̂� (3,1)

(1) , (2,1) = �̂� (3,1)
(1) , (3) = �̂� (3,1)

(2) , (1,1) = �̂� (3,1)
(2) , (2) = 1,

�̂� (3,1)
(1) , (2) = 𝑦0 − 𝑦1,

�̂� (3,1)
(1) , (1,1) = 𝑦2 − 𝑦1,

�̂� (3,1)
(1) , (1) = (𝑦2 − 𝑦1) (𝑦0 − 𝑦1).

One can have repeated factors – for example, �̂� (2,2,1)
(1) , (1,1) = (𝑦0 − 𝑦1)

2. In fact, we will see that only linear
forms and squares of linear forms occur as factors (Theorem 8.5).

As usual, the morphism � comes from compatible morphisms of finite-dimensional vari-
eties, � : 𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) × 𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) → 𝐺𝑟 (2𝑚,V(−𝑚,𝑚] ). The subvariety �(𝑋𝜇 × 𝑋𝜈) ⊆

𝐺𝑟 (2𝑚,V(−𝑚,𝑚] ) is a Richardson variety, 𝑋𝜇�𝑚𝜈∩Ω𝜌𝑚 , where 𝜇�𝑚 𝜈 is the partition (𝜈1+𝑚, . . . , 𝜈𝑚+
𝑚, 𝜇1, . . . , 𝜇𝑚), and 𝜌𝑚 is the 𝑚 × 𝑚 rectangle. (In Young diagrams, one forms 𝜇 �𝑚 𝜈 by placing 𝜈 to
the right of the 𝑚 × 𝑚 rectangle and placing 𝜇 below the rectangle; we are assuming m is at least equal
to the number of parts of 𝜈 and to the largest part of 𝜇. This is [27, Proposition 2.1].) The coefficients
�̂�𝜆𝜇,𝜈 arise in the expansion of the class of this Richardson variety in a Schubert basis with respect to a
third T-invariant flag: the one corresponding to the ordered basis

(𝑒−𝑚+1, 0), . . . , (𝑒0, 0), (0, 𝑒−𝑚+1), . . . , (0, 𝑒0),

(0, 𝑒1), . . . , (0, 𝑒𝑚), (𝑒1, 0), . . . , (𝑒𝑚, 0).

This interpretation leads to another way of computing. Fix a sufficiently large m, consider variable sets
𝑥 = (𝑥−2𝑚+1, . . . , 𝑥2𝑚) and 𝑡 = (𝑡−2𝑚+1, . . . , 𝑡2𝑚), and let 𝑠𝜆(𝑐 |𝑡) be the specialization of S𝑤𝜆 (𝑐; 𝑥; 𝑡) by
𝑐 =

∏0
𝑖=−2𝑚+1

1+𝑡𝑖
1−𝑥𝑖 . Then �̂�𝜆𝜇,𝜈 (𝑦) is the coefficient of 𝑠𝜇�𝑚𝜈 (𝑐 |y) in the expansion of 𝑠𝜆(𝑐 |̃y) · 𝑠𝜌𝑚 (𝑐 |y),

where

y = (𝑦−𝑚+1, . . . , 𝑦𝑚, 𝑦−𝑚+1, . . . , 𝑦𝑚) (9)

and

ỹ = (𝑦−𝑚+1, . . . , 𝑦0, 𝑦−𝑚+1, . . . , 𝑦0, 𝑦1, . . . , 𝑦𝑚, 𝑦1, . . . , 𝑦𝑚). (10)

For example, �̂� (2,2,1)
(1) , (1,1) (𝑦) = (𝑦0 − 𝑦1)

2 is the coefficient of 𝑠 (3,3,1) (𝑐 |y) in the product

𝑠 (2,2,1) (𝑐 |𝑦−1, 𝑦0, 𝑦−1, 𝑦0, 𝑦1, 𝑦2, 𝑦1, 𝑦2) · 𝑠 (2,2) (𝑐 |𝑦−1, 𝑦0, 𝑦1, 𝑦2, 𝑦−1, 𝑦0, 𝑦1, 𝑦2).

(In comparison with [21], our 𝑠𝜆(𝑐 |𝑡) is their 𝑠𝜆(𝑥 ||−𝑎).)

8.2. Flag varieties

The direct sum morphism extends to an action on the flag variety: one defines

� : Gr(𝑉) × Fl(𝑉) → Fl(V)

in the same way, so that (𝐹, 𝐸•) is sent to the flag E• with E𝑘 = 𝐹 ⊕ 𝐸𝑘 . The pullback �∗ : 𝐻∗𝑇 Fl →
𝐻∗𝑇 (Gr×Fl) is identified with a co-module operation Δ : Λ[𝑥; 𝑦] → Λ[𝑦] ⊗Z[𝑦 ] Λ[𝑥; 𝑦]. As before, this
homomorphism is determined by its values on Schur polynomials, and one can compute using classical
Littlewood-Richardson numbers; but also as before, we are more interested in the behavior of Schubert
polynomials.
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The morphism � induces an embedding 𝑓 : Fl(𝑉) ↩→ Fl(V), by 𝐸• ↦→ 𝑉≤0 ⊕ 𝐸•, and as in
Proposition 8.1, the pullback is an isomorphism on cohomology rings, Λ[𝑥, 𝑦] ↦→ Λ[𝑥, 𝑦], sending
c→ 𝑐.

Schubert varieties in Fl(V) are again defined with respect to the flag V−• described in (7), so

𝛀𝑤 =
{
𝐸• | dim(𝐸𝑝 ∩V

−
𝑞) ≥ 𝑘𝑤 (𝑝, 𝑞) for all 𝑝, 𝑞

}
.

As before, 𝑓 −1𝛀𝑤 = Ω𝑤 , and we have [𝛀𝑤 ] = S𝑤 (c; 𝑥; 𝑦) in 𝐻∗𝑇 Fl(V).
The action on Schubert classes is by

�∗ [𝛀𝑤 ] =
∑
𝜇,𝑣

�̂�𝑤𝜇,𝑣 (𝑦) [Ω𝜇] × [Ω𝑣 ] .

Using c = 𝑐 · 𝑐′, this is expressed via the Cauchy formula as

S𝑤 (c; 𝑥; 𝑦) =
∑

𝑢𝑣 �=𝑤

𝐹𝑢 (𝑐; 𝑦) · S𝑣 (𝑐
′; 𝑥; 𝑦)

=
∑
𝜇,𝑣

�̂�𝑤𝜇,𝑣 (𝑦) S𝑤𝜇 (𝑐; 𝑥; 𝑦) · S𝑣 (𝑐
′; 𝑥; 𝑦).

Comparing coefficients of S𝑣 , it follows that �̂�𝑤𝜇,𝑣 (𝑦) = 0 unless ℓ(𝑤𝑣−1) = ℓ(𝑤) − ℓ(𝑣). When this
length-additivity condition holds, the coefficients arise in the expansion

𝐹𝑤𝑣−1 (𝑐; 𝑦) =
∑
𝜇

�̂�𝑤𝜇,𝑣 (𝑦) S𝑤𝜇 (𝑐; 𝑥; 𝑦).

In the terminology of [21, §4], these are the double Edelman-Greene coefficients, the precise translation
being

�̂�𝑤𝜇,𝑣 (𝑦) = �̂�𝑤𝑣−1

𝜇,𝑒 (𝑦) = 𝑗𝑤𝑣−1

𝜇 (−𝑎)

when ℓ(𝑤𝑣−1) = ℓ(𝑤) − ℓ(𝑣) (and �̂�𝑤𝜇,𝑣 (𝑦) = 0 otherwise).

Theorem 8.5. The coefficient �̂�𝑤𝜇,𝑣 (𝑦) lies in Z≥0 [𝑦𝑖− 𝑦 𝑗 | 𝑖 � 𝑗]. It is a nonnegative sum of terms which
are squarefree in the linear forms 𝑦𝑖 − 𝑦 𝑗 , if both indices have the same sign (positive or nonpositive),
and have degree at most 2 in the forms 𝑦𝑖 − 𝑦 𝑗 , for i nonpositive and j positive.

The total order ≺ on Z is the one defined in Proposition 8.3, so 1 ≺ 2 ≺ · · · ≺ −1 ≺ 0. The
theorem refines [21, Theorem 4.22], which asserts positivity without bounds on the powers of 𝑦𝑖 − 𝑦 𝑗 .
The proof given in [21] relates the coefficient �̂�𝑤𝜇,𝑣 (𝑦) to one appearing in the equivariant homology of
the affine Grassmannian, and then invokes the quantum-affine (Peterson) isomorphism and positivity in
equivariant quantum cohomology.

Our argument is based on a direct application of Graham’s positivity theorem [15], which says
the following. Suppose 𝐵𝑁 is a connected solvable group, with unipotent radical 𝑈𝑁 and maximal
torus T, and 𝐵0 ⊂ 𝐵𝑁 is a closed subgroup whose unipotent radical 𝑈0 ⊂ 𝑈𝑁 is normalized by T.
Let 𝜒1, . . . , 𝜒𝑁 be the characters of T on the quotient variety 𝑈𝑁 /𝑈0 (considered as an affine space),
counted with multiplicity. If 𝐵𝑁 acts on a variety X, and 𝑌 ⊆ 𝑋 is a 𝐵0-invariant subvariety, then there
are 𝐵𝑁 -invariant cycles 𝑍𝐼 so that

[𝑌 ] =
∑

𝐼 ⊆{1,...,𝑁 }

(∏
𝑖∈𝐼

𝜒𝑖

)
[𝑍𝐼 ]

as T-equivariant Chow (or homology) classes. (See also [6, Ch. 19].)
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Figure 2. Weights (•) on 𝑈+ ×𝑈+ and (◦) on U+/(𝑈+ ×𝑈+).

Proof. We may compute a given coefficient 𝑐𝑤𝜇,𝑣 on a sufficiently large but finite dimensional flag
variety, so for now, we choose 𝑚 � 0 and set 𝑉 = 𝑉(−𝑚,𝑚] , etc., writing 𝐹𝑙 (𝑉) for the complete
flag variety, and 𝐹𝑙 (V) = 𝐹𝑙 (𝑚, 𝑚 + 1, . . . , 3𝑚;V) for the partial flag variety, so the direct sum map
is � : 𝐺𝑟 (𝑚,𝑉) × 𝐹𝑙 (𝑉) → 𝐹𝑙 (V). We use the ordered basis 𝑒−𝑚+1, . . . , 𝑒𝑚 for V, as usual, and let
𝐵+ ⊆ 𝐺𝐿(𝑉) be the subgroup stabilizing the corresponding flag𝑉≤•. For V = 𝑉 ⊕𝑉 , we use the ordered
basis

(𝑒−𝑚+1, 0), . . . , (𝑒0, 0), (0, 𝑒−𝑚+1), . . . , (0, 𝑒0),

(0, 𝑒1), . . . , (0, 𝑒𝑚), (𝑒1, 0), . . . , (𝑒𝑚, 0).

The flag V−• obtained by reading this basis backwards is the one used to define the (opposite) Schubert
variety 𝛀𝑤 . Let B− ⊆ 𝐺𝐿(V) be the subgroup stabilizing this flag, and let B+ be the subgroup
stabilizing the flag V+• obtained by reading the basis forwards.

So in our chosen bases for V and V, the subgroups 𝐵+ ⊂ 𝐺𝐿(𝑉) and B+ ⊂ 𝐺𝐿(V) are upper-
triangular, and 𝐵− and B− are lower-triangular. Let 𝑈+ ⊂ 𝐵+ and U+ ⊂ B+ be the corresponding
unipotent radicals.

In 𝐹𝑙 (𝑉), the 𝐵− invariant Schubert varieties Ω𝑣 (of codimension ℓ(𝑣)) are transverse to 𝐵+-invariant
Schubert varieties 𝑋𝑣 (of dimension ℓ(𝑣)); likewise one has Ω𝜇 and 𝑋𝜇 in 𝐺𝑟 (𝑚,𝑉). The B−-invariant
𝛀𝑤 and B+-invariant X𝑤 in 𝐹𝑙 (V) are defined with respect to the flags V−• and V+• , respectively. As
we have seen, 𝛀𝑤 has class S𝑤 (c; 𝑥; 𝑦).

By Poincaré duality, we have

�∗([𝑋𝜇 × 𝑋𝑣 ]) =
∑
𝑤

�̂�𝑤𝜇,𝑣 (𝑦) · [X𝑤 ]

in 𝐻∗𝑇 𝐹𝑙 (V). The left-hand side is the class of the (𝐵+ ×𝐵+)-invariant subvariety �(𝑋𝜇 ×𝑋𝑣 ) ⊆ 𝐹𝑙 (V).
Applying Graham’s theorem expresses this as a sum of B+-invariant cycles, with coefficients coming
from the characters of T acting on U+/(𝑈+ × 𝑈+). Since the only B+-invariant cycles are Schubert
varieties X𝑤 , this is the desired decomposition.

The characters on U+/(𝑈+ × 𝑈+) are 𝑦𝑖 − 𝑦 𝑗 for 𝑖 ≤ 0 and 𝑗 > 0 (each with multiplicity 2), and
𝑦𝑖 − 𝑦 𝑗 for 𝑖, 𝑗 ≤ 0 or 𝑖, 𝑗 > 0 (each with multiplicity 1). See Figure 2 for an illustration.

At this point, we have established that �̂�𝑤𝜇,𝑣 (𝑦) is a nonnegative sum of monomials in 𝑦𝑖 − 𝑦 𝑗 for 𝑖 ≤ 0
and 𝑗 > 0 (each occurring at most twice) and 𝑦𝑖 − 𝑦 𝑗 for 𝑖, 𝑗 of the same sign (each occurring at most
once). To conclude, observe that if i and j have the same sign and 𝑖 < 𝑗 , the linear forms 𝑦𝑖 − 𝑦 𝑗 cannot
contribute since this would violate [21, Theorem 4.22]. �

Remark 8.6. The proof given in [21] relates the coefficient �̂�𝑤𝜇,𝑣 (𝑦) to one appearing in the equivariant
homology of the affine Grassmannian, and then invokes the quantum-affine (Peterson) isomorphism and
positivity in equivariant quantum cohomology. Until the final sentence, our argument is independent of
[21]. A completely independent proof, based on a direct transversality argument, appears in [1].
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In fact, the direct sum morphism is equivariant for a larger torus. Let T = 𝑇 × 𝑇 ′ act on V = 𝑉 ⊕ 𝑉
by characters y on the first factor and 𝑦′ on the second factor. Then � : Gr(𝑉) × Fl(𝑉) → Fl(V) is
equivariant for the induced T-action. One can define coefficients �̂�𝑤𝜇,𝑣 (𝑦, 𝑦′) ∈ Z[𝑦; 𝑦′] by

�∗ [𝛀𝑤 ] =
∑
𝜇,𝑣

�̂�𝑤𝜇,𝑣 (𝑦, 𝑦
′) [Ω𝜇] × [Ω𝑣 ],

or equivalently,

�∗ [𝑋𝜇 × 𝑋𝑣 ] =
∑
𝜇,𝑣

�̂�𝑤𝜇,𝑣 (𝑦, 𝑦
′) [X𝑤 ] .

The argument for Theorem 8.5 also proves that these coefficients are also Graham-positive:

Theorem 8.7. The coefficient �̂�𝑤𝜇,𝑣 (𝑦, 𝑦′) is a nonnegative sum of squarefree monomials in linear forms

𝑦− − 𝑦′−, 𝑦− − 𝑦′+, 𝑦
′
− − 𝑦+, and 𝑦′+ − 𝑦+,

where 𝑦+ stands for any 𝑦𝑖 with 𝑖 > 0, 𝑦− for 𝑦𝑖 with 𝑖 ≤ 0, etc.

In other words, the forms appearing are 𝑑 − 𝑐 with 𝑐 ≺ 𝑑, where c and d are among the y and 𝑦′

variables, ordered so that

{𝑦+} ≺ {𝑦
′
+} ≺ {𝑦

′
−} ≺ {𝑦−},

and exactly one of c or d is a primed variable. (To compare with the illustration in Figure 2, label the
rows and columns by −1, 0,−1′, 0′, 1′, 2′, 1, 2, so that they are scaled by the corresponding characters
𝑦𝑖 and 𝑦′𝑖 .)

The coefficients are equal to the triple Edelman-Greene coefficients 𝑗𝑤𝜇 (𝑎, 𝑏) of [21, §10], after
setting 𝑦𝑖 = −𝑏𝑖 and 𝑦′𝑖 = −𝑎𝑖; that is, 𝑗𝑤𝜇 (𝑎, 𝑏) = �̂�𝑤𝜇,𝑒 (−𝑏,−𝑎). Indeed, the definition shows that
�̂�𝑤𝜇,𝑣 (𝑦, 𝑦

′) are the coefficients appearing in the expansion

S𝑤 (c; 𝑥; 𝑦′) =
∑
𝜇,𝑣

�̂�𝑤𝜇,𝑣 (𝑦, 𝑦
′) 𝑠𝜇 (𝑐 |𝑦) S𝑣 (𝑐

′; 𝑥; 𝑦′),

which, noting our sign conventions, agrees with the characterization of 𝑗𝑤𝑣−1
𝜇 (𝑎, 𝑏) from [21, §10]. So

the theorem expresses positivity in the a and b variables, answering a question raised in [21, Remark
10.13].

One recovers the coefficients �̂�𝑤𝜇,𝑣 (𝑦) by setting 𝑦′ = 𝑦. However, Theorem 8.5 does not follow from
Theorem 8.7 since one can see factors of 𝑦′𝑖 − 𝑦 𝑗 with 𝑖 ≺ 𝑗 .

Example 8.8. We have

�̂� [2,3,−1,0,1]
(2,2) ,𝑒 (𝑦, 𝑦′) = (𝑦′1 − 𝑦2) (𝑦

′
1 − 𝑦1)

and

�̂� [2,3,−1,0,1]
(1,1) , [0,2,−1,1] (𝑦, 𝑦

′) = 𝑦′1 − 𝑦1.

This shows there is no total order ≺ on the variables (𝑦, 𝑦′) such that both (1) the coefficients �̂�𝑤𝜇,𝑣 (𝑦, 𝑦′)
are nonnegative sums of monomials in 𝑑 − 𝑐, with 𝑐 ≺ 𝑑, and (2) the specialization 𝑦′ = 𝑦 respects the
order (i.e., 𝑦𝑖 ≺ 𝑦′𝑗 implies 𝑦𝑖 ≺ 𝑦 𝑗 ). (Of course, any coefficient �̂�𝑤𝜇,𝑣 (𝑦, 𝑦′) violating (2) must map to 0
under the specialization 𝑦′ = 𝑦, as the two shown above do.)
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Remark 8.9. Specializing to the case where 𝑣 = 𝑤𝜈 and 𝑤 = 𝑤𝜆, one has coefficients �̂�𝜆𝜇,𝜈 (𝑦, 𝑦′) for the
direct sum morphism of Grassmannians; in particular, they are also positive. However, these coefficients
do not define a co-commutative coproduct, for the reasons noted in [20]. The coefficients displayed in
Example 8.8 are �̂� (3,3)

(2,2) ,∅ (𝑦, 𝑦
′) and �̂� (3,3)

(1,1) , (2,1) (𝑦, 𝑦
′), respectively. But one computes �̂� (3,3)

∅, (2,2) (𝑦, 𝑦
′) =

�̂� (3,3)
(2,1) , (1,1) (𝑦, 𝑦

′) = 0.

Consider the corresponding direct sum morphism � : 𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) × 𝐹𝑙 (𝑉(−𝑚,𝑚] ) → 𝐹𝑙 (𝑚, 𝑚 +
1, . . . , 3𝑚;V(−𝑚,𝑚] ) of finite-dimensional varieties, and identifyV(−𝑚,𝑚] = 𝑉(−2𝑚,2𝑚] using the ordered
basis which lists (𝑒𝑖 , 0), and then (0, 𝑒𝑖). As before, the image of 𝑋𝜇×𝑋𝑣 under direct sum is a Richardson
variety. Specifically, define a permutation of {−2𝑚 + 1, . . . , 2𝑚} by

𝜇 �𝑚 𝑣 = [𝑤𝜇 (−𝑚 + 1) − 𝑚, . . . , 𝑤𝜇 (0) − 𝑚, 𝑣(−𝑚 + 1) + 𝑚, . . .

. . . , 𝑣(𝑚) + 𝑚, 𝑤𝜇 (1) − 𝑚, . . . , 𝑤𝜇 (𝑚) − 𝑚] .

For example, for 𝜇 = (3, 1, 1), 𝑣 = [0,−1, 2,−2, 3, 1], and 𝑚 = 3, we have 𝜇 �𝑚 𝑣 =
[−4,−3, 0, 3, 2, 5, 1, 6, 4,−5,−2,−1].

Proposition 8.10. Assume m is large enough so that 𝑤𝜇 and v lie in S(−𝑚,𝑚] . Let 𝑥 (𝑚) = [−2𝑚 +
1, . . . , −𝑚, 1, . . . , 2𝑚, −𝑚 + 1, . . . , 0]. Then

�(𝑋𝜇 × 𝑋𝑣 ) = 𝑋𝜇�𝑚𝑣 ∩Ω𝑥 (𝑚) ,

a Richardson variety in 𝐹𝑙 (𝑚, 𝑚 + 1, . . . , 3𝑚;V(−𝑚,𝑚] ).

The proof is the same as that of [27, Proposition 2.1]. This leads to another way of computing the
Edelman-Greene coefficients.

Corollary 8.11. The polynomial �̂�𝑤𝜇,𝑣 (𝑦, 𝑦′) is equal to the coefficient of S𝜇�𝑚𝑣 (c; 𝑥; y) in the expansion
of S𝑤 (̃c; 𝑥; ỹ) · S𝑥 (𝑚) (c; 𝑥; y), where

y = (𝑦−𝑚+1, . . . , 𝑦𝑚, 𝑦
′
−𝑚+1, . . . , 𝑦

′
𝑚)

and

ỹ = (𝑦−𝑚+1, . . . , 𝑦0, 𝑦
′
−𝑚+1, . . . , 𝑦

′
𝑚, 𝑦1, . . . , 𝑦𝑚),

and c and c̃ are determined by specializing
∏0

𝑖=−2𝑚+1
1+𝑡𝑖
1−𝑥𝑖 to 𝑡 = y and 𝑡 = ỹ, respectively.

Proof. The specializations of the y variables ensure that S𝑤 (̃c; 𝑥; ỹ) = [𝛀𝑤 ], S𝜇�𝑚𝑣 (c; 𝑥; y) =
[Ω𝜇�𝑚𝑣 ], and S𝑥 (𝑚) (c; 𝑥; y) = [Ω𝑥 (𝑚) ] in 𝐻∗𝑇 𝐹𝑙 (𝑚, 𝑚 + 1, . . . , 3𝑚;V(−𝑚,𝑚] ). And by Poincaré duality,
the coefficient of [Ω𝜇�𝑚𝑣 ] in the expansion of [𝛀𝑤 ] · [Ω𝑥 (𝑚) ] is equal to the (equivariant) integral∫

𝐹𝑙 (V)
[𝛀𝑤 ] · [Ω𝑥 (𝑚) ] · [𝑋𝜇�𝑚𝑣 ] .

We have [Ω𝑥 (𝑚) ] · [𝑋𝜇�𝑚𝑣 ] = [Ω𝑥 (𝑚) ∩ 𝑋𝑤𝜇�𝑚𝑣 ] = [�(𝑋𝜇 × 𝑋𝑣 )], so this integral becomes∫
𝐹𝑙 (V)

[𝛀𝑤 ] · �∗ [𝑋𝜇 × 𝑋𝑣 ] =
∫
𝐺𝑟 (𝑉 )×𝐹𝑙 (𝑉 )

�∗ [𝛀𝑤 ] · [𝑋𝜇 × 𝑋𝑣 ],

which is the coefficient of [Ω𝜇] × [Ω𝑣 ] in �∗ [𝛀𝑤 ], as claimed. �
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9. Type C

Most of the foregoing discussion has analogues in other types – in fact, one motivation was to develop a
type A analogue of constructions from other classical types. Here we will discuss some aspects of type
C, focusing on the relationship with type A.

Changing notation, we write T for the ‘positive’ torus
∏

𝑖>0 C
∗, with standard characters 𝑦𝑖 for 𝑖 > 0,

and T = 𝑇 × C∗, where the extra C∗ has character z. This acts on V so that, for 𝑖 > 0, 𝑒𝑖 has weight
𝑦𝑖 , and 𝑒1−𝑖 has weight 𝑧 − 𝑦𝑖 . If we let the larger torus (

∏
𝑖∈ZC∗) × C∗ act on V in the standard way,

so that 𝑒𝑖 is scaled by 𝑦𝑖 for all i, then T embeds so that the restriction of characters is 𝑦𝑖 ↦→ 𝑦𝑖 for
𝑖 > 0 and 𝑦𝑖 ↦→ 𝑧− 𝑦1−𝑖 for 𝑖 ≤ 0. The corresponding homomorphism of equivariant cohomology rings,
Z[𝑦] [𝑧] → Z[𝑦+] [𝑧], is defined the same way.

9.1. Lagrangian Grassmannians and isotropic flag varieties

We fix a standard symplectic form on V, defined by setting

〈𝑒1−𝑖 , 𝑒𝑖〉 = −〈𝑒𝑖 , 𝑒1−𝑖〉 = 1

for 𝑖 > 0, and setting all other pairings to 0. The form

〈 , 〉 : 𝑉 ⊗ 𝑉 → C𝑧

is preserved by T, where the target C𝑧 is scaled by character z. When restricted to each 2𝑚-dimensional
subspace 𝑉(−𝑚,𝑚] , this defines a symplectic form and an isomorphism

𝑉(−𝑚,𝑚]
∼
−→ 𝑉∗(−𝑚,𝑚] ⊗ C𝑧 .

Using these subspaces to define the restricted dual of V, this also gives an isomorphism 𝑉
∼
−→ 𝑉∗

′
⊗ C𝑧 .

We fix the flag 𝑉≤• as before. The infinite Lagrangian Grassmannian is the subvariety

LG ⊆ Gr

parametrizing subspaces 𝐸 ⊆ 𝑉 which belong to Gr and are isotropic with respect to the symplectic
form (i.e., those E for which 〈 , 〉 becomes identically zero when restricted to E). As for Gr, we use the
notation LG(𝑉 ;𝑉≤•) when there is ambiguity in the flag.

The subspace 𝑉≤0 is isotropic, so it lies in LG. The subspace 𝑉>0 is also isotropic, but it does not lie
in Gr so does not define a point of LG. (Note, however, that the symplectic form defines isomorphisms
𝑉≤0 � 𝑉∗

′

>0 ⊗ C𝑧 .)
As noted in the introduction, one has compatible embeddings

𝐿𝐺 (𝑚,𝑉(−𝑚,𝑚] ) 𝐿𝐺 (𝑚 + 1, 𝑉(−𝑚−1,𝑚+1] )

𝐺𝑟 (𝑚,𝑉(−𝑚,𝑚] ) 𝐺𝑟 (𝑛 + 1, 𝑉(−𝑚−1,𝑚+1] ),

making LG =
⋃

𝑚>0 𝐿𝐺 (𝑚,𝑉(−𝑚,𝑚] ).
The cohomology ring of each finite-dimensional Lagrangian is generated by Chern classes of the

tautological bundle 𝑆 ⊆ 𝑉(−𝑚,𝑚] , with relations coming from the Whitney sum formula. Using 𝑐 =
𝑐𝑇 (𝑉≤0 − 𝑆), these relations are determined by 𝑐 · 𝑐 = 1, where

𝑐 = 𝑐𝑇 (𝑉∗≤0 ⊗ C𝑧 − 𝑆
∗ ⊗ C𝑧).
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(Using the symplectic form, one has𝑉(−𝑚,𝑚]/𝑆 � 𝑆∗ ⊗C𝑧 and𝑉∗
≤0 ⊗C𝑧 = 𝑉>0, so the relations follow.)

By standard Chern class identities, one writes

𝑐𝑝 =
𝑝∑

𝑖=1

(
𝑝 − 1
𝑖 − 1

)
(−𝑧) 𝑝−𝑖 (−1)𝑖 𝑐𝑖 .

Extracting the degree 2𝑝 part of 𝑐 · 𝑐, one finds relations

𝐶𝑝𝑝 :=
∑

0≤𝑖≤ 𝑗≤𝑝

(−1) 𝑗
((
𝑗

𝑖

)
+

(
𝑗 − 1
𝑖

))
𝑧𝑖 𝑐𝑝−𝑖+ 𝑗 𝑐𝑝− 𝑗 = 0,

for 𝑝 > 0. Taking the limit, we have

𝐻∗TLG = 𝚪[𝑦+],

where

𝚪 = Λ[𝑧]/(𝐶𝑝𝑝)𝑝>0.

Pullback by the inclusion LG ↩→ Gr induces the canonical surjection Λ[𝑧] [𝑦] � 𝚪[𝑦+].
For 𝑘 ≤ 0, one defines IG𝑘 ⊆ Gr𝑘 in the same way. It is the union

IG𝑘 =
⋃

𝑚> |𝑘 |

𝐼𝐺 (𝑚 + 𝑘,𝑉(−𝑚,𝑚] )

of (possibly non-maximal) isotropic Grassmannians. The (type C) infinite isotropic flag variety is the
variety

Fl𝐶 = {𝐸• : (· · · ⊂ 𝐸−1 ⊂ 𝐸0 = 𝐸 ⊂ 𝑉) | 𝐸𝑖 ∈ IG𝑖},

a subvariety of
∏

𝑘≤0 IG𝑘 . Its cohomology ring is

𝐻∗TFl𝐶 = 𝚪[𝑥+, 𝑦+],

using 𝑥𝑖 = 𝑐T
1 (𝑆−𝑖+1/𝑆−𝑖) for 𝑖 > 0, where (· · · ⊂ 𝑆−1 ⊂ 𝑆0 = 𝑆 ⊂ 𝑉) is the tautological flag. (As usual,

these should be regarded as the stable limits of vector bundles on the finite-dimensional type C flag
varieties.)

Just as for finite-dimensional varieties, an isotropic flag extends canonically to a complete flag,
by 𝐸𝑖 = 𝐸⊥−𝑖 for 𝑖 > 0, and one obtains an embedding Fl𝐶 ↩→ Fl. Using the symplectic form to
identify 𝑉 � 𝑉∗

′
⊗ C𝑧 , this realizes Fl𝐶 as the fixed locus for the duality involution described in

§7.1 (or rather, a variation of that involution which twists by C𝑧 ; see [5]). In particular, we have
𝐸𝑖/𝐸𝑖−1 � (𝐸1−𝑖/𝐸−𝑖)

∗ ⊗ C𝑧 for 𝑖 ≥ 1.
The pullback on cohomology is the surjection Λ[𝑧] [𝑥, 𝑦] � 𝚪[𝑥+, 𝑦+], where 𝑥𝑖 ↦→ 𝑥𝑖 for 𝑖 > 0,

and 𝑥𝑖 ↦→ 𝑧 − 𝑥1−𝑖 for 𝑖 ≤ 0. Realizing Fl𝐶 ⊂ Fl as the fixed locus of a (twisted) duality involution
gives another way of viewing the relations defining this quotient of Λ[𝑧] [𝑥, 𝑦]. The corresponding
homomorphism

𝝎(𝑐𝑘 ) =
𝑘∑

𝑖=1

(
𝑘 − 1
𝑖 − 1

)
(−𝑧)𝑘−𝑖𝑆1𝑖 (𝑐), 𝝎(𝑥𝑖) = 𝑧 − 𝑥−𝑖 , 𝝎(𝑦𝑖) = 𝑧 − 𝑦−𝑖

must be the identity on 𝐻∗TFl𝐶 , and the relations express this.
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Remark 9.1. The ring Γ = 𝚪/(𝑧) is the classical ring of Schur Q-polynomials. This can be written
as Γ = Λ/(𝐶𝑝𝑝)𝑝>0, where now 𝐶𝑝𝑝 =

∑𝑝
𝑗=0 (−1) 𝑗𝑐𝑝+ 𝑗 𝑐𝑝− 𝑗 . Many statements and formulas become

much simpler in the ‘untwisted’ case where 𝑧 = 0.

Remark 9.2. In symmetric function theory, one often embeds Γ ↩→ Λ, considering both as rings of
symmetric functions in auxiliary variables. The ring 𝚪 also embeds in Λ[𝑧]. This requires more care,
but it also points the way to a geometric interpretation. It is helpful to realize these inclusions of rings as
pullbacks via a different map between infinite Grassmannians. We will describe it in terms of compatible
maps of finite-dimensional varieties.

To lighten the notation, let 𝑉𝑚 = 𝑉(−𝑚,𝑚] and 𝐿 = C𝑧 , and let V𝑚 = 𝑉𝑚 ⊕𝑉
∗
𝑚 ⊗ 𝐿, with its canonical

L-valued symplectic form. For any fixed k, there is a map

𝐺𝑟 (𝑚 + 𝑘,𝑉𝑚) ↩→ 𝐿𝐺 (V𝑚),

sending a point 𝐴 ⊂ 𝑉𝑚 to 𝐴 ⊕ (𝑉𝑚/𝐴)
∗ ⊗ 𝐿 ⊂ V. One checks that this is an isotropic subspace. The

space E𝑚 = 𝑉≤0 ⊕ 𝑉
∗
>0 ⊗ 𝐿 ⊂ V𝑚 is also isotropic subspace. Let S ⊂ V𝑚 be the tautological bundle.

Pullback sends 𝑐T(V𝑚 − S − E𝑚) to

𝑐T (V𝑚 − 𝑆 −𝑄
∗ ⊗ 𝐿 − E𝑚) = 𝑐T (𝑉>0 −𝑉

∗
>0 ⊗ 𝐿 + 𝑆∗ ⊗ 𝐿 − 𝑆),

where 𝑆 ⊂ 𝑉𝑚 � 𝑄 are tautological bundles on 𝐺𝑟 (𝑚 + 𝑘,𝑉𝑚).
These maps are all compatible with the natural inclusions 𝑉𝑚 ⊂ 𝑉𝑚+1. So there is a corresponding

morphism Gr(𝑘) (𝑉) → LG(V). The corresponding pullback map on cohomology, 𝚪 → Λ[𝑦+] [𝑧] is
given by

𝑐 ↦→
∏
𝑖>0

1 + 𝑦𝑖
1 − 𝑦𝑖 + 𝑧

∏
𝑖≤𝑘

1 + 𝑥𝑖 + 𝑧
1 − 𝑥𝑖

, (11)

where 𝑥−𝑚+1, . . . , 𝑥𝑘 are Chern roots of 𝑆∗ on each finite-dimensional 𝐺𝑟 (𝑚 + 𝑘,𝑉𝑚), and Λ is regarded
as the ring of supersymmetric functions in the variables 𝑥𝑖 for 𝑖 ≤ 𝑘 and 𝑦𝑖 for 𝑖 > 0. The series on
the right-hand side of (11) is stable with respect to setting 𝑥𝑖 = 𝑦𝑖 = 0 for |𝑖 | > 𝑚, so its homogeneous
pieces are well-defined elements of Λ[𝑦+] [𝑧], as they must be. (They are deformations of the classical
polynomials 𝑄𝑝 (𝑥).)

9.2. Schubert varieties and Schubert polynomials

The group of signed permutations is the subgroup 𝑊∞ ⊂ SZ of permutations w such that 𝑤(1 − 𝑖) =
1 − 𝑤(𝑖) for all i. These are the elements of SZ which are fixed by the involution 𝜔. The submonoid
SgnInj(Z) ⊂ Inj(Z) is defined similarly, and one also has the submonoid SgnInj0(Z) ⊂ SgnInj(Z)
of signed injections with finitely many sign changes. (The balancing condition is automatic here.)
Choosing a large enough m so that 𝑤(𝑖) = 𝑖 for |𝑖 | > 𝑚, we often write 𝑤 ∈ 𝑊∞ in one-line notation as
𝑤 = [𝑤(1), . . . , 𝑤(𝑚)].

Just as Inj0(Z) indexes fixed points of Fl, the subset SgnInj0(Z) indexes fixed points of Fl𝐶 : the
point 𝑝𝑤 corresponds to the flag 𝐸• with 𝐸𝑘 spanned by 𝑒𝑤 (𝑖) for 𝑖 ≤ 0. (With conventions as in §6 for
integers not in the image of w.)

Schubert varieties are indexed by signed permutations. For each 𝑤 ∈ 𝑊∞, there is a Schubert variety
in Fl𝐶 , defined by

Ω𝑤 = {𝐸• | dim(𝐸𝑝 ∩𝑉>𝑞) ≥ 𝑘𝑤 (𝑝, 𝑞) for 𝑝 ≤ 0 and all 𝑞},

where 𝑘𝑤 (𝑝, 𝑞) = #{𝑎 ≤ 𝑝 | 𝑤(𝑎) > 𝑞}, as before.
A strict partition 𝜆 = (𝜆1 > · · · > 𝜆𝑠 > 0) determines a Grassmannian signed permutation

𝑤 = 𝑤𝜆 by setting 𝑤(𝑖) = 1 − 𝜆𝑖 for 1 ≤ 𝑖 ≤ 𝑠, and filling in the remaining unused values in increasing
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order. For example, 𝜆 = (4, 2, 1) has Grassmannian signed permutation 𝑤𝜆 = [−3,−1, 0, 3]. Schubert
varieties Ω𝜆 ⊆ LG are defined by conditions dim(𝐸 ∩𝑉>𝜆𝑘 ) ≥ 𝑘 .

As before, Schubert varieties in Fl𝐶 determine unique Schubert classes. The (twisted) double
Schubert polynomial of type C is the polynomial such that

𝑺𝐶
𝑤 (𝑐; 𝑥; 𝑦) = [Ω𝑤 ]

under 𝚪[𝑥+, 𝑦+] = 𝐻∗TFl𝐶 . For 𝑧 = 𝑦 = 0, this is precisely the definition in [8]; for 𝑧 = 0, these are the
double Schubert polynomials of [16]. Among the many wonderful properties of these polynomials, we
mention the Cauchy formula:

𝑺𝐶
𝑤 (c; 𝑥; 𝑦) =

∑
𝑢𝑣 �=𝑤

𝑺𝐶
𝑣 (𝑐; 𝑥; 𝑡) 𝑺𝐶

𝑢 (𝑐
′; 𝑧 − 𝑡; 𝑦), (12)

where c = 𝑐 · 𝑐′.
One can compare Schubert polynomials in types A and C via the canonical surjection Λ[𝑧] [𝑥, 𝑦] →

𝚪[𝑥+, 𝑦+]: for 𝑤 ∈ S+ ⊂ 𝑊∞, this map sends 𝑺𝐴
𝑤 (𝑐; 𝑥; 𝑦) to 𝑺𝐶

𝑤 (𝑐; 𝑥; 𝑦). A geometric proof is in [5].
The twisted double Q-polynomials 𝑸𝜆 (𝑐 |𝑦) = 𝑺𝐶

𝑤𝜆
(𝑐; 𝑥; 𝑦) correspond to Schubert classes in LG,

so they form a basis for 𝚪[𝑦+] over Z[𝑧] [𝑦+]. At 𝑧 = 0 (and an appropriate evaluation of c), these
specialize to Ivanov’s double Q-functions; at 𝑧 = 𝑦 = 0, they specialize to Schur’s Q-polynomials
𝑄𝜆 (𝑐), which form a basis for Γ.

9.3. Direct sum and coproduct

The embedding LG ⊂ Gr is compatible with the direct sum map, where one takes the symplectic form
on V = 𝑉 ⊕ 𝑉 to be the difference of symplectic forms on each summand. So one obtains a coproduct
Δ : 𝚪[𝑦+] → 𝚪[𝑦+] ⊗Z[𝑦 ] 𝚪[𝑦+]. Similarly, the direct sum morphism LG(𝑉) × Fl𝐶 (𝑉) → Fl𝐶 (V)
determines a co-module homomorphism 𝚪[𝑥+; 𝑦+] → 𝚪[𝑦+] ⊗Z[𝑦 ] 𝚪[𝑥+, 𝑦+].

In Schubert classes, we can again write

�∗ [Ω𝑤 ] =
∑
𝜇,𝑣

�̂� 𝑤𝜇,𝑣 (𝑦; 𝑧) [Ω𝑢] × [Ω𝑣 ],

for strict partitions 𝜇 and signed permutations 𝑣, 𝑤, where the polynomials �̂� 𝑤𝜇,𝑣 (𝑦; 𝑧) are type C double
Edelman-Greene coefficients.

Using Cauchy formulas, this co-module operation on Schubert polynomials can be written as

𝑺𝐶
𝑤 (c; 𝑥; 𝑦) =

∑
𝑢𝑣 �=𝑤

𝑭𝐶
𝑢 (𝑐; 𝑦) · 𝑺𝐶

𝑣 (𝑐
′; 𝑥; 𝑦)

=
∑
𝜇,𝑣

�̂� 𝑤𝜇,𝑣 (𝑦; 𝑧) 𝑸𝜇 (𝑐 |𝑦) 𝑺
𝐶
𝑣 (𝑐

′; 𝑥; 𝑦),

where the (twisted) double type C Stanley polynomial is defined as

𝑭𝐶
𝑤 (𝑐; 𝑦) = 𝑺𝐶

𝑤 (𝑐; 𝑧 − 𝑦; 𝑦).

As before, the coefficients �̂� 𝑤𝜇,𝑣 (𝑦; 𝑧) arise in the expansion of 𝑭𝐶
𝑤𝑣−1 in the 𝑸𝜇 basis.

Also as before, the direct sum morphism is actually equivariant with respect to the larger𝑇 ×𝑇 × (C∗)
action on V = 𝑉 ⊕ 𝑉 , where the C∗ factor still acts diagonally (though once again, the extended
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equivariant structure does not define a commutative coproduct). Writing 𝑦𝑖 for the characters on the first
factor and 𝑦′𝑖 for those on the second factor, we can expand

�∗ [𝑋𝜇 × 𝑋𝑣 ] =
∑
𝜇,𝑣

�̂� 𝑤𝜇,𝑣 (𝑦, 𝑦
′; 𝑧) [X𝑤 ]

in 𝐻∗
𝑇 ×𝑇 ×(C∗)

Fl𝐶 (V).

Theorem 9.3. The coefficient �̂� 𝑤𝜇,𝑣 (𝑦, 𝑦
′; 𝑧) is a nonnegative sum of squarefree monomials in linear

forms −𝑦′𝑖 − 𝑦 𝑗 + 𝑧 and 𝑦′𝑖 − 𝑦 𝑗 .

The proof is the same as for Theorems 8.5 and 8.7, applying Graham’s theorem and keeping track of
weights on the corresponding unipotent groups in symplectic groups.

Specializing 𝑦 = 𝑦′, one obtains the type C analogue of a weak form of Theorem 8.5: �̂� 𝑤𝜇,𝑣 (𝑦; 𝑧) is a
nonnegative sum of squarefree monomials in −𝑦𝑖 − 𝑦 𝑗 + 𝑧 and 𝑦𝑖 − 𝑦 𝑗 . This version requires no appeal
to a quantum-affine isomorphism, which was used in the above proof of Theorem 8.5 to show that only
𝑦𝑖 − 𝑦 𝑗 with 𝑖 > 𝑗 can appear in �̂�𝑤𝜇,𝑣 (𝑦). It should be interesting to adapt the methods of [1] to establish
a stronger positivity statement for �̂� 𝑤𝜇,𝑣 (𝑦; 𝑧), analogous to that of Theorem 8.5.

Remark 9.4. In the Lagrangian Grassmannian case where 𝑤 = 𝑤𝜆 and 𝑣 = 𝑤𝜈 for strict partitions 𝜆
and 𝜈, the polynomial �̂� 𝜆𝜇,𝜈 (𝑦) may be regarded as a dual Hall-Littlewood coefficient. It expresses the
coproduct

𝑸𝜆 (c|𝑦) =
∑
𝜇,𝜈

�̂� 𝜆𝜇,𝜈 (𝑦; 𝑧) 𝑸𝜇 (𝑐 |𝑦) · 𝑸𝜈 (𝑐
′ |𝑦),

where c = 𝑐 · 𝑐′ as usual. Evaluating at 𝑦 = 𝑧 = 0, this is the structure constant for multiplication in
the basis of P-Schur functions; that is, �̂� 𝜆𝜇,𝜈 (0) = 𝑓 𝜆𝜇,𝜈 in the notation of [23, §III.5]. Combinatorial
formulas for this case were given by Stembridge [26].
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