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Only two Betchov homogeneity constraints exist
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Statistically homogeneous flows obey exact kinematic relations. The Betchov homogeneity
constraints (Betchov, J. Fluid Mech., vol. 1, 1956, pp. 497–504) for the average principal
invariants of the velocity gradient are among the most well-known and extensively
employed homogeneity relations. These homogeneity relations have far-reaching
implications for the coupled dynamics of strain and vorticity, as well as for the turbulent
energy cascade. Whether the Betchov homogeneity constraints are the only possible ones
or whether additional homogeneity relations exist has not been proven yet. Here we
show that the Betchov homogeneity constraints are the only homogeneity constraints for
incompressible and statistically isotropic velocity gradient fields. Our analysis also applies
to compressible/perceived velocity gradients, and it allows the derivation of homogeneity
relations involving the velocity gradient and other dynamically relevant quantities, such as
the pressure Hessian and viscous stresses.
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1. Introduction

The velocity gradients, i.e. spatial derivatives of the velocity field, A = ∇u, contain a
wealth of information about small-scale turbulence, including the topology of vorticity
and strain (Meneveau 2011). The moments of the velocity gradients of an incompressible
and statistically homogeneous field obey exact kinematic relations (Betchov 1956). The
two so-called Betchov constraints for the velocity gradient principal invariants, namely the
matrix traces Tr(A2) and Tr(A3), are of central importance for a statistical description of
the turbulent dynamics (Davidson 2004). The first Betchov constraint states that the second
principal invariant of the velocity gradient is on average zero, 〈Tr(A2)〉 = 0, which implies
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the proportionality between the mean dissipation rate and the mean squared vorticity:

ε = ν〈ω2〉. (1.1)

Here ν is the kinematic viscosity of the fluid, ε = 2ν〈Tr(S2)〉 is the mean dissipation rate,
S is the strain rate and ω = ∇ × u is the vorticity. The second Betchov relation 〈Tr(A3)〉 =
0 connects strain self-amplification and vortex stretching:

4〈Tr(S3)〉 = −3〈ω · (Sω)〉. (1.2)

While (1.1) constrains the strain-rate and vorticity magnitudes, (1.2) constrains their
production rates. The latter relation was derived first by Townsend & Taylor (1951) and
then rederived and extensively used by Betchov (1956). It allows one to characterize
the average turbulent energy cascade in physical space (Davidson 2004; Carbone &
Bragg 2020; Johnson 2020) and to predict the preferential configuration of the strain-rate
eigenvalues (Betchov 1956). It also implies that vortex stretching has a positive average
in the presence of an average forward energy cascade, related to the negative skewness
of the longitudinal velocity increment and gradient statistics. This positive average has
implications, for example, on the vorticity magnitude and orientation relative to the strain
rate (Tsinober 2009; Tom, Carbone & Bragg 2021) and on the attenuation of extreme
velocity gradients (Buaria, Pumir & Bodenschatz 2020).

Additionally, relations (1.1) and (1.2) have their analogues for the velocity structure
functions (Hill 1997). The relations for the velocity structure functions are related to
those for the velocity gradients through a simple Taylor expansion at small scales, and
at larger scales through a filtered/perceived velocity gradient corrected for compressible
effects (Carbone & Bragg 2020). The compressible/perceived gradients in homogeneous
turbulence also follow analogous relations (Yang, Pumir & Xu 2020; Yang et al.
2022), which, for example, constrain the dynamics of velocity gradients as perceived by
Lagrangian tetrads (Chertkov, Pumir & Shraiman 1999; Xu, Pumir & Bodenschatz 2011).

Applications of the homogeneity relations (1.1) and (1.2) are not limited to the
theoretical understanding of turbulence, but they carry over to the modelling of turbulent
flows. For example, stochastic models for the velocity gradient should in principle obey the
constraints (1.1) and (1.2) (Johnson & Meneveau 2016), which help to reduce the number
of free parameters in such models (Leppin & Wilczek 2020). The homogeneity relations
can also be used to improve the performance of neural networks designed for machine
learning of turbulent flows by including them into the training (Tian, Livescu & Chertkov
2021; Momenifar et al. 2022).

The Betchov relations (1.1) and (1.2) follow by writing the matrix traces Tr(A2) and
Tr(A3) as the divergence of a vector field. Then, because of statistical homogeneity, the
average of such traces is zero since a spatial derivative can be factored out, and it acts on
an average that does not depend on space explicitly. For example, due to incompressibility,
the second principal invariant of the velocity gradient can be rewritten as

Tr(A2) = ∇j ui∇i uj = ∇i(uj∇j ui), (1.3)

so that its average vanishes, and relation (1.1) follows. An analogous procedure applies to
retrieve (1.2), since the third principal invariant can be expressed as

Tr(A3) = ∇j ui∇k uj∇i uk = ∇i(uk∇j ui∇k uj − 1
2 ui∇k uj∇j uk). (1.4)

However, while it is straightforward to check the validity of the Betchov homogeneity
relations for the velocity gradient, it is more complicated to show whether those
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homogeneity relations are the only possible ones or if additional constraints exist. If there
existed higher-order constraints, we could, for example, improve the current reduced-order
models of the velocity gradient dynamics just by imposing these additional homogeneity
constraints.

Most of the previous attempts to find higher-order homogeneity relations were based on
swapping the spatial derivatives: a scalar contraction of powers of the velocity gradient is
manipulated by factoring out the spatial derivative, in order to rewrite the contraction as the
divergence of some quantity (if possible). Attempts to obtain relations for the fourth-order
moments of the velocity increments/gradients through this derivative-swapping procedure
include Hill (1997), Hierro & Dopazo (2003) and Bragg et al. (2022). However, it is very
difficult to show the completeness of the homogeneity constraints for the velocity gradient
through this approach. One would need to consider linear combinations of infinitely many
contractions of the velocity gradients and try to recast them into the spatial derivative of
some field. In this framework, Siggia (1981) showed that no homogeneity constraints exist
on polynomials of fourth-order velocity gradient invariants.

Interestingly, the scenario is analogous to the search for inviscid invariants of the
Navier–Stokes equations (Majda & Bertozzi 2001), which are central for the occurrence of
cascades (Alexakis & Biferale 2018). While it is straightforward to check the conservation
of kinetic energy and helicity in the incompressible three-dimensional Euler equations by a
derivative-swapping procedure (Majda & Bertozzi 2001), it is much more involved to show
whether those conserved quantities are the only possible ones or if additional ones exist.
This completeness question has been answered by Serre (1984) for the incompressible
Euler equations and by Enciso, Peralta-Salas & de Lizaur (2016) for volume-preserving
diffeomorphisms.

In this work, we investigate the existence of higher-order homogeneity constraints for
the velocity gradient using tensor function representation theory (Zheng 1994; Itskov
2015). The analysis allows one to identify the homogeneity relations as the solutions of
a system of partial differential equations, and it shows that no additional homogeneity
constraints for the incompressible velocity gradient exist other than those already known
from Betchov (1956). We furthermore extend the analysis to the velocity gradients as
perceived by Lagrangian tetrads in turbulence (Chertkov et al. 1999; Naso & Pumir 2005;
Xu et al. 2011); in particular, we show the completeness of the homogeneity relations for
compressible/perceived gradients derived in Yang et al. (2020, 2022).

2. An equation encoding the homogeneity constraints on the velocity gradient

We consider a three-dimensional, incompressible and statistically homogeneous and
isotropic velocity field u(x, t), together with its spatial gradient A = ∇u (Aij = ∇j ui in
Cartesian component notation). Incompressibility implies that Tr(A) = 0; we will extend
the analysis to the compressible case afterwards.

We search for homogeneity relations for scalar single-point statistics of the velocity
gradient only. By ‘homogeneity constraint’ we mean the vanishing of an average of a
scalar quantity due to homogeneity. Statistical homogeneity means that all statistical
quantities are invariant under spatial translations. In particular, single-point statistics do
not explicitly depend on the spatial coordinate. As a consequence, any scalar field φ that
is the divergence of a vector field, φ = ∇ · F , has zero ensemble/spatial average:

〈φ〉 = 〈∇ · F 〉 = ∇ · 〈F 〉 = 0. (2.1)
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For example, in the first Betchov relation 〈Tr(A2)〉 = 0, the vector field is F = Au (Fi =
Aijuj in component notation, see (1.3)). To generalize this, we search for scalar functions
of the velocity gradient φ(A) that are the divergence of a vector field F .

The vector field F is in general a functional of the velocity field u(x, t). We restrict
the analysis to functions of the velocity and its spatial derivatives because we search for
homogeneity relations on the single-point statistics of the velocity gradient. By restricting
the analysis to functions of the velocity and its spatial derivatives, we are implicitly
assuming isotropy. Indeed, in a statistically isotropic flow, the governing equations and
associated boundary conditions do not introduce any characteristic direction. Therefore, in
that statistically isotropic situation, the velocity and velocity gradients are all the possible
variables upon which the vector F can depend. We thereby exclude, for example, rotations
of the frame of the flow, anisotropic forcing, boundary layers, etc.

Focusing on single-point statistics of isotropic flows, we have F = F (u,A,∇A,∇(∇A),
. . .) so that the corresponding φ(A) is, by the chain rule and in component notation,

φ(A) = ∇i Fi(u(x, t), . . .) = ∂Fi

∂up
Api + ∂Fi

∂Apq
∇i Apq + ∂Fi

∂(∇k Apq)
∇i(∇k Apq)+ · · · .

(2.2)

The fact that the left-hand side of (2.2) depends only on the velocity gradient strongly
constrains the functional form of the vector field F . Namely, the right-hand side of (2.2)
should explicitly involve neither the velocity u nor the gradients of the velocity gradient,
∇A, ∇(∇A), etc. This implies that all the terms on the right-hand side of (2.2) featuring
gradients of the velocity gradient should identically cancel, while only (∂Fi/∂up)Api can
contribute to φ. Moreover, the part of (∂Fi/∂up)Api that contributes to φ can depend only
on A.

Therefore, we just need to consider vector functions of the velocity and velocity gradient,
F (u,A), that are linear in the velocity. Based on this, (2.2) splits into

φ(A) = ∂Fi

∂up
(u,A)Api, (2.3a)

∂Fi

∂Apq
(u,A)∇i Apq = 0. (2.3b)

Equation (2.3b) yields the main differential equation to determine F . The gradient of the
gradient, ∇i Apq = ∇i∇q up, is symmetric in i and q, so that only the part of ∂Fi/∂Apq that
is symmetric in i and q contributes to (2.3b). Additionally, the contractions i, p and q, p of
∇i Apq are zero by incompressibility. Therefore, F solves (2.3b) only if, for some vector v,

∂Fi

∂Apq
+ ∂Fq

∂Api
= viδpq + vqδpi. (2.4)

Here, δij denotes the Kronecker delta, and the vector v is easily determined by contracting
two of the free indices, e.g. vp = ∂Fk/∂Apk.

Equations (2.3) and (2.4) allow the search for homogeneity constraints to be more
systematic: instead of attempting to factor out the spatial derivatives in tensor contractions
of velocity gradients, we need to solve a system of partial differential equations. Solving
(2.4) for vectors F that are linear in u yields all possible vectors F (u,A), whose divergence
depends only on the velocity gradient, φ(A) = ∇ · F (u,A), as in (2.3a). Therefore, finding
all solutions of (2.4) that are linear in the velocity amounts to deriving all possible
homogeneity constraints on scalar functions of an incompressible and statistically isotropic
velocity gradient.
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3. Tensor function representation of the homogeneity constraints

In the following, we construct the general isotropic tensor function F (u,A). Tensor
function representation theory (Weyl 1946; Rivlin & Ericksen 1955; Pennisi & Trovato
1987; Zheng 1994; Itskov 2015) allows one to write down all possible vector functions F
of the generating vector u and tensor A that transform consistently under any change of
basis: when the arguments u and A undergo a rotation, F rotates accordingly (Itskov 2015).
The vector field F will be finally determined by requiring that it is linear in u and that it
solves (2.4).

In general, F can depend separately on the symmetric and antisymmetric parts of the
velocity gradient (Rivlin & Ericksen 1955):

S = 1
2(A + AT), W = 1

2 (A − AT), (3.1a,b)

with AT denoting the matrix transpose of A. Therefore, we consider all the vector functions
F (u,S,W ) constructed through the velocity and velocity gradients that, due to (2.3a), are
linear in the velocity:

F =
8∑

n=0

fn(I)Bnu. (3.2)

Here Bn are the basis tensors that can be formed through S and W (Pennisi & Trovato
1987):

B0 = I,

B1 = S,

B2 = W ,

B3 = SS,

B4 = SW − W S,

B5 = SW + W S,

B6 = W W ,

B7 = SW W + W W S,

B8 = SSW + W SS,

⎫⎪⎪⎬⎪⎪⎭ (3.3)

with I denoting the identity matrix and the standard matrix product is implied. Two
additional tensors would be necessary to fix degeneracies of the basis (3.3), which occur
when the vorticity is an eigenvector of the strain-rate tensor or the strain rate has two
identical eigenvalues (Rivlin & Ericksen 1955). We ignore that zero-measure configuration
of the gradients. Also, note that the superscript of Bn serves to number the basis tensors
rather than indicating powers of the tensor.

The components fn in (3.2) are functions of the set I of independent invariants that can
be formed through the velocity gradients (Pennisi & Trovato 1987):

I1 = Tr(SS), I3 = Tr(SSS), I5 = Tr(SSW W ),

I2 = Tr(W W ), I4 = Tr(SW W ),

}
(3.4)

with standard matrix product implied. A sixth invariant would be necessary to fix the
orientation/handedness of the vorticity with respect to the strain-rate eigenvectors. We do
not consider the sixth invariant as an independent variable, since it is determined by the
invariants (3.4) up to a sign (Lund & Novikov 1992).

The number of basis tensors and independent invariants is finite due to the
Cayley–Hamilton theorem, which plays a major role in the theory of tensor representation
(Rivlin & Ericksen 1955). Betchov (1956) showed that the average of the velocity gradient
principal invariants is zero in a homogeneous flow, thus constraining all the independent
traces of powers of A. However, one can take contractions of combinations of the strain rate
and rotation rate, and pose the question whether the average of those scalar contractions
vanishes due to homogeneity.
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4. Solution of the equation encoding the homogeneity constraints

We use the general expression (3.2) combined with (2.4) in order to determine the
components fn(I) of F . This will yield a vector field F associated with the homogeneity
constraints for the velocity gradient through φ(A) = ∇ · F (u,A) and (2.1).

Inserting the general expression (3.2) of F into (2.4) gives, in component notation,[
∂fl
∂Ik

∂Ik

∂Apq
Bl

ij + ∂fl
∂Ik

∂Ik

∂Api
Bl

qj + fl
∂Bl

ij

∂Apq
+ fl

∂Bl
qj

∂Api

]
uj = viδpq + vqδpi. (4.1)

Here and throughout, repeated indices imply summation, unless otherwise specified. As
shown in Appendix A, the derivatives of the invariants (3.4) can be written as

∂Ik

∂Apq
= MkmBm

pq, (4.2)

while the derivatives of the basis tensors (3.3) can be expressed as

∂Bn
ij

∂Apq
= Γ

1,n
lm Bl

ipBm
qj + Γ

2,n
lm Bl

iqBm
pj + Γ

3,n
lm Bl

ijB
m
pq, (4.3)

with 0 ≤ l,m, n ≤ 8 and 1 ≤ k ≤ 5.
The matrix entries Mkm featured in (4.2) are specified in (A1). The symbols Γ P,n

lm in
(4.3) play the role of Christoffel symbols (Grinfeld 2013) and their components are listed
in (A9), (A10) and (A11). Inserting the expressions (4.2) and (4.3) for the derivatives into
(4.1) yields the following independent equations:

fn(Γ
2,n

lm Bl
iqBm

pj + Γ
2,n

lm Bl
qiB

m
pj)uj = 0, (4.4a)[

∂fl
∂Ik

MkmBl
ijB

m
pq + fn(Γ

3,n
lm Bl

ijB
m
pq + Γ

1,n
lm Bl

qpBm
ij )

]
uj = viB0

pq. (4.4b)

Equations (4.4) should hold for all u and A, so that, separating out the basis tensors, we
have the following equations for the components:

8∑
n=0

[Γ 2,n
lm + t(l)Γ 2,n

lm ]fn = 0, ∀ 0 ≤ l,m ≤ 8, (4.5a)

5∑
k=1

∂fl
∂Ik

Mkm = −
8∑

n=0

[Γ 3,n
lm + t(m)Γ 1,n

ml ] fn, ∀ 0 ≤ l ≤ 8, 1 ≤ m ≤ 8, (4.5b)

where indices l,m are not contracted, and t(l) = 1 if Bl is symmetric and t(l) = −1 if
Bl is antisymmetric. In the steps from (4.4b) to (4.5b), the components at m = 0 have
been absorbed into the generic right-hand side viB0

pq of (4.4b), and therefore (4.5b) only
concerns components with m ≥ 1.

The linear system (4.5a) of 81 equations in the nine variables fn, 0 ≤ n ≤ 8, can be
solved using symbolic calculus (Meurer et al. 2017). This yields

f1 = f2, f3 = f5 = f6, f4 = f7 = f8 = 0. (4.6a–c)

Next, (4.5b) has a solution only if, for all l, the right-hand side is orthogonal to the kernel of
M , but this condition imposes no further constraints on fn. Finally, with this orthogonality
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condition ensured, the derivatives ∂fl/∂Ik are obtained by multiplying (4.5b) by the
Moore–Penrose inverse of M , with components M−1

mk′ , thus yielding

∂f0
∂I1

= ∂f0
∂I2

= −1
2

f3, (4.7a)

∂f0
∂Ik

= 0, ∀ 3 ≤ k ≤ 5, (4.7b)

∂fn
∂Ik

= 0, ∀ 1 ≤ k ≤ 5, 1 ≤ n ≤ 8. (4.7c)

By solving the straightforward linear system (4.7) with the conditions (4.6a–c), we obtain
the components fn of F that solves (2.4) and is linear in u:

F = f̄1u + f̄2Au + f̄3(A2 − 1
2 Tr(A2)I)u, (4.8)

where the f̄n are arbitrary constants. The solution (4.8) of (2.4) encodes all the Betchov
constraints, since its divergence yields the gradient principal invariants

∇ · F = f̄2 Tr(A2)+ f̄3 Tr(A3), (4.9)

thus retrieving (1.3) and (1.4) and, by homogeneity, 〈 f̄2 Tr(A2)+ f̄3 Tr(A3)〉 = 0.
The Betchov homogeneity relations, obtained by averaging (4.9), are all the possible

homogeneity constraints on the single-point statistics of an incompressible and isotropic
gradient since they follow from all the independent solutions of (2.4). In other words, no
scalar function of the velocity gradient invariants can be written as the divergence of a
vector field, other than the principal invariants Tr(A2) = I1 + I2 and Tr(A3) = I3 + 3I4.

5. Homogeneity constraints for the velocity gradient and additional quantities

Equation (4.8) shows that the homogeneity relations for the velocity gradient alone consist
only of the two Betchov constraints. However, generalizations of (4.8) easily generate
homogeneity constraints concerning the velocity gradient together with additional
variables. Indeed, the divergence of F in (4.8) does not depend on the gradient of the
velocity gradient even when u in (4.8) is replaced by any scalar, vector or tensor quantity
q that does not explicitly depend on the velocity gradient itself. This is because F solves
(2.4), which features only derivatives with respect to A, while the dependence of F upon
u is parametric. Therefore, for any vector q, one can construct homogeneity relations for
the scalar quantities

ψ(A,∇q) = ∇ · [ f̄1q + f̄2Aq + f̄3(A2 − 1
2 Tr(A2)I)q], (5.1)

where the standard matrix–vector product is implied and the left-hand side depends
neither on q nor on ∇A. For example, using (5.1) with the pressure gradient divided
by the fluid density, q = ∇P/ρ, yields homogeneity relations for the pressure Hessian
in incompressible flows, namely 〈Aij∇i∇j P〉 = 0 and 〈AikAkj∇i∇j P〉 = −ρ〈(AijAji)

2〉/2.
Analogously, employing (5.1) with the velocity Laplacian, q = ∇2u, gives homogeneity
relations for the Laplacian of a traceless gradient, 〈Aij∇2Aji〉 = 0 and 〈AikAkj∇2Aji〉 = 0.
Such relations play an important role in the budget equation for the turbulent dissipation
rate (Buaria, Pumir & Bodenschatz 2022), and turn out to be useful in the Lagrangian
modelling of velocity gradients (Leppin & Wilczek 2020).
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6. Homogeneity constraints for compressible and perceived velocity gradients

The analysis presented in the previous sections easily generalizes, e.g. to compressible or
two-dimensional flows. In this section we consider a compressible velocity gradient Ã,
with non-zero trace Ĩ0 = Tr(Ã) (the tilde denoting quantities relative to the compressible
velocity field). The presented homogeneity analysis allows one to prove the completeness
of the homogeneity constraints recently derived in Yang et al. (2020) for a compressible
gradient, which hold approximately even in strongly non-homogeneous compressible
turbulence (Yang et al. 2022). Additionally, they apply one-to-one to the perceived velocity
gradient (or tetrad) dynamics in homogeneous flows (Chertkov et al. 1999; Xu et al. 2011).

As done above for the incompressible gradient, we search for a scalar function of the
compressible gradient only, φ̃(Ã), that has zero average due to statistical homogeneity.
In the compressible case, the components f̃n of the vector field F̃ associated with
the homogeneity constraints through φ̃(Ã) = ∇ · F̃ depend on the additional invariant
Ĩ0. The procedure to derive the vector field F̃ , detailed in § 4 for the incompressible
gradient, applies to the compressible gradient with the modifications listed in Appendix
B. With those modifications, the same procedure as outlined in § 4 yields for the
compressible/perceived gradient

F̃ = f̄1ũ + f̄2(Ã − Tr(Ã)I)ũ + f̄3[Ã2 − Tr(Ã)Ã − 1
2 (Tr(Ã2)− Tr(Ã)2)I]ũ. (6.1)

The average of the divergence of the vector field (6.1),

φ̃(Ã) = f̄1 Tr(Ã)+ f̄2(Tr(Ã2)− Tr(Ã)2)+ f̄3(Tr(Ã3)− 3
2 Tr(Ã)Tr(Ã2)+ 1

2 Tr(Ã)3),

(6.2)

vanishes by homogeneity for all the arbitrary constants f̄i, thus recovering all the
homogeneity relations derived in Yang et al. (2020, 2022) and proving their completeness.

7. Conclusions

We have shown that the Betchov homogeneity relations are all the possible homogeneity
constraints for the velocity gradient in incompressible and statistically isotropic
turbulence. Our conclusions apply to the single-point statistics of scalar functions of
the velocity gradient. Our approach also allows the derivation of homogeneity relations
involving additional quantities, like the pressure Hessian and velocity gradient Laplacian.
The presented methodology furthermore generalizes to derive homogeneity constraints
for the compressible/perceived gradient, in two- and three-dimensional isotropic flows, as
well as in less idealized (e.g. axisymmetric) flows. More generally, the outcome of these
calculations will help to deal with high-dimensional tensor equations, which are ubiquitous
in fluid dynamics.
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Appendix A. Tensor derivatives of the basis tensors and independent invariants

In this appendix, we compute the derivatives with respect to the incompressible gradient
A of the basis tensors Bn (3.3) and invariants Ik (3.4).

We start with the derivatives of the invariants (3.4), which can be expressed as linear
combinations of the basis tensors, as in (4.2). The matrix M featuring the components
of the derivatives of the invariants (3.4) in the employed basis (3.3) is computed by
contracting (4.2) with the basis tensors,

Mkm = Z−1
ml Bl

pq
∂Ik

∂Apq
=

⎡⎢⎢⎢⎢⎣
0 2 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0

−I1 0 0 3 0 0 0 0 0
−1

3I2 0 0 0 0 −1 1 0 0
−2

3I4 0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎦ , (A1)

where Zlm = Bl
pqBm

pq is the metric tensor and Z−1 denotes its matrix inverse.
Next, we compute the derivatives of the basis tensors, for which we first introduce some

notation. The basis tensors (3.3) are products of the symmetric and antisymmetric parts
of the velocity gradient (3.1a,b), which can in turn be expressed through the fourth-order
tensors

Q(t)ijpq = 1
2

(
δipδjq + tδiqδjp − 1 + t

3
δijδpq

)
(A2)

contracted with the gradient itself, Sij = Q(+1)
ijpq Apq and Wij = Q(−1)

ijpq Apq. Then, any basis
tensor (3.3) of degree d consists of a linear combination of the products

bt1t2···td
ij = Q(t1)ik1p1q1

Q(t2)k1k2p2q2
· · · Q(td)kd−1jpdqd

(Ap1q1Ap2q2 · · · Apdqd), (A3)

with tl = ±1 and summation over repeated indices, e.g. b+1,−1 = SW . Also, the
components of the basis tensors (3.3) with respect to the elementary products (A3) are
constant:

Bn
ij =

∑
t1t2···td

cn
t1t2···td bt1t2···td

ij , (A4)

e.g. the non-zero components of B4 = SW − W S are c4
+1,−1 = −c4

−1,+1 = 1.
Using (A3) and (A4) we can take the derivative of any basis tensor of degree d:

∂Bn
ij

∂Apq
=

∑
t1t2···td

cn
t1···td Q(t1)ik1p1q1

Q(t2)k1k2p2q2
· · · Q(td)kd−1jpdqd

∂

∂Apq
(Ap1q1Ap2q2 · · · Apdqd)

=
∑

t1t2···td
cn

t1···td
d∑

m=1

[bt1t2···tm−1
ikm−1

Q(tm)km−1kmpqbtm+1tm+2···td
kmj ], (A5)

with tl = ±1, k0 = i, kd = j and contraction over repeated indices. As expected, the
derivative of any basis tensor consists of a linear combination of lower-order tensors. The
derivative ∂(·)/∂Apq is understood as a directional derivative in R

3,3 (Itskov 2015) and it is
traceless due to incompressibility. In the steps to (A5), this property is taken into account
by Q(t), since Q(t)ijpqδpq = 0 (in fact, Q(t) is the tensor derivative of bt with respect to A).
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Inserting the expression of the fourth-order tensors (A2) into (A5), we can write the
derivatives of the basis tensors more explicitly. For the basis tensors (3.3) of degree one
(i.e. for 1 ≤ n ≤ 2), we have

∂Bn
ij

∂Apq
= 1

2

∑
t1

cn
t1

(
δipδqj + t1δiqδpj − 1 + t1

3
δijδpq

)
. (A6)

The derivatives of the basis tensors (3.3) of degree two (i.e. for 3 ≤ n ≤ 6) read
∂Bn

ij

∂Apq
= 1

2

∑
t1t2

cn
t1t2

(
δipbt2

qj + t1δiqbt2
pj − 1 + t1

3
bt2

ij δpq

+ bt1
ipδqj + t2bt1

iqδpj − 1 + t2
3

bt1
ij δpq

)
. (A7)

Finally, the derivatives of the basis tensors (3.3) of degree three (i.e. for 7 ≤ n ≤ 8) read
∂Bn

ij

∂Apq
= 1

2

∑
t1t2t3

cn
t1t2t3

(
δipbt2t3

qj + t1δiqbt2t3
pj − 1 + t1

3
bt2t3

ij δpq + bt1
ipbt3

qj

+ t2bt1
iqbt3

pj − 1 + t2
3

bt1t3
ij δpq + bt1t2

ip δqj + t3bt1t2
iq δpj − 1 + t3

3
bt1t2

ij δpq

)
. (A8)

After replacing the symmetric and antisymmetric parts of bt1 and bt1t2 with the
corresponding Bn, the tensor derivatives (A6), (A7) and (A8) can be compactly rewritten
as contractions of the basis tensors with the Christoffel symbols Γ P,n

lm , as in (4.3) in the
main text. For the tensor basis (3.3) employed here, the non-zero elements of Γ 1,n

lm are

Γ
1,1

00 = 1
2 ,

Γ
1,2

00 = 1
2 ,

Γ
1,3

01 = 1
2 ,

Γ
1,3

10 = 1
2 ,

Γ
1,4

01 = −1
2 ,

Γ
1,4

02 = 1
2 ,

Γ
1,4

10 = 1
2 ,

Γ
1,4

20 = −1
2 ,

Γ
1,5

01 = 1
2 ,

Γ
1,5

02 = 1
2 ,

Γ
1,5

10 = 1
2 ,

Γ
1,5

20 = 1
2 ,

Γ
1,6

02 = 1
2 ,

Γ
1,6

20 = 1
2 ,

Γ
1,7

04 = −1
4 ,

Γ
1,7

05 = 1
4 ,

Γ
1,7

06 = 1
2 ,

Γ
1,7

12 = 1
2 ,

Γ
1,7

21 = 1
2 ,

Γ
1,7

40 = 1
4 ,

Γ
1,7

50 = 1
4 ,

Γ
1,7

60 = 1
2 ,

Γ
1,8

03 = 1
2 ,

Γ
1,8

04 = 1
4 ,

Γ
1,8

05 = 1
4 ,

Γ
1,8

12 = 1
2 ,

Γ
1,8

21 = 1
2 ,

Γ
1,8

30 = 1
2 ,

Γ
1,8

40 = −1
4 ,

Γ
1,8

50 = 1
4 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A9)

the non-zero elements of Γ 2,n
lm are

Γ
2,1

00 = 1
2 ,

Γ
2,2

00 = − 1
2 ,

Γ
2,3

01 = 1
2 ,

Γ
2,3

10 = 1
2 ,

Γ
2,4

01 = 1
2 ,

Γ
2,4

02 = 1
2 ,

Γ
2,4

10 = − 1
2 ,

Γ
2,4

20 = − 1
2 ,

Γ
2,5

01 = − 1
2 ,

Γ
2,5

02 = 1
2 ,

Γ
2,5

10 = − 1
2 ,

Γ
2,5

20 = 1
2 ,

Γ
2,6

02 = − 1
2 ,

Γ
2,6

20 = − 1
2 ,

Γ
2,7

04 = 1
4 ,

Γ
2,7

05 = − 1
4 ,

Γ
2,7

06 = 1
2 ,

Γ
2,7

12 = − 1
2 ,

Γ
2,7

21 = − 1
2 ,

Γ
2,7

40 = − 1
4 ,

Γ
2,7

50 = − 1
4 ,

Γ
2,7

60 = 1
2 ,

Γ
2,8

03 = − 1
2 ,

Γ
2,8

04 = 1
4 ,

Γ
2,8

05 = 1
4 ,

Γ
2,8

12 = 1
2 ,

Γ
2,8

21 = 1
2 ,

Γ
2,8

30 = − 1
2 ,

Γ
2,8

40 = − 1
4 ,

Γ
2,8

50 = 1
4 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A10)

and the non-zero elements of Γ 3,n
lm are

Γ
3,1

00 = −1
3 , Γ

3,3
10 = −2

3 , Γ
3,5

20 = −2
3 , Γ

3,7
60 = −2

3 , Γ
3,8

50 = −2
3 . (A11)

To obtain (4.3) from (A6), (A7) and (A8), we first computed the Christoffel symbols
relative to {bt1, bt1t2, bt1t2t3} and then changed the basis to the {Bn} in (3.3). Indeed, any
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set of basis tensors can be expressed through the transformation B̂n′ = Tn′
n (I)Bn, with T

an invertible matrix function of the invariants. Then, the Christoffel symbols transform as

Γ̂
1,n′

l′m′ = Tn′
n Γ

1,n
lm (T−1)ll′(T

−1)mm′, Γ̂
2,n′

l′m′ = Tn′
n Γ

2,n
lm (T−1)ll′(T

−1)mm′,

Γ̂
3,n′

l′m′ =
(

Tn′
n Γ

3,n
lm + ∂Tn′

l
∂Ik

Mkm

)
(T−1)ll′(T

−1)mm′ .

⎫⎪⎪⎬⎪⎪⎭ (A12)

Appendix B. Modifications for compressible or perceived velocity gradients

As for the incompressible gradient, all the homogeneity relations for a compressible or
perceived gradient Ã follow from (2.4), with vi ≡ 0 in the compressible/perceived case.
This is because ∇Ã has no identically zero contractions. To derive homogeneity constraints
for the compressible gradient, we follow the same steps as outlined in § 4, now employing
the appropriate Christoffel symbols Γ̃ P,n

lm and derivative components M̃km, characterizing
the tensor derivatives of the compressible/perceived basis tensors and invariants. In this
appendix we compute Γ̃ P,n

lm and M̃km.
The basis tensors (3.3) are the same for the incompressible and compressible/perceived

gradient, while the independent invariants Ĩk (3.4) feature the additional invariant Ĩ0 =
Tr(Ã) in the compressible/perceived case. The contributions from incompressibility to
the tensor derivatives (4.2) and (4.3) vanish for a compressible/perceived gradient. This
implies that Γ̃ 3,n

lm = 0, while Γ̃ 1,n
lm = Γ

1,n
lm and Γ̃ 2,n

lm = Γ
2,n

lm . The matrix of the derivatives
of the invariants is

M̃km = Z−1
ml Bl

pq
∂Ĩk

∂Ãpq
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎦ , (B1)

where the first row refers to Ĩ0, and the first column is now zero for k > 0 since the tensor
derivatives of the invariants ∂Ĩk/∂Ã are no longer traceless.
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