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Abstract

Dorff et al. [‘Convolutions of harmonic convex mappings’, Complex Var. Elliptic Equ. 57(5) (2012),
489–503] formulated a question concerning the convolution of two right half-plane mappings, where
the normalisation of the functions was considered incorrectly. In this paper, we reformulate the problem
correctly and provide a solution to it in a more general form. We also obtain two new theorems which
correct and improve related results.
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1. Introduction

Harmonic mappings are amongst the most studied areas of geometric function theory
of one and several complex variables (see the monographs [2, 9] and the problems
in [4, 16]). In [1], Aleman and Constantin used harmonic mappings to provide a new
approach towards obtaining explicit solutions to the incompressible two-dimensional
Euler equations. While the general solution is not available in explicit form, they used
structural properties of the system to identify several families of explicit solutions.
More recently, Constantin and Martin [6] used Lagrangian coordinates to investigate
these solutions and improved the work of [1].

In this article, we consider complex-valued harmonic mappings f defined on the
open unit disk D = {z ∈ C : |z| < 1}, which have a canonical representation of the form
f = h + g, where h and g are analytic in D. This representation is unique with the
condition g(0) = 0. The Jacobian J f of f = h + g is given by J f (z) = |h′(z)|2 − |g′(z)|2.
According to the inverse mapping theorem, if the Jacobian of a C1 mapping from D
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to C is different from zero, then the function is locally univalent. The classical result
of Lewy implies that the converse of this statement also holds for harmonic mappings.
Thus, every harmonic function f on D is locally one-to-one and sense preserving on
D if and only if J f (z) > 0 in D, that is, |h′(z)| > |g′(z)| in D. The condition J f (z) > 0 is
equivalent to the existence of an analytic function ω f in D such that

|ω f (z)| < 1 for z ∈ D,

where ω f (z) = g′(z)/h′(z) is called the dilatation of f . When there is no risk of
confusion, we use ω instead ω f . Let H = { f = h + g : h(0) = g(0) = 0 and h′(0) = 1}.
The classH0 consists of those functions f ∈ H with g′(0) = 0.

The family of all sense-preserving univalent harmonic mappings in H will be
denoted by SH and S0

H = SH ∩ H0. Clearly, the familiar class S of normalised
analytic univalent functions in D is contained in S0

H . The class SH together with its
geometric subclasses have been studied extensively by Clunie and Sheil-Small [5] and
investigated subsequently by several others (see [3, 9] and the survey article [17]). In
particular, we consider the convolution properties of the class KH (respectively, K0

H)
of functions SH (respectively, S0

H) that map the unit disk D onto a convex domain.

1.1. Preliminaries and convex harmonic mappings. One of the important and
interesting geometric subclasses of SH is the class of univalent harmonic functions
f for which the range D = f (D) is convex in the direction α (0 ≤ α < π), meaning that
the intersection of D with each line parallel to the line through 0 and eiα is an interval
or the empty set. Convex in the direction α = 0 (respectively, α = π/2) is referred to as
convex in the horizontal (respectively, vertical) direction.

It is known [5] that a harmonic mapping f = h + g belongs to K0
H := KH ∩ H0 if

and only if, for each α ∈ [0, π), the function F = h − e2iαg belongs to S and is convex
in the direction α.

Definition 1.1. A function f = h + g ∈ SH is said to be a slanted half-plane mapping
with γ (0 ≤ γ < 2π) if f maps D onto Hγ := {w : Re(eiγw) > −(1 + a)/2}, where
−1 < a < 1.

Using the shearing method due to Clunie and Sheil-Small [5] and the Riemann
mapping theorem, it is easy to see that such a mapping has the form

h(z) + e−2iγg(z) =
(1 + a)z
1 − eiγz

.

Note that h(0) = g(0) = h′(0) − 1 = 0 and g′(0) = e2iγa. The class of all slanted half-
plane mappings with γ is denoted by S(Hγ), and we denote by S0(Hγ) the subclass
of S(Hγ) with a = 0. Obviously, each f ∈ S(Hγ) (respectively, S0(Hγ)) belongs to the
convex familyKH (respectively,K0

H). Evidently, there are infinitely many slanted half-
plane mappings with a fixed γ. Functions f ∈ S(Hγ) with γ = 0 are usually referred
to as right half-plane mappings, especially when a = 0. For example, if f0 = h0 + g0,
where

h0(z) =
z − 1

2 z2

(1 − z)2 =
1
2

( z
1 − z

+
z

(1 − z)2

)
(1.1)
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and

g0(z) =
− 1

2 z2

(1 − z)2 =
1
2

( z
1 − z

−
z

(1 − z)2

)
, (1.2)

then
h0(z) + g0(z) =

z
1 − z

,

showing that f0 = h0 + g0 ∈ S
0(H0) with the dilatation ω0(z) = −z. The function f0

plays the role of extremal in many extremal problems for the convex family K0
H .

1.2. Convolution of harmonic mappings. For two harmonic mappings f = h + g
and F = H + G inH with power series of the form

f (z) = z +

∞∑
n=2

anzn +

∞∑
n=1

bnzn and F(z) = z +

∞∑
n=2

Anzn +

∞∑
n=1

Bnzn,

we define the harmonic convolution (or Hadamard product) by

( f ∗ F)(z) = (h ∗ H)(z) + (g ∗G)(z) = z +

∞∑
n=2

anAnzn +

∞∑
n=1

bnBnzn.

Clearly, the spaceH is closed under the operation ∗, that is,H ∗H ⊂H . In the case
of conformal mappings, the literature about convolution theory is exhaustive (see, for
example, [19]). Unfortunately, most of these results do not necessarily carry over to
the class of univalent harmonic mappings in D. It is surprising that even if f , F ∈ KH ,
the convolution f ∗ F is not necessarily locally univalent in D. Little was achieved on
the convolution of harmonic univalent mappings until the recent progress initiated by
Dorff [7].

1.3. Reformulation of the problem. In 2012, Dorff et al. [8] proved the following
result.

Theorem A [8, Theorem 2]. If fk ∈ S0(Hγk ) for k = 1, 2, and f1 ∗ f2 is locally univalent
in D, then f1 ∗ f2 is convex in the direction −(γ1 + γ2).

By similar reasoning, we can generalise the result to the setting S(Hγ).

Lemma 1.2. If fk ∈ S(Hγk ) for k = 1, 2 and f1 ∗ f2 is locally univalent in D, then f1 ∗ f2
is convex in the direction −(γ1 + γ2).

Dorff et al. [8] also considered the situation where f1 ∗ f2 is locally univalent and
sense preserving.

Theorem B [8, Theorem 4]. Suppose that f = h + g ∈ S0(H0) with dilatation ω(z) =

(z + a)/(1 + az), where a ∈ (−1, 1). Then f0 ∗ f ∈ S0
H and is convex in the horizontal

direction.
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In 2010, Bshouty and Lyzzaik [4] published a collection of open problems and
conjectures on planar harmonic mappings, proposed by many colleagues throughout
the past quarter of a century. In particular, Dorff et al. [4, Problem 3.26(a)] posed the
following open question.

Problem C. Let f = h + g ∈ S0(H0) with dilatation ω(z) = (z + a)/(1 + az), |a| < 1.
Determine other values of a ∈ D for which the result of Theorem B holds.

Observe that for functions f ∈ S0(H0), the corresponding dilatation ω must satisfy
the condition ω(0) = 0 which forces a = 0 in Theorem B. Thus, Theorem B and
Problem C are meaningful only when ω(z) = z. In other words, the normalisation was
not taken care of properly. It is necessary to reconsider the above problem in the setting
S(Hγ), taking into account the correct normalisation condition.

Problem 1.3. Let f = h + g ∈ S(Hγ) such that

h(z) + e−2iγg(z) =
(1 + a)z
1 − eiγz

and ω(z) = e2iγ zeiθ + a
1 + azeiθ .

Determine the values of a and θ such that f0 ∗ f ∈ S0
H is univalent in D.

Without realising the error in Theorem B and Problem C, the present authors
[13, 14] investigated the convolution properties of f0 = h0 + g0 with slanted half-plane
mappings f ∈ S(Hγ) and obtained [13, Theorem 2.2] and [14, Theorem 1.3]. In a
recent article, Liu and Ponnusamy [15] obtained the following corrected version of
Theorem B.

Theorem D [15, Theorem 1]. Let f = h + g ∈ S(H0) with

h + g =
(1 + a)z

1 − z
and ω(z) =

z + a
1 + az

,

where −1 < a < 1, and f1 = h1 + g1 ∈ S
0(H0) with dilatation ω1(z) = eiθz (θ ∈ R). Then

f1 ∗ f is locally univalent and convex in the horizontal direction.

In this paper, we determine a family of values a and θ such that the condition
in Problem 1.3 is satisfied (see Theorem 2.1 which corrects [13, Theorem 2.2] and
[14, Theorem 1.3]). We also state and prove two new results, Theorems 2.2 and 2.3,
which correct and improve some related results. Motivation and statements of these
results are discussed in Section 2 and their proofs will be given in Section 3.

2. Main results

Our first result is the following theorem.

Theorem 2.1. Let f = h + g ∈ S(Hγ) with

h(z) + e−2iγg(z) =
(1 + a)z
1 − eiγz

and ω(z) = e2iγ zeiθ + a
1 + azeiθ ,

where θ ∈ R and a ∈ (−1, 1). If one of the following conditions holds, then f0 ∗ f ∈ S0
H

and is convex in the direction −γ:
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(1) cos(θ − γ) = −1 and −1/3 ≤ a < 1;
(2) −1 < cos(θ − γ) ≤ 1 and a2 < 1/(5 − 4 cos(θ − γ)).

In order to state and prove our next two results, we consider the class S0(Ωβ) of
functions f ∈ S0

H such that f maps D onto the asymmetric vertical strip domains

Ωβ =

{
w :

β − π

2 sin β
< Re w <

β

2 sin β

}
,

where 0 < β < π. Each f = h + g ∈ S0(Ωβ) has the form

h(z) + g(z) = ψ(z), ψ(z) =
1

2i sin β
log

( 1 + zeiβ

1 + ze−iβ

)
.

Kumar et al. [10–12] considered mappings Fa = Ha + Ga with

Ha(z) + Ga(z) =
z

1 − z
and

G′a(z)
H′a(z)

=
a − z

1 − az
(2.1)

and obtained convolution results of such mappings with mappings inS0(H0) ∪S0(Ωβ).
We recall one of their results.

Theorem E [10, Theorem 2.2]. Let f = h + g ∈ S0(H0) with h + g = z/(1 − z) and
dilatation ω(z) = eiθzn, where θ ∈ R and n is a positive integer. If a satisfies
(n − 2)/(n + 2) ≤ a < 1, then f ∗ Fa is convex in the horizontal direction.

They gave similar results in [11, Theorem 2.4] and [12, Theorems 2.3, 2.5 and 2.6]
for f = h + g ∈ S0(Ωβ) with dilatation ω(z) = eiθzn.

Again, from (2.1), we see that H′a(0) + G′a(0) = 1, which leads to G′a(0) = 0 and
contradicts the second condition in (2.1) unless a = 0.

In order to reformulate these results in the correct form, we may consider harmonic
mappings f a

0 = ha
0 + ga

0 such that

ha
0(z) + ga

0(z) =
(1 + a)z

1 − z
and

(ga
0)′(z)

(ha
0)′(z)

=
a − z

1 − az
.

In fact, we consider a more general form of f a
0 . Let f a

γ = ha
γ + ga

γ ∈ S(Hγ) with the
dilatation

ω(z) = −e2iγ eiγz − a
1 − aeiγz

and ha
γ(z) + e−2iγga

γ(z) =
(1 + a)z
1 − eiγz

.

Then a computation gives slanted half-plane mappings with γ as f a
γ = ha

γ + ga
γ, where

ha
γ(z) =

(1 + a)Iγ(z) + (1 − a)zI′γ(z)

2
,

ga
γ(z) = e2iγ

(1 + a)Iγ(z) − (1 − a)zI′γ(z)

2
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and
Iγ(z) =

z
1 − eiγz

.

Obviously, when γ = 0, f a
γ coincides with the f a

0 that was defined above. For any
f = h + g ∈ H , the above representation for f a

γ quickly gives

(ha
γ ∗ h)(z) =

(1 + a)e−iγh(eiγz) + (1 − a)zh′(eiγz)
2

and

(ga
γ ∗ g)(z) = e2iγ (1 + a)e−iγg(eiγz) − (1 − a)zg′(eiγz)

2
.

Then, by a computation, we see that the dilatation ω̃ of f a
γ ∗ f is given by

ω̃(z) = e2iγ 2ag′(zeiγ) − (1 − a)eiγzg′′(zeiγ)
2h′(zeiγ) + (1 − a)zeiγh′′(zeiγ)

. (2.2)

For such slanted half-plane mappings f a
γ , we obtain the following convolution

theorems.

Theorem 2.2. Let f = h + g ∈ S0(Hγ1 ) with

h(z) + e−2iγ1 g(z) =
z

1 − eiγ1 z

and dilatation ω(z) = eiθzn, where n is a positive integer and θ ∈ R. If a satisfies
(n − 2)/(n + 2) ≤ a < 1, then f ∗ f a

γ is convex in the direction −(γ1 + γ).

Theorem 2.3. Let f = h + g ∈ S0(Ωβ) with dilatation ω(z) = eiθzn, where 0 < β < π,
θ ∈ R and n is a positive integer. If a ∈ [(n − 2)/(n + 2), 1), then f ∗ f a

γ is convex in the
direction −γ.

Remark 2.4. Theorem 2.2 is the corrected version of Theorem E. Theorem 2.3 is not
only the corrected version of [11, Theorem 2.4] and [12, Theorems 2.3, 2.5 and 2.6]
but also a generalisation of these theorems.

3. The proofs of Theorems 2.1, 2.2 and 2.3

3.1. Two lemmas. For the proof of Theorem 2.1, we need two lemmas.

Lemma 3.1. Let f = h + g ∈ S(Hγ) with dilatation ω(z) = g′(z)/h′(z) and

h(z) + e−2iγg(z) =
(1 + a)z
1 − eiγz

. (3.1)

Then the dilatation ω̃ of f0 ∗ f is

ω̃(z) = −ze−iγ
(ω2(z) + e2iγ[ω(z) − 1

2 zω′(z)
]
+ 1

2 eiγω′(z)

1 + e−2iγ[ω(z) − 1
2 zω′(z)

]
+ 1

2 e−iγz2ω′(z)

)
. (3.2)
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Proof. Assume that f = h + g ∈ S(Hγ) with ω(z) = g′(z)/h′(z). Then
g′(z) = ω(z)h′(z) and g′′(z) = ω′(z)h′(z) + ω(z)h′′(z).

Moreover, as h and g are related by the condition (3.1), the first equality gives

h′(z) =
1 + a

(1 + e−2iγω(z))(1 − eiγz)2 (3.3)

and, therefore,

h′′(z) = (1 + a)
[
−(1 − eiγz)e−2iγω′(z) + 2(1 + e−2iγω(z))eiγ

(1 + e−2iγω(z))2(1 − eiγz)3

]
. (3.4)

From the representation of h0 and g0 given by (1.1) and (1.2),

(h0 ∗ h)(z) =
h(z) + zh′(z)

2
and (g0 ∗ g)(z) =

g(z) − zg′(z)
2

.

Therefore, as f0 ∗ f = h0 ∗ h + g0 ∗ g, the dilatation ω̃ of f0 ∗ f is given by

ω̃(z) =
(g0 ∗ g)′(z)
(h0 ∗ h)′(z)

= −
zg′′(z)

2h′(z) + zh′′(z)
= −

zω′(z)h′(z) + ω(z)zh′′(z)
2h′(z) + zh′′(z)

. (3.5)

In view of (3.3) and (3.4), after some computation, (3.5) takes the desired form. �

Lemma 3.2. Let f = h + g ∈ S(Hγ) with

h(z) + e−2iγg(z) =
(1 + a)z
1 − eiγz

and ω(z) = e2iγ zeiθ + a
1 + azeiθ ,

where θ ∈ R. Then the dilatation ω̃ of f0 ∗ f is given by

ω̃(z) = −ze3iγe2iθ ·
(z + A)(z + B)

(1 + Az)(1 + Bz)
,

where
t(z) = z2 +

3a + 1
2

e−iθz + ae−2iθ +
1 − a

2
e−iγe−iθ, (3.6)

and −A,−B are the two roots of t(z) = 0. (Here, A and B may be equal.)

Proof. From the definition of ω, it follows that

ω′(z) = e2iγeiθ 1 − a2

(1 + azeiθ)2

and thus, by a computation, the expression for ω̃(z) in (3.2) takes the form

ω̃(z) = −ze3iγe2iθ
(
z2 + 3a+1

2 e−iθz + ae−2iθ + 1−a
2 e−iγe−iθ

1 + 3a+1
2 eiθz + ae2iθz2 + 1−a

2 eiγeiθz2

)
= −ze3iγe2iθ t(z)

t∗(z)
,

where t(z) is given by (3.6) and

t∗(z) = 1 +
3a + 1

2
eiθz + ae2iθz2 +

1 − a
2

eiγeiθz2.

Suppose that −A and −B are the two roots of t(z) = 0. Again, by a simple calculation,
it can be easily seen that

t∗(z) = z2 · t(1/z) = z2 · (1/z + A)(1/z + B) = (1 + Az)(1 + Bz).
Therefore, the dilatation ω̃ of f0 ∗ f has the desired form. �
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3.2. The proof of Theorem 2.1. By Lemma 1.2, it suffices to prove that f1 ∗ f2 is
locally univalent and sense preserving. So we only need to show that the dilatation ω̃
of f0 ∗ f satisfies that

|ω̃(z)| < 1 for all z ∈ D.

Using the notation of Lemma 3.2, we write

t(z) = z2 +
3a + 1

2
e−iθz + ae−2iθ +

1 − a
2

e−iγe−iθ = (z + A)(z + B).

Case 1. cos(θ − γ) = −1 and −1/3 ≤ a < 1.
For this case,

t(z) = z2 +
3a + 1

2
e−iθz +

3a − 1
2

e−2iθ = (z + e−iθ)
(
z +

3a − 1
2

e−iθ
)
,

so that the roots of t(z) are −A and −B, where A = e−iθ and B = ((3a − 1)/2)e−iθ.
Moreover,

t∗(z) = (1 + eiθz)
(
1 +

3a − 1
2

eiθz
)

and, from Lemma 3.2,

ω̃(z) = −ze3iγe2iθ
( z + e−iθ

1 + eiθz

)( z + 3a−1
2 e−iθ

1 + 3a−1
2 eiθz

)
,

which clearly implies that |ω̃(z)| < 1 for z ∈ D, since −1/3 ≤ a < 1.

Case 2. −1 < cos(θ − γ) ≤ 1 and a2 < 1/(5 − 4 cos(θ − γ)).
Let a0 = ae−2iθ + ((1 − a)/2)e−iγe−iθ, a1 = ((3a + 1)/2)e−iθ and a2 = 1. Then t(z) =

a0 + a1z + a2z2. By a calculation,

|a2|
2 − |a0|

2 =
1 − a

4
· [a(5 − 4 cos(θ − γ)) + 3] > 0

provided that −1 < cos(θ − γ) ≤ 1 and a2 < 1/(5 − 4 cos(θ − γ)). Now consider

t1(z) =:
a2t(z) − a0t∗(z)

z
=

1 − a
4
· [a(5 − 4 cos(θ − γ)) + 3] · (z − z0),

where

z0 =
(3a + 1)(e−iγ − 2e−iθ)

a(5 − 4 cos(θ − γ)) + 3
=:

u(a)
v(a)

,

with

u(a) = (3a + 1)(e−iγ − 2e−iθ) and v(a) = a(5 − 4 cos(θ − γ)) + 3.

A tedious calculation and the assumption yield

|v(a)|2 − |u(a)|2 = 4(1 + cos(θ − γ))[1 − a2(5 − 4 cos(θ − γ))],

which is positive by the assumption of Case 2. By using Cohn’s rule (see, for instance,
[18]), the conclusion follows in this case. This completes the proof.
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3.3. The proof of Theorem 2.2. As in the proof of the previous theorem, by
Lemma 1.2, it suffices to show that the dilatation ω̃ of f ∗ f a

γ given by (2.2) satisfies
|ω̃(z)| < 1 for z ∈ D. By (2.2), we see that ω̃(z) = S (eiγz), where

S (z) = e2iγ
(2ag′(z) − (1 − a)zg′′(z)

2h′(z) + (1 − a)zh′′(z)

)
.

Consequently, to complete the proof, it is enough to prove that |S (z)| < 1 for z ∈ D. The
assumption that

h(z) + e−2iγ1 g(z) =
z

1 − eiγ1 z

and the dilatation ω(z) = eiθzn yield

g′(z) = eiθznh′(z) and g′′(z) = neiθzn−1h′(z) + eiθznh′′(z)

so that S (z), defined above, takes the form

S (z) = e(2γ+θ)izn
(2a − (1 − a)n − (1 − a)u[h(z)]

2 + (1 − a)u[h(z)]

)
, (3.7)

where

u[h(z)] =: z
h′′(z)
h′(z)

= 2
zeiγ1

1 − zeiγ1
− n

e(θ−2γ1)izn

1 + e(θ−2γ1)izn .

Let X = Re u[h(z)]. Then X > −1 − n/2 and thus 2 + n + 2X > 0 for all z ∈ D.
By (3.7), it suffices to prove that, for all z ∈ D,

T (z) = [2 + (1 − a)X]2 − [2a − (1 − a)n − (1 − a)X]2 ≥ 0.

By simplification, T (z) reduces to

T (z) = (1 − a)[2(1 + a) − (1 − a)n][2 + n + 2X].

Finally, because 1 − a > 0 and 2 + n + 2X > 0, we conclude that T (z) ≥ 0 if and only
if a ∈ [(n − 2)/(n + 2), 1). The desired conclusion follows.

3.4. The proof of Theorem 2.3. Recall that f ∗ f a
γ is convex in the direction −γ

provided f ∗ f a
γ is locally univalent and sense preserving. By similar reasoning to that

in the proof of Theorem 2.2, we only need to prove that, for all z ∈ D,

T (z) = (1 − a)[2(1 + a) − (1 − a)n][2 + n + 2X] ≥ 0,

where X = Re u[h(z)] and u[h(z)] is defined again by

u[h(z)] = z
h′′(z)
h′(z)

.

On the other hand, the assumption

h(z) + g(z) =
1

2i sin β
log

( 1 + zeiβ

1 + ze−iβ

)

https://doi.org/10.1017/S0004972719000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000029


430 L. Li and S. Ponnusamy [10]

and the dilatation ω(z) = eiθzn yield

h′(z) =
1

(1 + ω(z))(1 + zeiβ)(1 + ze−iβ)
,

so that

u[h(z)] = −
2(z + cos β)z

(1 + zeiβ)(1 + ze−iβ)
−

zω′(z)
1 + ω(z)

= −
2(z + cos β)z

(1 + zeiβ)(1 + ze−iβ)
− n

eiθzn

1 + eiθzn

= −
e−iβz

1 + e−iβz
−

eiβz
1 + eiβz

− n
eiθzn

1 + eiθzn .

Clearly, the last equation implies that 2X > −2 − n for z ∈ D. Finally, because 1 − a > 0
and (2 + n) + 2X > 0, it follows that T (z) ≥ 0 if and only if a ∈ [(n − 2)/(n + 2), 1). The
desired conclusion follows.
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