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Abstract

The moduli space of holomorphic maps from Riemann surfaces to the Grassmannian is
known to have two kinds of compactifications: Kontsevich’s stable map compactification
and Marian–Oprea–Pandharipande’s stable quotient compactification. Over a non-
singular curve, the latter moduli space is Grothendieck’s Quot scheme. In this paper,
we give the notion of ‘ε-stable quotients’ for a positive real number ε, and show that
stable maps and stable quotients are related by wall-crossing phenomena. We will also
discuss Gromov–Witten type invariants associated to ε-stable quotients, and investigate
them under wall crossing.

1. Introduction

The purpose of this paper is to investigate wall-crossing phenomena of several compactifications
of the moduli spaces of holomorphic maps from Riemann surfaces to the Grassmannian. So far,
two kinds of compactifications are known: Kontsevich’s stable map compactification [Kon95] and
Marian–Oprea–Pandharipande’s stable quotient compactification [MOP09]. The latter moduli
space was introduced rather recently, and it is Grothendieck’s Quot scheme over a non-singular
curve. In this paper, we will introduce the notion of ε-stable quotients for a positive real number
ε ∈ R>0, and show that the moduli space of ε-stable quotients is a proper Deligne–Mumford
stack over C with a perfect obstruction theory. It will turn out that there is a wall and chamber
structure on the space of stability conditions ε ∈ R>0, and the moduli spaces are constant at
chambers but jump at walls, i.e. wall-crossing phenomena occur. We will see that stable maps
and stable quotients are related by the above wall-crossing phenomena. We will also consider the
virtual fundamental classes on the moduli spaces of ε-stable quotients, the associated enumerative
invariants, and investigate them under the change of ε ∈ R>0. This is interpreted as a wall-crossing
formula of Gromov–Witten (GW) type invariants.

1.1 Stable maps and stable quotients

Let C be a smooth projective curve over C of genus g, and G(r, n) the Grassmannian which
parameterizes r-dimensional C-vector subspaces in Cn. Let us consider a holomorphic map

f : C→G(r, n) (1)

satisfying the following:

f∗[C] = d ∈H2(G(r, n), Z)∼= Z.
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By the universal property of G(r, n), giving a map (1) is equivalent to giving a quotient

O⊕nC �Q, (2)

where Q is a locally free sheaf of rank n− r and degree d. The moduli space of maps (1) is
not compact, and two kinds of compactifications are known: compactification as maps (1) or
compactification as quotients (2).

• Stable map compactification. We attach trees of rational curves to C, and consider the
moduli space of maps from the attached nodal curves to G(r, n) with finite automorphisms.

• Quot scheme compactification. We consider the moduli space of quotients (2), allowing
torsion subsheaves in Q. The resulting moduli space is Grothendieck’s Quot scheme on C.

In the above compactifications, the (stabilization of the) source curve C is fixed in the moduli.
If we vary the curve C as a nodal curve and give m marked points on it, we obtain two kinds of
compact moduli spaces

Mg,m(G(r, n), d), (3)
Qg,m(G(r, n), d). (4)

The space (3) is a moduli space of Kontsevich’s stable maps [Kon95]. Namely, this is the moduli
space of data

(C, p1, . . . , pm, f : C→G(r, n)),

where C is a genus g, m-pointed nodal curve and f is a morphism with finite automorphisms.
The space (4) is a moduli space of Marian–Oprea–Pandharipande’s stable quotients [MOP09],

which we call MOP-stable quotients. By definition, an MOP-stable quotient consists of data

(C, p1, . . . , pm,O⊕nC
q
�Q) (5)

for an m-pointed nodal curve C and a quotient sheaf Q on it, satisfying the following stability
conditions.

• The coherent sheaf Q is locally free near nodes and markings. In particular, the determinant
line bundle det(Q) is well defined.

• The R-line bundle

ωC(p1 + · · ·+ pm)⊗ det(Q)⊗ε (6)

is ample for every ε > 0.

The space (4) is the moduli space of MOP-stable quotients (5) with C genus g, rank(Q) = n− r
and deg(Q) = d. Both moduli spaces (3) and (4) have the following properties.

• The moduli spaces (3) and (4) are proper Deligne–Mumford stacks over C with perfect
obstruction theories [Beh97, MOP09].

• The moduli spaces (3) and (4) carry proper morphisms as follows.

Mg,m(G(r, n), d)

''NNNNNNNNNNNN
Qg,m(G(r, n), d)

xxppppppppppp

Mg,m

(7)
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Here Mg,m is the moduli space of genus g, m-pointed stable curves. Taking the fibers of the
diagram (7) over a non-singular curve [C] ∈Mg,0, we obtain the compactifications as maps (1)
and quotients (2), respectively. Also, the associated virtual fundamental classes on the moduli
spaces (3) and (4) are compared in [MOP09, § 7].

1.2 ε-stable quotients

The purpose of this paper is to introduce a variant of stable quotient theory, depending on a
positive real number

ε ∈ R>0. (8)

We define an ε-stable quotient to be data (5), which has the same property as MOP-stable
quotients except for the following.

• The R-line bundle (6) is only ample with respect to the fixed stability parameter ε ∈ R>0.

• For any p ∈ C, the torsion subsheaf τ(Q)⊂Q satisfies

ε · length τ(Q)p 6 1.

The idea of ε-stable quotients originates from Hassett’s weighted pointed stable curves.
In [Has03], Hassett introduced the notion of weighted pointed stable curves (C, p1, . . . , pm),
where C is a nodal curve and pi ∈ C are marked points. The stability condition depends on a
choice of a weight

(a1, a2, . . . , am) ∈ (0, 1]m, (9)

which puts a similar constraint for the pointed curve (C, p1, . . . , pm) to our ε-stability. (See
Definition 3.1.) A choice of ε in our situation corresponds to a choice of a weight (9) for weighted
pointed stable curves.

The moduli space of ε-stable quotients (5) with C genus g, rank(Q) = n− r and deg(Q) = d
is denoted by

Q
ε
g,m(G(r, n), d). (10)

We show the following result. (See Theorem 2.12, § 2.3, Propositions 2.16 and 2.18 and
Theorem 2.19.)

Theorem 1.1. (i) The moduli space Q
ε
g,m(G(r, n), d) is a proper Deligne–Mumford stack over C

with a perfect obstruction theory. Also, there is a proper morphism

Q
ε
g,m(G(r, n), d)→Mg,m. (11)

(ii) There is a finite number of values

0 = ε0 < ε1 < · · ·< εk < εk+1 =∞

such that we have

Q
ε
g,m(G(r, n), d) =Q

εi
g,m(G(r, n), d)

for ε ∈ (εi−1, εi].

(iii) We have the following:

Q
ε
g,m(G(r, n), d) ∼= Mg,m(G(r, n), d), ε > 2,

Q
ε
g,m(G(r, n), d) ∼= Qg,m(G(r, n), d), 0< ε6 1/d.
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By Theorem 1.1(i), there is the associated virtual fundamental class

[Qεg,m(G(r, n), d)]vir ∈A∗(Q
ε
g,m(G(r, n), d),Q).

A comparison of the above virtual fundamental classes under change of ε is obtained as follows.
(See Theorem 2.25.)

Theorem 1.2. For ε> ε′ > 0 satisfying 2g − 2 + ε′ · d > 0, there is a diagram

Q
ε
g,m(G(r, n), d) ιε // Q

ε
g,m

(
G
(

1,
(
n

r

))
d

)
cε,ε′

��

Q
ε′

g,m(G(r, n), d)
ιε
′

// Q
ε′

g,m

(
G
(

1,
(
n

r

))
, d

)
such that we have

cε,ε′∗ι
ε
∗[Q

ε
g,m(G(r, n), d)]vir = ιε

′
∗ [Qε

′

g,m(G(r, n), d)]vir.

The above theorem, which is a refinement of the result in [MOP09, § 7], is interpreted as a
wall-crossing formula relevant to the GW theory.

1.3 Invariants on Calabi–Yau 3-folds
The idea of ε-stable quotients is also applied to define new quantum invariants on some compact
or non-compact Calabi–Yau 3-folds. One of the interesting examples is a system of invariants on
a quintic Calabi–Yau 3-fold X ⊂ P4. In § 6, we associate the substack

Q
ε
0,m(X, d)⊂Qε0,m(P4, d)

such that when ε > 2, it coincides with the moduli space of genus zero, degree d stable maps
to X. There is a perfect obstruction theory on the space Qε0,m(X, d) and hence the virtual class

[Qε0,m(X, d)]vir ∈A∗(Q
ε
0,m(X, d),Q)

with virtual dimension m. In particular, the zero-pointed moduli space yields the invariant

N ε
0,d(X) =

∫
[Q
ε
0,0(X,d)]vir

1 ∈Q.

For ε > 2, the invariant N ε
0,d(X) coincides with the GW invariant counting genus zero, degree d

stable maps to X. However, for a smaller ε, the above invariant may be different from the GW
invariant of X. The understanding of wall-crossing phenomena of such invariants seems relevant
to the study of the GW theory. In § 6, we will also discuss such invariants in several other cases.

1.4 Relation to other works
As pointed out in [MOP09, § 1], only a few proper moduli spaces carrying virtual classes
are known, e.g. stable maps [Beh97], stable sheaves on surfaces or 3-folds [LT98, Tho00],
Grothendieck’s Quot scheme on non-singular curves [MO07] and MOP-stable quotients [MOP09].
By the result of Theorem 1.1, we have constructed a new family of moduli spaces which have
virtual classes.

Before the appearance of stable maps [Kon95], the Quot scheme was used for an enumeration
problem of curves on the Grassmannian [Ber94, Ber97, BDW96]. A relationship between
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compactifications as maps (1) and quotients (2) is discussed in [PR03]. The fiber of the
morphism (11) over a non-singular curve is an intermediate moduli space between the above
two compactifications. This fact seems to give a new insight to the work [PR03].

Wall-crossing phenomena for stable maps or GW type invariants are discussed in [AG08,
BM09, Has03]. In these works, a stability condition is a weight on the marked points, not on
maps. In particular, there is no wall-crossing phenomenon if there is no point insertion.

After the work of this paper was completed, a closely related work of Mustatǎ–
Mustatǎ [MM07] was brought to the author’s attention. They constructed some compactifications
of the moduli space of maps from Riemann surfaces to the projective space, which are interpreted
as moduli spaces of ε-stable quotients of rank one. However, they do not address higher rank
quotients, virtual classes nor the wall-crossing formula. In this sense, the present work is
interpreted as a combination of the works [MOP09, MM07].

Recently, wall-crossing formulae of Donaldson–Thomas (DT) type invariants have been
developed by Kontsevich–Soibelman [KS08] and Joyce–Song [JS08]. The DT invariant is a
counting invariant of stable sheaves on a Calabi–Yau 3-fold, while the GW invariant is a count-
ing invariant of stable maps. The relationship between GW invariants and DT invariants
was proposed by Maulik–Nekrasov–Okounkov–Pandharipande (MNOP) [MNOP06], called the
GW/DT correspondence. On the DT side, a number of applications of the wall-crossing formula
to the MNOP conjecture have been found recently, such as the DT/PT correspondence and
the rationality conjecture. (See [Bri10, ST09, Tod10a, Tod10b].) It seems worth trying to find
a similar wall-crossing phenomenon on the GW side and give an application to the MNOP
conjecture. The work of this paper grew from such an attempt.

2. Stable quotients

In this section, we introduce the notion of ε-stable quotients for a positive real number ε ∈ R>0,
study their properties and give some examples. The ε-stable quotients are an extended notion of
stable quotients introduced by Marian–Oprea–Pandharipande [MOP09].

2.1 Definition of ε-stable quotients
Let C be a connected projective curve over C with at worst nodal singularities. Suppose that
the arithmetic genus of C is g,

g = dimH1(C,OC).

Let Cns ⊂ C be the non-singular locus of C. We say that the data

(C, p1, . . . , pm)

with distinct markings pi ∈ Cns ⊂ C is a genus g, m-pointed, quasi-stable curve. The notion of
quasi-stable quotients was introduced in [MOP09, § 2].

Definition 2.1. Let C be a pointed quasi-stable curve and q a quotient,

O⊕nC
q
�Q.

We say that q is a quasi-stable quotient if Q is locally free near nodes and markings. In particular,
the torsion subsheaf τ(Q)⊂Q satisfies

Supp τ(Q)⊂ Cns\{p1, . . . , pm}.
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Let O⊕nC
q
�Q be a quasi-stable quotient. The quasi-stability implies that the sheaf Q is

perfect, i.e. there is a finite locally free resolution P • of Q. In particular, the determinant line
bundle

det(Q) =
⊗
i

(rk P i∧
P i
)⊗(−1)i

∈ Pic(C)

makes sense. The degree of Q is defined by the degree of det(Q). We say that a quasi-stable
quotient O⊕nC �Q is of type (r, n, d) if the following holds:

rankQ= n− r, deg Q= d.

For a quasi-stable quotient O⊕nC
q
�Q and ε ∈ R>0, the R-line bundle L(q, ε) is defined by

L(q, ε) := ωC(p1 + · · ·+ pm)⊗ (detQ)⊗ε. (12)

The notion of stable quotients introduced in [MOP09], which we call MOP-stable quotients, is
defined as follows.

Definition 2.2 [MOP09]. A quasi-stable quotient O⊕nC
q
�Q is a MOP-stable quotient if the

R-line bundle L(q, ε) is ample for every ε > 0.

The idea of ε-stable quotient is that we only require the ampleness of L(q, ε) for a fixed ε
(not every ε > 0), and put an additional condition on the length of the torsion subsheaf of the
quotient sheaf.

Definition 2.3. Let O⊕nC
q
�Q be a quasi-stable quotient and ε a positive real number. We say

that q is an ε-stable quotient if the following conditions are satisfied.

• The R-line bundle L(q, ε) is ample.

• For any point p ∈ C, the torsion subsheaf τ(Q)⊂Q satisfies the following inequality:

ε · length τ(Q)p 6 1. (13)

Here we give some remarks.

Remark 2.4. As we mentioned in the introduction, the definition of ε-stable quotients is
motivated by Hassett’s weighted pointed stable curves [Has03]. We will discuss the relationship
between ε-stable quotients and weighted pointed stable curves in § 3.1.

Remark 2.5. The ampleness of L(q, ε) for every ε > 0 is equivalent to the ampleness of L(q, ε)
for 0< ε� 1. If ε > 0 is sufficiently small, then the condition (13) does not say anything, so
MOP-stable quotients coincide with ε-stable quotients for 0< ε� 1.

Remark 2.6. For a quasi-stable quotient O⊕nC �Q, take the exact sequence

0→ S→O⊕nC →Q→ 0.

The quasi-stability implies that S is locally free. By taking the dual of the above exact sequence,
giving a quasi-stable quotient is equivalent to giving a locally free sheaf S∨ and a morphism

O⊕nC
s→ S∨,

which is surjective on nodes and marked points. The ε-stability is also defined in terms of
data (S∨, s).
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Remark 2.7. By definition, a quasi-stable quotient O⊕nC
q
�Q of type (r, n, d) induces a rational

map

f : C 99KG(r, n)

such that we have

deg f∗[C] + length τ(Q) = d. (14)

If ε > 1, then the condition (13) is equivalent to that Q is a locally free sheaf. Hence, f is an
actual map, and the quotient q is isomorphic to the pull-back of the universal quotient on G(r, n).

Let C be a marked quasi-stable curve. A point p ∈ C is called special if p is a singular point
of C or a marked point. For an irreducible component P ⊂ C, we denote by s(P ) the number of
special points in P . The following lemma is obvious.

Lemma 2.8. Let O⊕nC
q
�Q be a quasi-stable quotient and take ε ∈ R>0. Then the R-line bundle

L(q, ε) is ample if and only if for any irreducible component P ⊂ C with genus g(P ), the following
conditions hold:

deg(Q|P )> 0, (s(P ), g(P )) = (2, 0), (0, 1), (15)
deg(Q|P )> 1/ε, (s(P ), g(P )) = (1, 0), (16)
deg(Q|P )> 2/ε, (s(P ), g(P )) = (0, 0). (17)

Proof. For an irreducible component P ⊂ C, we have

deg(L(q, ε)|P ) = 2g(P )− 2 + s(P ) + ε · deg(Q|P ).

Also, since q is surjective, we have deg(Q|P )> 0. Therefore, the lemma follows. 2

Here we give some examples. We will discuss some more examples in § 3.

Example 2.9. (i) Let C be a smooth projective curve of genus g and f : C→G(r, n) a map.
Suppose that f is non-constant if g 6 1. By pulling back the universal quotient

O⊕nG(r,n)�QG(r,n)

on G(r, n), we obtain the quotient O⊕nC
q
�Q. It is easy to see that the quotient q is an ε-stable

quotient for ε > 2.

(ii) Let C be as in (i) and take distinct points p1, . . . , pm ∈ C. For an effective divisor
D = a1p1 + · · ·+ ampm with ai > 0, the quotient

OC
q
�OD

is an ε-stable quotient if and only if

2g − 2 + ε ·
m∑
i=1

ai > 0, 0< ε6 1/ai

for all 16 i6m. In this case, the quotient q is MOP-stable if g > 1, but this is not the case in
genus zero.

(iii) Let P1 ∼= C ⊂ Pn be a line and take distinct points p1, p2 ∈ C. By restricting the Euler
sequence to C, we obtain the exact sequence

0→OC(−1) s→O⊕n+1
C → TPn(−1)|C → 0.
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Composing the natural inclusion OC(−p1 − p2 − 1)⊂OC(−1) with s, we obtain the exact
sequence

0→OC(−p1 − p2 − 1)→O⊕n+1
C

q→Q→ 0.
It is easy to see that the quotient q is ε-stable for ε= 1. Note that q is not an MOP-stable
quotient nor a quotient corresponding to a stable map as in (i).

2.2 Moduli spaces of ε-stable quotients
Here we define the moduli functor of the family of ε-stable quotients. We use the language of
stacks, and the reader can refer to [LM00] for their introduction. First we recall the moduli stack
of quasi-stable curves. For a C-scheme B, a family of genus g, m-pointed quasi-stable curves over
B is defined to be the data

(π : C →B, p1, . . . , pm),
which satisfies the following.

• The morphism π : C →B is flat, proper and locally of finite presentation. Its relative
dimension is one and p1, . . . , pm are sections of π.

• For each closed point b ∈B, the data

(Cb := π−1(b), p1(b), . . . , pm(b))

is an m-pointed quasi-stable curve.

The families of genus g, m-pointed quasi-stable curves form a groupoid Mg,m(B) with the set
of isomorphisms

IsomMg,m(B)((C, p1, . . . , pm)(C′, p′1, . . . , p′m))
given by the isomorphisms of schemes over B,

φ : C
∼=→C′

satisfying φ(pi) = p′i for each 16 i6m. The assignment B 7→Mg,m(B) forms a 2-functor

Mg,m : Sch/C→ (groupoid),

which is known to be an algebraic stack locally of finite type over C.

Definition 2.10. For a given data

ε ∈ R>0, (r, n, d) ∈ Z⊕3,

we define the stack of genus g, m-pointed ε-stable quotients of type (r, n, d) to be the 2-functor

Qεg,m(G(r, n), d) : Sch/C→ (groupoid), (18)

which sends a C-scheme B to the groupoid whose objects consist of data

(π : C →B, p1, . . . , pm,O⊕nC
q
�Q) (19)

satisfying the following.

• (π : C →B, p1, . . . , pm) is a family of genus g, m-pointed quasi-stable curves over B.
• Q is flat over B such that for any b ∈B, the data

(Cb, p1(b), . . . , pm(b),O⊕nCb
qb
�Qb)

is an ε-stable quotient of type (r, n, d).
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For another object over B,

(π′ : C′→B, p′1, . . . , p
′
m,O⊕nC′

q′

�Q′), (20)

the set of isomorphisms between (19) and (20) is given by

{φ ∈ IsomMg,m(B)((C, p1, . . . , pm), (C′, p′1, . . . , p′m)) : ker(q) = ker(φ∗(q′))}.

By the construction, there is an obvious forgetting 1-morphism

Qεg,m(G(r, n), d)→Mg,m. (21)

The following lemma shows that the automorphism groups in Qεg,m(G(r, n), d) are finite.

Lemma 2.11. For a genus g, m-pointed ε-stable quotient (O⊕nC
q
�Q) of type (r, n, d), we have

]Aut(O⊕nC
q
�Q)<∞ (22)

in the groupoid Qεg,m(G(r, n), d)(Spec C).

Proof. It is enough to show that for each irreducible component P ⊂ C, we have

]Aut(O⊕nP
q|P
� Q|P )<∞.

Hence, we may assume that C is irreducible. The cases we need to consider are the following:

(s(C), g(C)) = (0, 0), (0, 1), (1, 0), (2, 0).

Here we have used the notation in Lemma 2.8. For simplicity, we treat the case of (s(C), g(C)) =
(1, 0). The other cases are similarly discussed.

Let f be a rational map

f : C 99KG(r, n)

determined by the quotient q. (See Remark 2.7.) If f is non-constant, then (22) is obviously
satisfied. Hence, we may assume that f is a constant rational map. By the equality (14), this
implies that the torsion subsheaf τ(Q)⊂Q satisfies

length τ(Q) = deg Q.

Also, if ]Supp τ(Q)> 2, then (22) is satisfied, since any automorphism preserves torsion points
and special points. Hence, we may assume that there is a unique p ∈ C such that

length τ(Q)p = length τ(Q) = deg Q.

However, this contradicts the condition (13) and Lemma 2.8. 2

We will show the following theorem.

Theorem 2.12. The 2-functor Qεg,m(G(r, n), d) is a proper Deligne–Mumford stack of finite
type over C with a perfect obstruction theory.

Proof. The construction of the moduli space and the properness will be postponed to § 4. The
existence of the perfect obstruction theory will be discussed in Theorem 2.14. 2

By Theorem 2.12, the 2-functor (18) is interpreted as a geometric object, rather than an
abstract 2-functor. In order to emphasize this, we slightly change the notation as follows.
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Definition 2.13. We denote the Deligne–Mumford moduli stack of genus g, m-pointed ε-stable
quotients of type (r, n, d) by

Q
ε
g,m(G(r, n), d).

When r = 1, we occasionally write

Q
ε
g,m(Pn−1, d) :=Q

ε
g,m(Pn−1, d).

The universal curve is denoted by

πε : U ε→Q
ε
g,m(G(r, n), d), (23)

and we have the universal quotient

0→ SUε →O⊕nUε
qUε−−→QUε → 0. (24)

2.3 Structures of the moduli spaces of ε-stable quotients
Below we discuss some structures on the moduli spaces of ε-stable quotients. Similar structures
for MOP-stable quotients are discussed in [MOP09, § 3].

Let Mg,m be the moduli stack of genus g, m-pointed stable curves. By composing (21) with
the stabilization morphism, we obtain the proper morphism between Deligne–Mumford stacks

νε :Qεg,m(G(r, n), d)→Mg,m.

For an ε-stable quotient O⊕nC �Q with markings p1, . . . , pm, the sheaf Q is locally free at pi.
Hence, it determines an evaluation map

evi :Qεg,m(G(r, n), d)→G(r, n). (25)

Taking the fiber product

Q
ε
g1,m1+1(G(r, n), d1)×ev Q

ε
g2,m2+1(G(r, n), d2) //

��

Q
ε
g1,m1+1(G(r, n), d1)

evm1+1

��
Q
ε
g2,m2+1(G(r, n), d2)

ev1 // G(r, n)

,

(26)

we have the natural morphism

Q
ε
g1,m1+1(G(r, n), d1)×ev Q

ε
g2,m2+1(G(r, n), d2)→Q

ε
g1+g2,m1+m2

(G(r, n)d1 + d2) (27)

defined by gluing ε-stable quotients at the marked points. The standard GLn(C)-action on O⊕nC
induces a GLn(C)-action on Q

ε
g,m(G(r, n), d), i.e.

g · (O⊕nC
q
�Q) = (O⊕nC

q◦g
� Q)

for g ∈GLn(C). The morphisms (25) and (27) are GLn(C)-equivariant.

2.4 Virtual fundamental classes
The moduli space of ε-stable quotients has the associated virtual fundamental class. The following
is an analogue of [MOP09, Theorem 2 and Lemma 4] in our situation.

Theorem 2.14. There is a GLn(C)-equivariant two-term perfect obstruction theory on
Q
ε
g,m(G(r, n), d). In particular, there is a virtual fundamental class

[Qεg,m(G(r, n), d)]vir ∈AGLn(C)
∗ (Qεg,m(G(r, n), d),Q)
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in the GLn(C)-equivariant Chow group. The virtual dimension is given by

nd+ r(n− r)(1− g) + 3g − 3 +m,

which does not depend on a choice of ε.

Proof. The same argument of [MOP09, Theorem 2 and Lemma 4] works. For the reader’s
convenience, we provide the argument. For a fixed marked quasi-stable curve

(C, p1, . . . , pm) ∈Mg,m,

the moduli space of ε-stable quotients is an open set of the Quot scheme. On the other hand, the
deformation theory of the Quot scheme on a non-singular curve is obtained in [CK09, MO07].
Noting that any quasi-stable quotient is locally free near nodes, the analogous construction yields
the two-term obstruction theory relative to the forgetting 1-morphism ν,

ν :Qεg,m(G(r, n), d)→Mg,m,

given by Rπε∗Hom(SUε , QUε)∗. (See (23) and (24).) The absolute obstruction theory is given by
the cone E• of the morphism [BF97, GP99],

Rπε∗Hom(SUε , QUε)∗→ ν∗LMg,m [1],

where LMg,m is the cotangent complex of the algebraic stackMg,m. By Lemma 2.11, the complex
E• is concentrated on [−1, 0]. Let O⊕nC �Q be an ε-stable quotient with kernel S and marked
points p1, . . . , pm. By the above description of the obstruction theory and the Riemann–Roch
theorem, the virtual dimension is given by

χ(S, Q)− χ
(
TC

(
−

m∑
i=1

pi

))
= nd+ r(n− r)(1− g) + 3g − 3 +m. 2

By the proof of the above theorem, the tangent space Tanq and the obstruction space Obsq
at the ε-stable quotient q :O⊕nC �Q with kernel S and marked points p1, . . . , pm fit into the
exact sequence

0→ H0

(
C, TC

(
−

m∑
i=1

pi

))
→Hom(S, Q)→ Tanq

→ H1

(
C, TC

(
−

m∑
i=1

pi

))
→ Ext1(S, Q)→Obsq→ 0. (28)

In the genus zero case, the obstruction space vanishes and hence the moduli space is non-singular.

Lemma 2.15. The Deligne–Mumford stack Q
ε
0,m(G(r, n), d) is non-singular of expected

dimension nd+ r(n− r) +m− 3.

Proof. In the notation of the exact sequence (28), it is enough to see that

Ext1(S, Q) =H0(C, S ⊗ Q̃∨ ⊗ ωC)∗ = 0 (29)

when the genus of C is zero. Here Q̃ is the free part of Q, i.e. Q/τ(Q) for the torsion subsheaf
τ(Q)⊂Q. For any irreducible component P ⊂ C with s(P ) = 1, it is easy to see that

deg(S ⊗ Q̃∗ ⊗ ωC)|P < 0,

by Lemma 2.8. Then it is easy to deduce the vanishing (29). 2
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2.5 Wall-crossing phenomena of ε-stable quotients
Here we see that there is a finite number of values in R>0 so that the moduli spaces of ε-stable
quotients are constant on each interval. First we treat the case of

(g, m) 6= (0, 0). (30)

We set
0 = ε0 < ε1 < · · ·< εd < εd+1 =∞,

as follows:

εi =
1

d− i+ 1
, 16 i6 d. (31)

Proposition 2.16. Under the condition (30), take ε ∈ (εi−1, εi], where εi is given by (31). Then
we have

Q
ε
g,m(G(r, n), d) =Q

εi
g,m(G(r, n), d).

Proof. Let us take a quasi-stable quotient of type (r, n, d),

(O⊕nC
q
�Q). (32)

First we show that if (32) is ε-stable, then it is also εi-stable. Since ε6 εi, the ampleness of L(q, ε)
also implies the ampleness of L(q, εi). For p ∈ C, let us denote by lp the length of τ(Q) at p. If
lp 6= 0, the condition (13) implies that

0< ε6
1
lp
. (33)

Since lp 6 d, the inequality (33) also implies that εi 6 1/lp, which in turn implies the
condition (13) for εi.

Conversely, suppose that the quasi-stable quotient (32) is εi-stable. The inequality (13) for
εi also implies (13) for ε since ε6 εi. In order to see that L(q, ε) is ample, take an irreducible
component P ⊂ C and check (15), (16) and (17). The condition (15) does not depend on ε,
so (15) is satisfied. Also, the assumption (30) implies that the case (17) does not occur; hence,
we only have to check (16). We denote by dP the degree of Q|P . If s(P ) = 1 and g(P ) = 0, we
have

εi >
1
dP
, (34)

by the condition (16) for εi. Since dP 6 d, (34) implies that

ε > εi−1 >
1
dP
,

which in turn implies the condition (16) for ε. Hence, (32) is ε-stable. 2

Next we treat the case of (g, m) = (0, 0). In this case, the moduli space is empty for small ε.

Lemma 2.17. For 0< ε6 2/d, we have

Q
ε
0,0(G(r, n), d) = ∅.

Proof. If Qεg,m(G(r, n), d) is non-empty, the ampleness of L(q, ε) yields

2g − 2 +m+ ε · d > 0.

Hence, if g =m= 0, ε should satisfy ε > 2/d. 2
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Let d′ ∈ Z be the integer part of d/2. We set 0 = ε0 < ε1 < · · · in the following way.

ε1 = 2, ε2 =∞ (d= 1),

ε1 =
2
d
, εi =

1
d′ − i+ 2

(26 i6 d′ + 1), εd′+2 =∞ (d> 3 is odd), (35)

εi =
1

d′ − i+ 1
(16 i6 d′), εd′+1 =∞ (d is even). (36)

We have the following:

Proposition 2.18. For ε• as above, we have

Q
ε
0,0(G(r, n), d) =Q

εi
0,0(G(r, n), d)

for ε ∈ (εi−1, εi].

Proof. By Lemma 2.17, we may assume that εi−1 > 2/d. Then we can follow essentially the
same argument of Proposition 2.16. The argument is more subtle since we have to take
the condition (17) into consideration, but we leave the detail to the reader. 2

Let Mg,m(G(r, n), d) be the moduli space of genus g, m-pointed stable maps f : C→G(r, n)
satisfying

f∗[C] = d ∈H2(G(r, n), Z)∼= Z.
(See [Kon95].) Also, we denote by Qg,m(G(r, n), d) the moduli space of MOP-stable quotients of
type (r, n, d), constructed in [MOP09]. By the following result, we see that both moduli spaces
are related by wall-crossing phenomena of ε-stable quotients.

Theorem 2.19. (i) For ε > 2, we have

Q
ε
g,m(G(r, n), d)∼=Mg,m(G(r, n), d). (37)

(ii) For 0< ε6 1/d, we have

Q
ε
g,m(G(r, n), d)∼=Qg,m(G(r, n), d). (38)

Proof. (i) First take an ε-stable quotient O⊕nC
q
�Q for some ε > 2 with marked points p1, . . . , pm.

By Propositions 2.16 and 2.18, we may take ε= 3. The condition (13) implies that Q is locally
free; hence, q determines a map

f : C→G(r, n). (39)

Also, the ampleness of L(q, 3) is equivalent to the ampleness of the line bundle

ωC(p1 + · · ·+ pm)⊗ f∗OG(3), (40)

where OG(1) is the restriction of O(1) to G(r, n) via the Plücker embedding. The ampleness
of (40) implies that the map f is a stable map.

Conversely, take an m-pointed stable map

f : C→G(r, n), p1, . . . , pm ∈ C

and a quotient O⊕nC
q
�Q by pulling back the universal quotient on G(r, n) via f . Then the

stability of the map f implies the ampleness of the line bundle (40) and hence the ampleness of
L(q, 3). Also, the condition (13) is automatically satisfied for ε= 3 since Q is locally free. Hence,
we obtain the isomorphism (37).
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(ii) If (g, m) = (0, 0), then both sides of (38) are empty, so we may assume that (g, m) 6= (0, 0).
Let us take an ε-stable quotient O⊕nC

q
�Q for 0< ε6 1/d. For any irreducible component P ⊂ C,

we have deg(Q|P )6 d. By Lemma 2.8, this implies that there is no irreducible component P ⊂ C
with

(s(P ), g(P )) = (0, 0) or (0, 1).
Hence, applying Lemma 2.8 again, we see that q is MOP-stable.

Conversely, take an MOP-stable quotient O⊕nC
q
�Q and 0< ε6 1/d. By the definition of

MOP-stable quotient, the line bundle L(q, ε) is ample. Also, for any point p ∈ C, the length
of the torsion part of Q is less than or equal to d (cf. Remark 2.7). Hence, the condition (13) is
satisfied and q is ε-stable. Therefore, the desired isomorphism (38) holds. 2

2.6 Morphisms between moduli spaces of ε-stable quotients
In this subsection, we construct some natural morphisms between moduli spaces of ε-stable
quotients. The first one is an analogue of the Plücker embedding. (See [MOP09, § 5] for the
corresponding morphism between MOP-stable quotients.)

Lemma 2.20. There is a natural morphism

ιε :Qεg,m(G(r, n), d)→Q
ε
g,m

(
G
(

1,
(
n

r

))
, d

)
. (41)

Proof. For a quasi-stable quotient O⊕nC
q
�Q of type (r, n, d) with kernel S, we associate the

exact sequence

0→∧rS→∧rO⊕nC
q′→Q′→ 0.

It is easy to see that q is ε-stable if and only if q′ is ε-stable. The map q 7→ q′ gives the desired
morphism. 2

Next we treat the case of r = 1.

Proposition 2.21. For ε> ε′, there is a natural morphism

cε,ε′ :Q
ε
g,m(Pn−1, d)→Q

ε′

g,m(Pn−1, d). (42)

Proof. For simplicity, we deal with the case of (g, m) 6= (0, 0). By Proposition 2.16, it is enough
to construct a morphism

ci+1,i :Qεi+1

g,m (Pn−1, d)→Q
εi
g,m(Pn−1, d), (43)

where εi is given by (31). Let us take an εi+1-stable quotient O⊕nC
q
�Q, and the set of irreducible

components T1, . . . , Tk of C satisfying

(s(Tj), g(Tj)) = (1, 0), deg(Q|Tj ) = d− i+ 1. (44)

Note that Tj and Tj′ are disjoint for j 6= j′, by the assumption that (g, m) 6= (0, 0). We set T and
C ′ to be

T =
k∐
j=1

Tj , C ′ = C\T . (45)

The intersection Tj ∩ C ′ consists of one point xj , unless (g, m) = (0, 1), k = 1 and i= 1. In the
latter case, the space Qε10,1(Pn−1, d) is empty, so there is nothing to prove. Let S be the kernel
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of q. We have the sequence of inclusions

S′ := S|C′
(
−

k∑
j=1

(d− i+ 1)xj

)
↪→ S|C′ ↪→O⊕nC′

and the exact sequence

0→ S′→O⊕nC′
q′→Q′→ 0.

It is easy to see that q′ is an εi-stable quotient. Then the map q 7→ q′ gives the desired
morphism (43). 2

Remark 2.22. Suppose that (g, m) 6= (0, 0). By Propositions 2.21 and 2.16 and Theorem 2.19,
we have the sequence of morphisms

Mg,m(Pn−1, d) = Q
εd+1

g,m (Pn−1, d)→Q
εd
g,m(Pn−1, d)→ · · ·

→Q
ε2
g,m(Pn−1, d)→Q

ε1
g,m(Pn−1, d) =Qg,m(Pn−1, d). (46)

The composition of the above morphism

c :Mg,m(Pn−1, d)→Qg,m(Pn−1, d) (47)

coincides with the morphism constructed in [MOP09, § 5]. The morphism c also appears for the
Quot scheme of a fixed non-singular curve in [PR03].

Let us investigate the morphism (43) more precisely. For k ∈ Z>0, we consider a subspace

Q
εi+1,k+
g,m (Pn−1, d)⊂Qεi+1

g,m (Pn−1, d) (48)

consisting of εi+1-stable quotients with exactly k irreducible components T1, . . . , Tk
satisfying (44). Setting di = d− i+ 1, the subspace (48) fits into the following Cartesian diagram.

Q
εi+1,k+
g,m (Pn−1, d) //

��

Q
εi+1

0,1 (Pn−1, di)×k

(ev1)×k

��
Q
εi,εi+1

g,k+m(Pn−1, d− kdi) // (Pn−1)×k

(49)

Here the bottom arrow is the evaluation map with respect to the first k marked points, and the
space

Q
εi,εi+1

g,m (Pn−1, d) (50)

is the moduli space of genus g, m-marked quasi-stable quotients of type (1, n, d), which is both
εi- and εi+1-stable. The space (50) is an open Deligne–Mumford substack of Qεg,m(Pn−1, d) for
both ε= εi and εi+1. Note that the left-hand arrow of (49) is surjective since the right-hand
arrow is surjective.

We also consider a subspace

Q
εi,k−
g,m (Pn−1, d)⊂Qεig,m(Pn−1, d)

consisting of εi-stable quotients O⊕nC
q
�Q with exactly k distinct points x1, . . . , xk ∈ C satisfying

length τ(Q)xj = di, 16 j 6 k.
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Obviously, we have the isomorphism

Q
εi,k−
g,m (Pn−1, d)∼=Q

εi,εi+1

g,k+m(Pn−1, d− kdi), (51)

and the construction of (43) yields the following Cartesian diagram.

Q
εi+1,k+
g,m (Pn−1, d) //

��

Q
εi+1

g,m (Pn−1, d)

ci+1,i

��

Q
εi,k−
g,m (Pn−1, d) // Q

εi
g,m(Pn−1, d)

(52)

The left-hand arrow of the diagram (52) coincides with the left-hand arrow of (49) under the
isomorphism (51), and in particular it is surjective. The above argument implies the following.

Lemma 2.23. The morphism cε,ε′ constructed in Proposition 2.21 is surjective.

For r > 1, it seems that there is no natural morphism between Mg,m(G(r, n), d) and
Qg,m(G(r, n), d), as pointed out in [MOP09, PR03]. However, for ε= 1, there is a natural
morphism between moduli spaces of stable maps and those of ε-stable quotients. The following
lemma will be used in Lemma 5.1 below.

Lemma 2.24. There is a natural surjective morphism

c′ :Mg,m(G(r, n), d)→Q
ε=1
g,m(G(r, n), d).

Proof. For simplicity, we assume that (g, m) 6= (0, 0). For a stable map f : C→G(r, n) of
degree d, pulling back the universal quotient yields the exact sequence

0→ S→O⊕nC
q→Q→ 0. (53)

Here Q is a locally free sheaf on C and the quotient q is of type (r, n, d). Let T1, . . . , Tk be the
set of irreducible components of C satisfying the following:

(s(Tj), g(Tj)) = (1, 0), deg(Q|Tj ) = 1.

By the exact sequence (53) and the degree reason, the following isomorphisms exist:

Q|Tj ∼=OP1(1)⊕O⊕n−r−1
P1 , S|Tj ∼=OP1(−1)⊕O⊕r−1

P1 . (54)

We set T and C ′ as in (45), and set xj = Tj ∩ C ′. Let π be the morphism

π : C→ C ′,

which is the identity outside T and contracts Tj to xj . The exact sequences

0→Q|T
(
−

k∑
j=1

xj

)
→Q→Q|C′ → 0, (55)

0→ S|C′
(
−

k∑
j=1

xj

)
→ S→ S|T → 0 (56)

and the isomorphisms (54) show that π∗Q has torsion at xj with length one and R1π∗S = 0.
Therefore, applying π∗ to (53) yields the exact sequence

0→ π∗S→O⊕nC′
q′→ π∗Q→ 0.
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It is easy to see that q′ is an ε-stable quotient with ε= 1, and the map f 7→ q′ gives the
desired morphism c′. An argument similar to Lemma 2.23 shows that the morphism c′ is
surjective. 2

2.7 Wall-crossing formula of virtual fundamental classes

In [MOP09, Theorems 3 and 4], the virtual fundamental classes on moduli spaces of stable maps
and those of MOP-stable quotients are compared. Such a comparison result also holds for ε-stable
quotients. Note that the arguments in §§ 2.3 and 2.6 yield the following diagram.

Q
ε
g,m(G(r, n), d)

evi

xxqqqqqqqqqqqqq

ιε // Q
ε
g,m

(
G
(

1,
(
n

r

))
, d

)

cε,ε′

��

G(r, n)

Q
ε′

g,m(G(r, n), d)

evi

ffMMMMMMMMMMMM
ιε
′

// Q
ε′

g,m

(
G
(

1,
(
n

r

))
, d

)
The following theorem, which is a refinement of [MOP09, Theorem 4], is interpreted as a wall-
crossing formula of GW type invariants. The proof will be given in § 5.

Theorem 2.25. Take ε> ε′ > 0 satisfying 2g − 2 + ε′ · d > 0. We have the formula

cε,ε′∗ι
ε
∗[Q

ε
g,m(G(r, n), d)]vir = ιε

′
∗ [Qε

′

g,m(G(r, n), d)]vir. (57)

In particular, for classes γi ∈A∗GLn(C)(G(r, n),Q), the following holds:

cε,ε′∗ι
ε
∗

( m∏
i=1

ev∗i (γi) ∩ [Qεg,m(G(r, n), d)]vir

)

= ιε
′
∗

( m∏
i=1

ev∗i (γi) ∩ [Qε
′

g,m(G(r, n), d)]vir

)
. (58)

Remark 2.26. The formula (57) in particular implies the formula

c∗[Q
ε
g,m(Pn−1, d)]vir = [Qε

′

g,m(Pn−1, d)]vir. (59)

Here the morphism c is given by (47). Applying the formula (59) to the diagram (46) repeatedly,
we obtain the following formula:

c∗[Mg,m(Pn−1, d)]vir = [Qg,m(Pn−1, d)]vir,

which reconstructs the result of [MOP09, Theorem 3].

3. Type (1, 1, d)-quotients

In this section, we investigate the moduli spaces of ε-stable quotients of type (1, 1, d) and relevant
wall-crossing phenomena.
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3.1 Relation to Hassett’s weighted pointed stable curves

Here we see that ε-stable quotients of type (1, 1, d) are closely related to Hassett’s weighted
pointed stable curves [Has03], which we recall here. Let us take a sequence

a= (a1, a2, . . . , am) ∈ (0, 1]m.

Definition 3.1. A data (C, p1, . . . , pm) of a nodal curve C and (possibly not distinct) marked
points pi ∈ Cns is called a-stable if the following conditions hold.

• The R-divisor KC +
∑m

i=1 aipi is ample.

• For any p ∈ C, we have
∑

pi=p
ai 6 1.

Note that setting ai = 1 for all i yields the usual m-pointed stable curves. The moduli space
of genus g, m-pointed a-stable curves is constructed in [Has03] as a proper smooth Deligne–
Mumford stack over C. Among weights, we only use the following weight for ε ∈ (0, 1]:

a(m, d, ε) :=
( m︷ ︸︸ ︷

1, . . . , 1,
d︷ ︸︸ ︷

ε, . . . , ε

)
. (60)

The moduli space of genus g, m+ d-pointed a(m, d, ε)-stable curves is denoted by

M
ε
g,m|d. (61)

If m= 0, we simply write (61) as M ε
g,d. For ε> ε′, there is a natural birational contraction [Has03,

Theorem 4.3]

cε,ε′ :M
ε
g,m|d→M

ε′

g,m|d. (62)

Now we describe the moduli spaces of ε-stable quotients of type (1, 1, d) and relevant wall-crossing
phenomena. In what follows, we denote

pt := P0 = G(1, 1)∼= Spec C.

We have the following proposition. (See [MOP09, Proposition 3] for the corresponding result of
MOP-stable quotients.)

Proposition 3.2. We have the isomorphism

φ :M ε
g,m|d/Sd

∼→Q
ε
g,m(pt, d), (63)

where the symmetric group Sd acts by permuting the last d marked points.

Proof. Take a genus g, m+ d-pointed a(m, d, ε)-stable curve

(C, p1, . . . , pm, p̂1, . . . , p̂d).

We associate the genus g, m-pointed quasi-stable quotient of type (1, 1, d) by the exact sequence

0→OC
(
−

d∑
j=1

p̂j

)
→OC

q→Q→ 0

with m marked points p1, . . . , pm. The a(m, d, ε)-stability immediately implies the ε-stability
for the quotient q. The map (C, p•, p̂•) 7→ q is Sd-equivariant; hence, we obtain the map φ. It is
straightforward to check that φ is an isomorphism. 2
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Remark 3.3. The morphism (62) is Sd-equivariant and hence it determines a morphism

cε,ε′ :M
ε
g,m|d/Sd→M

ε′

g,m|d/Sd.

It is easy to see that the above morphism coincides with (42) under the isomorphism (63).

3.2 The case of (g, m) = (0, 0)
Here we investigate ε-stable quotients of type (1, 1, d) with (g, m) = (0, 0). First we take d to
be an odd integer with d= 2d′ + 1, d′ > 1. We take ε• as in (35). Applying the morphism (62)
repeatedly, we obtain the sequence of birational morphisms

M0,d =M
εd′+1=1

0,d →M
εd′
0,d→ · · · →M

ε3
0,d→M

ε2=1/d′

0,d . (64)

It is easy to see that M1/d′

0,d is the moduli space of configurations of d points in P1 in which at
most d′ points coincide. This space is well known to be isomorphic to the GIT quotient [MFK94]

M
1/d′

0,d
∼= (P1)d//SL2(C). (65)

Here SL2(C) acts on (P1)d diagonally, and we take the linearization onO(
d︷ ︸︸ ︷

1, . . . , 1) induced by the
standard linearization on OP1(1). Since the sequence (64) is Sd-equivariant, taking the quotients
of (64) and combining with the isomorphism (63) yield the sequence of birational morphisms

Q
εd′+1=1

0,0 (pt, d)→Q
εd′
0,0(pt, d)→ · · · →Q

ε3
0,0(pt, d)→Q

ε2=1/d′

0,0 (pt, d)∼= Pd//SL2(C). (66)

Here the last isomorphism is obtained by taking the quotient of (65) by the Sd-action.
By Remark 3.3, each morphism in (66) coincides with the morphism (42). Recently, Kiem–
Moon [KM10] showed that each birational morphism in the sequence (64) is a blow-up at a union
of transversal smooth subvarieties of the same dimension. As pointed out in [KM98, Remark 4.5],
the sequence (66) is a sequence of weighted blow-ups from Pd//SL2(C).

When d is even with d= 2d′, let us take ε• as in (36). We also have a similar sequence to (64),

M0,d =M
εd′=1
0,d →M

εd′−1

0,d → · · · →M
ε3
0,d→M

ε2=1/(d′−1)
0,d ,

which is a sequence of blow-ups [KM10]. In this case, instead of the isomorphism (65), there is
a birational morphism (cf. [KM10, Theorem 1.1])

M
1/(d′−1)
0,d → (P1)d//SL2(C)

obtained by the blow-up along the singular locus which consists of 1
2

(
d
d′

)
points in the right-hand

side. As mentioned in [KM10], M1/(d′−1)
0,d is Kirwan’s partial desingularization [Kir85] of the GIT

quotient (P1)d//SL2(C). By taking the quotients with respect to the Sd-actions, we obtain a
sequence similar to (66),

Q
εd′=1
0,0 (pt, d)→Q

εd′−1

0,0 (pt, d)→ · · · →Q
ε2=1/(d′−1)
0,0 (pt, d)→ (Pd)//SL2(C), (67)

a sequence of weighted blow-ups. Finally, Theorem 2.19 yields that

Q
ε
0,0(pt, d) = ∅, ε > 1 or d= 1.

As a summary, we obtain the following.

Theorem 3.4. The moduli space Q
ε
0,0(pt, d) is either empty or obtained by a sequence of

weighted blow-ups starting from the GIT quotient Pd//SL2(C).
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3.3 The case of (g, m) = (0, 1), (0, 2)
In this subsection, we study moduli spaces of genus zero, 1- or 2-pointed ε-stable quotients of
type (1, 1, d). Note that for small ε, we have

Q
ε
0,1(pt, d) = ∅, 0< ε6 1/d.

The first interesting situation happens at ε= 1/(d− 1) and d> 2. For an object

(C, p, p̂1, . . . , p̂d) ∈M
1/(d−1)
0,1|d ,

applying Lemma 2.8 immediately implies that C ∼= P1. We may assume that p=∞∈ P1 and
hence p̂i ∈ A1. The stability condition is equivalent to that at least two points among p̂1, . . . , p̂d
are distinct. Let ∆ be the small diagonal,

∆ = {(x1, . . . , xd) ∈ Ad : x1 = x2 = · · ·= xd}.
Noting that the subgroup of automorphisms of P1 preserving p ∈ P1 is A1 o Gm, we have

M
1/(d−1)
0,1|d

∼= (Ad\∆)/A o Gm

∼= Pd−2.

By Proposition 3.2, we obtain

Q
1/(d−1)
0,1 (pt, d)∼= Pd−2/Sd. (68)

In particular, for each ε ∈ R>0, the moduli space Qε0,1(pt, d) is either empty or admits a birational
morphism to Pd−2/Sd.

Next we look at the case of (g, m) = (0, 2). An ε-stable quotient is an MOP-stable quotient
for 0< ε6 1/d, and in this case the moduli space is described in [MOP09, § 4]. In fact, for any

MOP-stable quotient O⊕nC
q
�Q, the curve C is a chain of rational curves and two marked points

lie at distinct rational tails if C is not irreducible. If k is the number of irreducible components
of C, then giving an MOP-stable quotient is equivalent to giving a partition d1 + · · ·+ dk = d
and length di divisors on each irreducible component up to rotations. Therefore, we have (set
theoretically)

Q0,2(pt, d) =
∐
k>1

d1+···+dk=d

k∏
j=1

Symdi(C∗)/C∗. (69)

For 1/d < ε6 1/(d− 1), an MOP-stable quotient O⊕nC
q
�Q is not ε-stable if and only if C ∼= P1

and the support of τ(Q) consists of one point. Such stable quotients consist of one point in the
right-hand side of (69). Noting the isomorphism (68), the Cartesian diagram (52) is described
as follows.

Pd−2/Sd //

��

Q
ε
0,2(pt, d)

��
Spec C // Q0,2(pt, d)

4. Proof of Theorem 2.12

In this section, we give a proof of Theorem 2.12. We first show that Qεg,m(G(r, n), d) is a Deligne–
Mumford stack of finite type over C, following the argument of [Has03, MOP09]. Next we show
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the properness of Qεg,m(G(r, n), d) using the valuative criterion. The argument to show the
properness of MOP-stable quotients [MOP09, § 6] is not applied for ε-stable quotients. Instead,
we give an alternative argument, which also gives another proof of [MOP09, Theorem 1].

4.1 Construction of the moduli space

The same arguments of Propositions 2.16 and 2.18 show the similar result for the 2-functors (18).
For ε > 1, the moduli space of ε-stable quotients is either empty or isomorphic to the moduli
space of stable maps to the Grassmannian. Therefore, we assume that

ε=
1
l
, l = 1, 2, . . . , d,

and construct the moduli space Q
1/l
g,m(G(r, n), d) as a global quotient stack. If ε= 1/d, then

the moduli space coincides with that of MOP-stable quotients (cf. Theorem 2.19), and the
construction is given in [MOP09, § 6]. We need to slightly modify the argument to construct
the moduli spaces for a general ε, but the essential idea is the same. First we show the following
lemma.

Lemma 4.1. Take an ε= 1/l-stable quotient O⊕nC
q
�Q and an integer k > 5. Then the line

bundle L(q, 1/l)⊗lk is very ample. Here L(q, 1/l) is defined in (12).

Proof. It is enough to show that for x1, x2 ∈ C, we have

H1(C, L(q, 1/l)⊗lk ⊗ Ix1Ix2) = 0. (70)

Here Ixi is the ideal sheaf of xi. By the Serre duality, (70) is equivalent to

Hom(Ix1Ix2 , ωC ⊗ L(q, 1/l)⊗(−lk)) = 0. (71)

Suppose that x1, x2 ∈ Cns. For an irreducible component P ⊂ C, we set dP = deg(Q|P ). In the
notation of Lemma 2.8, we have

deg(ωC(x1 + x2)⊗ L(q, 1/l)⊗(−lk)|P )
6 2g(P )− 2 + s(P ) + 2− lk(2g(P )− 2 + s(P ) + dP /l)
= (2g(P )− 2 + s(P ))(1− lk) + 2− dPk. (72)

In the case of

2g(P )− 2 + s(P )> 0,

(72) is obviously negative. Otherwise, (g(P ), s(P )) is one of the following:

(g(P ), s(P )) = (1, 0), (0, 2), (0, 1), (0, 0).

In these cases, (72) is negative by Lemma 2.8. Therefore, (71) holds.

When x1 or x2 or both of them are nodes, for instance x1 is a node and x2 ∈ Cns, then we
take the normalization at x1,

π : C̃→ C,

with π−1(x1) = {x′1, x′′1}. Then (71) is equivalent to

H0(C̃, ω
C̃

(x′1 + x′′1 + x2)⊗ L(q, 1/l)⊗(−lk)) = 0, (73)

and the same calculation as above shows (73). The other cases are also similarly discussed. 2
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By Lemma 4.1, we have

h0(C, L(q, 1/l)⊗kl) = 1− g + kl(2g − 2) + kd+m, (74)

which does not depend on a choice of a 1/l-stable quotient of type (r, n, d). Let V be a C-vector
space of dimension (74). The very ample line bundle L(q, 1/l)⊗kl on C determines an embedding

C ↪→ P(V ),

and marked points determine points in P(V ). Therefore, the 1/l-stable quotient associates a
point

(C, p1, . . . , pm) ∈Hilb(P(V ))× P(V )×m. (75)

Let
H⊂Hilb(P(V ))× P(V )×m

be the locally closed subscheme which parameterizes (C, p1, . . . , pm) satisfying the following.

• The subscheme C ⊂ P(V ) is a connected nodal curve of genus g.
• We have pi ∈ Cns and pi 6= pj for i 6= j.

Let π : C →H be the universal curve and

Quot(n− r, d)→H

the relative Quot scheme which parameterizes rank n− r, degree d quotients O⊕nC �Q on the
fibers of π. We define

Q⊂Quot(n− r, d)

to be the locally closed subscheme corresponding to quotients O⊕nC
q
�Q satisfying the following.

• The coherent sheaf Q is locally free near nodes and pi.
• For any p ∈ C, we have length τ(Q)p 6 l.
• The line bundle L(q, 1/l)⊗lk coincides with OP(V )(1)|C .

The natural PGL2(C)-action on H lifts to the action on Q, and the desired moduli space is the
following quotient stack:

Q
1/l
g,m(G(r, n), d) = [Q/PGL2(C)].

By Lemma 2.11, the stabilizer groups of closed points in Q
1/l
g,m(G(r, n), d) are finite. Hence, this

is a Deligne–Mumford stack of finite type over C.

4.2 Valuative criterion
In this subsection, we prove the properness of the moduli stack Qεg,m(G(r, n), d). Before this, we
introduce some notation. Let X be a variety and F a locally free sheaf of rank r on X. For n> r
and a morphism

s :O⊕nX → F,

we associate the degenerate locus
Z(s)⊂X.

Namely, Z(s) is defined by the ideal, locally generated by r × r-minors of the matrix given by s.
For a point g ∈G(r, n), let us choose a lift of g to an embedding

g : Cr ↪→ Cn. (76)
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Here, by abuse of notation, we have also denoted the above embedding by g. We have the
sequence

sg :O⊕rX
g
↪→O⊕nX

s→ F.

The morphism sg is determined by g ∈G(r, n) up to the GLr(C)-action on O⊕rX . Note that if sg
is injective, then Z(sg) is a divisor on X which does not depend on a choice of a lift (76). The
divisor Z(sg) fits into the exact sequence

0→
r∧
F∨→OX →OZ(sg)→ 0.

When X = G(n− r, n) and s is a universal rank r quotient, sg is injective and Hg := Z(sg) is a
divisor in G(n− r, n).

Lemma 4.2. Let O⊕nC
q
�Q be an ε-stable quotient with kernel S and marked points p1, . . . , pm.

Let s :O⊕nC → S∨ be the dual of the inclusion S ↪→O⊕nC . Then for a general choice of g ∈G(r, n),
the degenerate locus Z(sg)⊂ C is a divisor written as

Z(sg) = Z(s) +Dg.

Here Dg is a reduced divisor on C satisfying

Dg ∩ {Z(s) ∪ {p1, . . . , pm}}= ∅.

Proof. Let F ⊂ S∨ be the image of s. Note that F is a locally free sheaf of rank r; hence, it
determines a map

πF : C→G(n− r, n).

It is easy to see that a general g ∈G(r, n) satisfies the following.

• The divisor Hg ⊂G(n− r, n) intersects the image of πF transversally. (Or the intersection
is empty if πF (C) is a point.)

• For p ∈ Supp τ(Q) ∪ {p1, . . . , pm}, we have πF (p) /∈Hg.

Then we have

Z(sg) = Z(s) + π∗FHg,

and Dg := π∗FHg satisfies the desired property. 2

In the next proposition, we show that the moduli space of ε-stable quotients is separated. Let
∆ be a non-singular curve with a closed point 0 ∈∆. We set

∆∗ = ∆\{0}.

Proposition 4.3. For i= 1, 2, let πi : Xi→∆ be flat families of quasi-stable curves with disjoint

sections p
(i)
1 , . . . , p

(i)
m : ∆→Xi. Let qi :O⊕nXi �Qi be flat families of ε-stable quotients of type

(r, n, d) which are isomorphic over ∆∗. Then, possibly after base change ramified over 0, there are
an isomorphism φ : X1

∼→X2 over ∆ and an isomorphism ψ : φ∗Q2
∼→Q1 such that the following

diagram commutes.

O⊕nX1

φ∗q2 //

id
��

φ∗Q2

ψ

��
O⊕nX1

q1 // Q1
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Proof. Since the relative Quot scheme is separated, it is enough to show that the isomorphism
over ∆∗ extends to the families of marked curves πi : Xi→∆. By taking the base change and the
normalization, we may assume that the general fibers of πi are non-singular irreducible curves,
by adding the preimage of the nodes to the marking points. Let us take exact sequences

0→Si→O⊕nXi →Qi→ 0.

Since Si|Xi,t is locally free for any t ∈∆, where Xi,t := π−1
i (t), the sheaf Si is a locally free sheaf

on Xi. Taking the dual, we obtain the morphism

si :O⊕nXi →S
∨
i .

Let us take a general point g ∈G(r, n) and the degenerate locus

Di := Z(si,g)⊂Xi.

By Lemma 4.2, the divisor Di,t :=Di|Xi,t is written as

Di,t = Z(si,t) +D◦i,t,

where D◦i,t is a reduced divisor on Xi,t satisfying

D◦i,t ∩ {Z(si,t) ∪ {p1(t), . . . , pm(t)}}= ∅.

Then the ε-stability of O⊕nXi,t
qi,t
� Qi|Xi,t implies the following.

• The coefficients of the R-divisor
∑m

j=1 p
(i)
j (t) + ε ·Di,t are less than or equal to 1.

• The R-divisor KXi,t +
∑m

j=1 p
(i)
j (t) + ε ·Di,t is ample on Xi,t.

The first condition implies that the pairs(
Xi,

m∑
j=1

p
(i)
j + ε ·Di

)
, i= 1, 2, (77)

have only log canonical singularities. (See [KMM87, KM98].) Also, since the divisors
∑m

j=1 p
(i)
j +

ε ·Di do not contain curves supported on the central fibers, we have

φ∗

( m∑
j=1

p
(1)
j + ε ·D1

)
=

m∑
j=1

p
(2)
j + ε ·D2,

where φ is the birational map φ : X1 99K X2. Therefore, the pairs (77) are birational log canonical
models over ∆. Since two birational log canonical models are isomorphic, the birational map φ

extends to an isomorphism φ : X1
∼=→X2. 2

Finally, we show that the moduli space Qεg,m(G(r, n), d) is complete.

Proposition 4.4. Suppose that the following data is a flat family of m-pointed ε-stable
quotients of type (r, n, d) over ∆∗:

π∗ : X ∗→∆∗, p∗1, . . . , p
∗
m : ∆∗→X ∗, q∗ :O⊕nX ∗ �Q

∗. (78)

Then, possibly after base change ramified over 0 ∈∆, there is a flat family of m-pointed ε-stable
quotients over ∆,

π : X →∆, p1, . . . , pm : ∆→X , q :O⊕nX �Q, (79)

which is isomorphic to (78) over ∆∗.
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Proof. As in the proof of Proposition 4.3, we may assume that the general fibers of π∗ are non-
singular irreducible curves. Let S∗ be the kernel of q∗. Taking the dual of the inclusion S∗ ⊂O⊕nX ∗ ,
we obtain the morphism

s∗ :O⊕nX ∗ →S
∗∨.

We choose a general point

g ∈G(r, n), (80)

and set D∗ := Z(s∗g)⊂X ∗. As in the proof of Proposition 4.3, the ε-stability implies that the pair(
X ∗,

m∑
j=1

p∗j + ε ·D∗
)

(81)

is a log canonical model over ∆∗.
Indeed, the family (81) can be interpreted as a family of Hassett’s weighted pointed stable

curves [Has03]. Let us write

D∗ =
k∑
j=1

mjD
∗
j

for distinct irreducible divisors D∗j and mj > 1. Since the family (78) is of type (r, n, d), we have

m1 +m2 + · · ·+mk = d.

By shrinking ∆ if necessary, we may assume that each D∗j is a section of π∗. Then the data(
π∗ : X ∗→∆∗, p∗1, . . . , p

∗
m,

m1︷ ︸︸ ︷
D∗1, . . . , D

∗
1, . . . ,

mk︷ ︸︸ ︷
D∗k, . . . , D

∗
k

)
(82)

is a family of a(m, d, ε)-stable m+ d-pointed curves [Has03] over ∆∗. (See Definition 3.1
and (60).) By the properness of M ε

g,m|d (cf. [Has03, (61)]), there is a family of a(m, d, ε)-stable
m+ d-pointed curves over ∆,(

π : X →∆, p1, . . . , pm,

m1︷ ︸︸ ︷
D1, . . . , D1, . . . ,

mk︷ ︸︸ ︷
Dk, . . . , Dk

)
, (83)

which is isomorphic to the family (82) over ∆∗. In particular, we have an extension of D∗ to X ,

D =
k∑
j=1

mjDj , D|X ∗ =D∗.

By the properness of the relative Quot scheme, there is an exact sequence

0→S →O⊕nX
q→Q→ 0 (84)

such that q is isomorphic to q∗ over ∆∗. Restricting to X0, we obtain the exact sequence

0→S0→O⊕nX0

q0→Q0→ 0. (85)

We claim that the quotient q0 is an ε-stable quotient and hence the family (X , p1, . . . , pm) and q
gives a desired extension (79). We prove the following lemma.

Lemma 4.5. The sheaf S is a locally free sheaf on X .
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Proof. First we see that the sheaf S is reflexive, i.e. S∨∨ ∼= S. We have the morphism of exact
sequence of sheaves on X ,

0 // S //

��

O⊕nX //

��

Q //

��

0

0 // S∨∨ // O⊕nX // Q′ // 0

where the left-hand arrow is an injection. By the snake lemma, there is an inclusion

S∨∨/S ↪→Q,

and S∨∨/S is supported on X0, which contradicts that Q is flat over ∆. In particular, setting

U = X\(nodes of X0),

the sheaf S is a push-forward of some locally free sheaf on U to X . We only need to check that
S is free at nodes on X0.

Taking the dual of the inclusion S ↪→O⊕nX and composing with g :O⊕rX ↪→O⊕nX , where g is
taken in (80), we obtain a morphism

sg :O⊕rX
g
↪→O⊕nX →S

∨.

Restricting to U , we obtain the divisor in U ,

D†U := Z(sg|U )⊂ U,

and the closure of D†U in X is denoted by D†. We have the following.

• By the construction, we have D|X ∗ =D†|X ∗ .
• Replacing g by another general point in G(r, n) if necessary, the divisors D† and D do not

contain any irreducible component of X0.

These properties imply that D† =D. Noting that the divisor D has support away from nodes of
X0, the support of the cokernel of sg is written as

Supp Cok(sg) = Supp(D)q V, (86)

where V is a finite set of points contained in the nodes of X0. However, if V is non-empty, then
there are a nodal point x ∈ X0 and an injection Ox ↪→S∨, which contradict that S is torsion
free. Therefore, V is empty, and the morphism sg is isomorphic on nodes of X0. Hence, S∨ is a
locally free sheaf on X0, and the sheaf S is also locally free since S ∼= S∨∨. 2

Note that the local freeness of S implies that the divisor Z(sg) is well defined, and the proof
of the above lemma immediately implies that

Z(sg) =D† =D. (87)

Next let us see that q0 is a quasi-stable quotient. Taking Hom(∗,OX0) to the exact
sequence (85), we obtain the exact sequence

0→Q∨0 →O⊕nX0

s0−→S∨0 →Ext1X0
(Q0,OX0)→ 0,

and the vanishing ExtiX0
(Q0,OX0) = 0 for i> 2. We have the surjection

Cok(s0,g)� Ext1X0
(Q0,OX0), (88)
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and the left-hand side of (88) has support away from nodes and markings by (87). Therefore,
for a nodal point or marked point p ∈ X0, we have

ExtiX0
(Q0,OX0)p = 0, i> 1,

which implies that Q0 is locally free at p, i.e. q0 :O⊕nX0
�Q0 is a quasi-stable quotient.

Finally, we check the ε-stability of q0. The ampleness of L(q0, ε) is equivalent to the ampleness
of the divisor

KX0 + p1(0) + · · ·+ pm(0) + ε · Z(sg,0). (89)

Noting the equality (87), we have Z(sg,0) =D|X0 . Since the data (83) is a family of a(m, d, ε)-
stable curves, the divisor (89) on X0 is ample. Also, the surjection (88) and the fact Z(sg,0) =D|X0

imply that

ε · length τ(Q0)p 6 ε · length Cok(sg,0)p
= ε · lengthOZsg,0 ,p,
= ε · lengthOD|X0,p (90)

for any p ∈ X0. Again noting that (83) is a family of a(m, d, ε)-stable curves, we conclude that (90)
61. Therefore, q0 is an ε-stable quotient. 2

5. Wall-crossing formula

The purpose of this section is to give an argument to prove Theorem 2.25. Our strategy is to
modify [MOP09, § 7] so that ε is involved in the argument. Therefore, we only focus on the
arguments to be modified, and we leave several details to the reader.

5.1 Localization
Let T be a torus T = Gn

m acting on Cn via

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn).

The above T -action induces a T -action on G(r, n) and Q
ε
g,m(G(r, n), d). Over the moduli space

of MOP-stable quotients, the T -fixed loci are obtained in [MOP09, § 7] via certain combinatorial
data. The T -fixed loci of ε-stable quotients are similarly obtained, but we need to take the
ε-stability into consideration. They are indexed by the following data:

θ = (Γ, ι, γ, s, β, δ, µ). (91)

• Γ = (V, E) is a connected graph, where V is the vertex set and E is the edge set with no
self edges.

• ι is an assignment of an inclusion

ιv : {1, . . . , r}→ {1, . . . , n}

to each v ∈ V . In particular, the induced subspace Cr ↪→ Cn by ιv determines a map

ν : V →G(r, n)T .

• γ is a genus assignment γ : V → Z>1 satisfying∑
v∈V

γ(v) + h1(Γ) = g.
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• For each v ∈ V , s(v) = (s1(v), . . . , sr(v)) with si(v) ∈ Z>0. We set

s(v) =
r∑
i=1

si(v).

• β is an assignment to each e ∈ E of a T -invariant curve β(e) of G(r, n). The two vertices
incident to e ∈ E are mapped via ν to the two T -fixed points incident to β(e).

• δ : E→ Z>1 is an assignment of a covering number satisfying∑
v∈V

s(v) +
∑
e∈E

δ(e) = d.

• µ is a distribution of the m-markings to the vertices of V .

• For each v ∈ V , we set

w(v) = min{0, 2γ(v)− 2 + ε · s(v) + val(v)}.

Then for each edge e ∈ E with incident vertex v1, v2 ∈ V , we have

ε · δ(e) + w(v1) + w(v2)> 0. (92)

The condition (92) corresponds to the ampleness of (12) at the irreducible component determined
by e. Given a data θ as in (91), the isomorphism classes of T -fixed ε-stable quotients indexed by
θ form a product of the quotients of the moduli spaces of weighted pointed stable curves,

QT (θ) =
∏
v∈V

(
M

ε
γ(v),val(v)|s(v)

/ r∏
i=1

Ssi(v)

)
. (93)

Here, if v ∈ V does not satisfy the condition

2γ(v)− 2 + ε · s(v) + val(v)> 0, (94)

we set

M
ε
γ(v),val(v)|s(v) =

{
Spec C, V 6= {v},
∅, V = {v}.

The corresponding T -fixed ε-stable quotients are described in the following way.

• For v ∈ V , suppose that the condition (94) holds. A point in the v-factor of (93) determines a
curve Cv and an r-tuple of divisors on it D1, . . . , Dr with deg(Di) = si(v). Then an ε-stable
quotient is obtained by the exact sequence

0→
r⊕
i=1

OCv(−Di)→O⊕nCv →Q→ 0. (95)

Here the first inclusion is the composition of the natural inclusion
r⊕
i=1

OCv(−Di) ↪→O⊕rCv

and the inclusion O⊕rCv ↪→O
⊕n
Cv

induced by ιv.

• For e ∈ E, consider the degree δ(e)-covering ramified over the two torus fixed points,

fe : Ce→ β(e)⊂G(r, n). (96)
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Note that fe is a finite map between projective lines. We obtain the exact sequence

0→ S→O⊕nCe
q→Q→ 0, (97)

and hence a quotient q, by pulling back the tautological sequence on G(r, n) to Ce. Let
v and v′ be the two vertices incident to e, and x, x′ ∈ Ce the corresponding ramification
points, respectively. We have the following cases.

(i) Suppose that both of v and v′ satisfy (94). Then we take the quotient q.
(ii) Suppose that exactly one of v or v′, say v, does not satisfy (94). For simplicity, we
assume that ιv(j) = j for 16 j 6 n, and

ιv′(j) = j, 16 j 6 r − 1, ιv′(r) = r + 1.

Then the exact sequence (97) is identified with the sequence

0→O⊕r−1
Ce

⊕OCe(−δ(e))→O⊕nCe →OCe(δ(e))⊕O
⊕n−r−1
Ce

→ 0. (98)

Here the embedding

O⊕r−1
Ce

⊕OCe(−δ(e))⊂O⊕nCe
is the composition

O⊕r−1
Ce

⊕OCe(−δ(e))⊂O⊕r−1
Ce

⊕O⊕2
Ce
⊂O⊕nCe ,

where the first embedding is the direct sum of the identity and the pull-back of the
tautological embedding via fe, and the second one is the embedding into the first r + 1
factors. Composing the embedding

0→
r−1⊕
i=1

OCe(−si(v)x)⊕OCe(−sr(v)x− δ(e))→O⊕r−1
Ce

⊕OCe(−δ(e))

with the sequence (98), we obtain the exact sequence

0→
r−1⊕
i=1

OCe(−si(v)x)⊕OCe(−sr(v)x− δ(e))→O⊕nCe
q′→Q′→ 0.

Then we take the quotient q′.
(iii) Suppose that both v and v′ do not satisfy (94). Then, as above, we take the exact
sequence

0→
r−1⊕
i=1

OCe(−si(v)x− si(v′)x′)⊕OCe(−sr(v)x− sr(v′)x′ − δ(e))

→ O⊕nCe
q′′→Q′′→ 0,

and we take the quotient q′′.

By gluing the above quotients, we obtain a curve C and a quotient from O⊕nC . The
condition (92) ensures that the resulting quotient is ε-stable.

5.2 Virtual localization formula
Let QT (θ) be the T -fixed locus (93), and iθ the inclusion

iθ :QT (θ) ↪→Q
ε
g,m(G(r, n), d).
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We denote by Nvir(θ) the virtual normal bundle of QT (θ) in Q
ε
g,m(G(r, n), d). The virtual

localization formula [GP99] in this case is written as

[Qεg,m(G(r, n), d)]vir =
∑
θ

iθ!

(
[QT (θ)]

e(Nvir(θ))

)
∈ AT∗ (Qεg,m(G(r, n), d),Q)⊗R Q(λ1, . . . , λn). (99)

Here R is the equivariant Chow ring of a point with respect to the trivial T -action,

R= Q[λ1, . . . , λn],

with λi equivariant parameters.
Let v be a vertex in the data (91) which satisfies the condition (94). We see the contribution

of v to the right-hand side of (99). For simplicity, we assume that ιv(j) = j for 16 j 6 r. The
vertex v corresponds to the space

M
ε
γ(v),val(v)|s(v)

/ r∏
i=1

Ssi(v).

Similarly to the sequence (95), each point on the above space corresponds to an exact sequence

0→ S =
r⊕
i=1

Si→O⊕nC →Q→ 0

for Si =OCv(−Di) with deg(Di) = si(v), and val(v)-marked points. The exact sequence (28) and
the argument of [MOP09, § 7] show that the contribution of the vertex v is

Cont(v) =
e(E∗ ⊗ Tν(v))

e(Tν(v))
1∏

e(λ(e)/δ(e))− ψe
(100)

× 1∏
i6=j e(H0(OC(Si)|Sj )⊗ [λj − λi])

(101)

× 1∏
i6=j∗ e(H0(OC(Si)|Si)⊗ [λj∗ − λi])

. (102)

Here each factor is as follows.

• The symbol e denotes the Euler class, Tν(v) is the T -representation on the tangent space of
G(r, n) at ν(v) and E is the Hodge bundle

E→M
ε
γ(v),val(v)|s(v). (103)

• The product in the denominator of (100) is over all half edges e incident to v. The factor
λ(e) denotes the T -weight of the tangent representation along the corresponding T -fixed
edge, and ψe is the first Chern class of the cotangent line at the corresponding marking of
M

ε
γ(v),val(v)|s(v). (See (104) below.)

• The products in (101) and (102) satisfy the following conditions:

16 i6 r, 16 j 6 r, r + 16 j∗ 6 n.

The brackets [λj − λi] denote the trivial bundle with specified weights.

The same argument describing Cont(v) as above is also applied to see the contribution term
of the edge e to the formula (99). However, we do not need to know its precise formula, and it
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is enough to notice that

Cont(e) ∈Q(λ1, . . . , λn).

The above fact is easily seen by the description of the T -fixed ε-stable quotients in the last
subsection. Then the right-hand side of (99) is the sum of the products∑

θ

iθ!

(∏
e

Cont(e)
∏
v

Cont(v)[QT (θ)]
)
.

5.3 Classes on M ε
g,m|d

As we have seen, each term of the virtual localization formula is a class on the moduli space of
weighted pointed stable curves M ε

g,m|d. The relevant classes on M
ε
g,m|d for a sufficiently small

ε are discussed in [MOP09, § 4]. For arbitrary 0< ε6 1, the similar classes are also available,
which we recall here.

For every subset J ⊂ {1, . . . , d} of size at least 2, there is a diagonal class

DJ ∈A|J |−1(M ε
g,m|d,Q)

corresponding to the weighted pointed stable curves

(C, p1, . . . , pm, p̂1, . . . , p̂d)

satisfying

p̂j = p̂j′ , j, j′ ∈ J.
Note that DJ = 0 if ε · |J |> 1.

Next we have the cotangent line bundles

Li→M
ε
g,m|d, L̂j →M

ε
g,m|d

for 16 i6m and 16 j 6 d, corresponding to the respective markings. We have the associated
first Chern classes

ψi = c1(Li), ψ̂j = c1(L̂j) ∈A1(M ε
g,m|d,Q). (104)

The above classes are related as follows. For a subset J ⊂ {1, . . . , d}, the class

ψ̂J := ψ̂j |DJ (105)

does not depend on j ∈ J . If J and J ′ have non-trivial intersections, it is easy to see that

DJ ·DJ ′ = (−ψ̂J∪J ′)|J∩J
′|−1DJ∪J ′ . (106)

By the above properties, we obtain the notion of canonical forms (cf. [MOP09, § 4]), for any
monomial M(ψ̂j , DJ) of ψ̂j and DJ . It is obtained as follows.

• We multiply the classes DJ using the formula (106) until we obtain the product of classes
ψ̂j and DJ1DJ2 · · ·DJl with all Ji disjoint.

• Using (105), we collect the equal cotangent classes.

By extending the above operation linearly, we obtain the canonical form for any polynomial
P (ψ̂j , DJ).
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5.4 Standard classes under change of ε
For ε> ε′, recall that there is a birational morphism (cf. (62) and Remark 3.3)

cε,ε′ :M
ε
g,m|d→M

ε′

g,m|d.

For simplicity, we write cε,ε′ as c. Then we have the following:

c∗ψi = ψi, 16 i6m, (107)
c∗ψ̂j = ψ̂j −∆j , 16 j 6 d. (108)

Here ∆j is given by

∆j =
∑

j∈J⊂{1,...,d}

∆J , (109)

where ∆J ⊂M
ε
g,m|d correspond to curves

C = C1 ∪ C2, g(C1) = 0, g(C2) = g

with a single node which separates C1 and C2, and the markings of J are distributed to C1. The
subsets J in the sum (109) should satisfy

ε · |J | − 1> 0,
ε′ · |J | − 16 0.

Applying (107) and (108) and the projection formula, we obtain the universal formula

c∗

( m∏
i=1

ψmii

d∏
j=1

ψ̂
nj
j

)
=

m∏
i=1

ψmii

( d∏
j=1

ψ̂
nj
j + · · ·

)
. (110)

If ε= 1 and 0< ε′� 1, the above formula coincides with the formula obtained in [MOP09,
Lemma 3].

Also, the Hodge bundle (103) satisfies

c∗E∼= E, (111)

since c contracts only rational tails.

5.5 The case of genus zero
In genus zero, note that the moduli space

Q
ε
0,m(G(r, n), d)

is non-singular by Lemma 2.15. If it is also connected, then it is irreducible and there is a
birational map

Q
ε1
0,m(G(r, n), d) 99KQε20,m(G(r, n), d)

as long as εi > (2−m)/d. In fact, we have the following.

Lemma 5.1. The moduli stack

Q
ε
g,m(G(r, n), d) (112)

is connected.

Proof. The connectedness of the stable map moduli spaces is proved in [KP01], and we reduce
the connectedness of (112) to that of the stable map moduli spaces. To do this, it is enough to
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see that any ε-stable quotient q :O⊕nC �Q is deformed to a quotient obtained by a stable map.
By applying the T -action, we may assume that q is a T -fixed quotient. Then q fits into an exact
sequence

0→
r⊕
i=1

OC(−Di)→O⊕nC
q→Q→ 0

for r-tuple divisors Di on C. (See § 5.1.) By deforming Di to reduced divisors D′i, we can deform
the quotient q to q′ :OC �Q′, which is ε-stable for ε= 1. Then, by Lemma 2.24, we can deform q′

to a quotient corresponding to a stable map. 2

The smoothness of the genus zero moduli spaces and the above lemma show the formula

cε,ε′∗ι
ε
∗([Q

ε
0,m(G(r, n), d)]vir) = ιε

′
∗ ([Qε

′

0,m(G(r, n), d)]vir). (113)

Hence, Theorem 2.25 in the genus zero case is proved.

5.6 Sketch of the proof of Theorem 2.25

Under the map to Qε
′

g,m(G(1, (nr)), d), several rational tails on Qεg,m(G(r, n), d) with small degree
collapse. Also, the T -fixed loci of Qεg,m(G(r, n), d) have many splitting types of the subbundle S
which are collapsed. For a non-collapsed edge, its contribution exactly coincides, and we just
need to show the matching on each vertex.

The equality (113) implies that both sides are equal after T -equivariant localization. For each
vertex v on Q

ε
0,m(G(r, n), d), the contribution

Cont(v) ∈AT∗ (M ε
0,val(v)|s(v),Q)⊗R Q(λ1, . . . , λn)

is given in § 5.2. In genus zero the Hodge bundle is trivial, and the class Cont(v) is easily seen
to be written as an element

Cont(v) ∈Q(λ1, . . . , λn)[ψi, ψ̂j , DJ ]

symmetric with respect to the variables ψ̂j . Let us take the push-forward to Qε
′

0,m(G(1, (nr)), d)
using (110), and take the canonical form (cf. § 5.3). At each vertex on Q

ε′

0,m(G(1, (nr)), d), the
vertices and the collapsed edges on Q

ε
0,m(G(r, n), d) contribute to the left-hand side of (113) by

the polynomial

LC(ψi, ψ̂j , DJ).

Also, the vertices on Qε
′

0,m(G(r, n), d) with collapsed splitting types contribute to the right-hand
side of (113) by the polynomial

RC(ψi, ψ̂j , DJ).

The equality (113) implies the equality

LC(ψi, ψ̂j , DJ) =RC(ψi, ψ̂j , DJ) (114)

as classes in the equivariant Chow ring.

Although (114) is an equality after taking classes, exactly the same argument of [MOP09,
Lemma 5] shows that the equality (114) holds as abstract polynomials. Also note that the genus-
dependent part involving Hodge bundles (100) in the virtual localization formula (99) does not
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depend on ε by (111). Therefore, the above argument immediately implies that

cε,ε′∗ι
ε
∗([Q

ε
g,m(G(r, n), d)]vir) = ιε

′
∗ ([Qε

′

g,m(G(r, n), d)]vir) (115)

for any g > 0. Hence, we obtain the formula (57).

6. Invariants on (local) Calabi–Yau 3-folds

In this section, we introduce some enumerative invariants of curves on (local) Calabi–Yau
3-folds and propose related problems. Similar invariants for MOP-stable quotients are discussed
in [MOP09, §§ 9 and 10]. In what follows, we use the notation (23) and (24) for universal curves
and quotients.

6.1 Invariants on a local (−1,−1)-curve

Let us consider a crepant small resolution of a conifold singularity, that is, the total space of
OP1(−1)⊕2,

X =OP1(−1)⊕OP1(−1)→ P1.

In a similar way to [MOP09, § 9], we define the Q-valued invariant by

N ε
g,d(X) :=

∫
[Q
ε
g,0(P1,d)]vir

e(R1πε∗(SUε)⊕R1πε∗(SUε)). (116)

It is easy to see that

πε∗(SUε) = 0;

hence, R1πε∗(SUε) is a vector bundle and (116) is well defined. By Theorem 2.19(i) and
Lemma 2.17, we have

N ε
g,d(X) = NGW

g,d (X), ε > 2,
N ε

0,d(X) = 0, 0< ε6 2/d.

Here NGW
g,d (X) is the genus g, degree d local GW invariant of X. The following result is obtained

by the same method of [MOP09, Propositions 6 and 7], using the localization with respect to
the twisted C∗-action on X, and the vanishing result similar to [FP00]. We leave the reader
to check the detail.

Theorem 6.1. We have the following:

N ε
g,d(X) =

{
NGW
g,d (X), 2g − 2 + ε · d > 0,

0, 2g − 2 + ε · d6 0.

Let FGW(X) be the generating series

FGW(X) =
∑

g>0,d>0

NGW
g,d (X)λ2g−2td.

Recall that we have the following Gopakumar–Vafa formula:

FGW(X) =
∑
d>1

td

4d sin2(dλ/2)
. (117)
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By Theorem 6.1 and the formula (117), the generating series of N ε
g,d(X) satisfies the formula

F ε(X) :=
∑

g>0,d>0

N ε
g,d(X)λ2g−2td

=
∑
d>1

td

4d sin2(dλ/2)
−

∑
0<d62/ε

1
d3
λ−2td.

6.2 Invariants on a local projective plane

Let us consider the total space of the canonical line bundle of P2,

X =OP2(−3)→ P2.

As in the case of a (−1,−1)-curve, we can define the invariant by

N ε
g,d(X) :=

∫
[Q
ε
g,0(P2,d)]vir

e(R1πε∗(S
⊗3
Uε )) ∈Q

since we have the vanishing

πε∗(S
⊗3
Uε ) = 0.

Note that N ε
g,d(X) is a local GW invariant of X when ε > 2. However, for a small ε, the following

example shows that N ε
g,d(X) is different from the local GW invariant of X.

Example 6.2. For X =OP2(−3), an explicit computation shows that

N ε
1,1(X) =

{
1
4 , ε > 1,
3
4 , 0< ε6 1.

In fact, if ε > 1, then N ε
1,1(X) coincides with the local GW invariant of X, and it is already

computed. A list is available in [AMV04, Table 1] in a Gopakumar–Vafa form.

Let us compute N ε
1,1(X) for 0< ε6 1. In this case, any ε-stable quotient of type (1, 3, 1) is

MOP-stable, and the moduli space is described as

Q
ε
1,0(P2, 1)∼=M1,1 × P2.

(See [MOP09, Example 5.4].) Also, there is no obstruction in this case,

[Qε1,0(P2, 1)]vir = [Qε1,0(P2, 1)].

Let

π : U →M1,1

be the universal curve with a section D ⊂ U . Then

U ε = U × P2→Q
ε
1,0(P2, 1)

is the universal curve, and the universal subsheaf SUε ⊂O⊕3
Uε is given by

SUε ∼=OU (−D)�OP2(−1).

Therefore, we have

R1πε∗(S
⊗3
Uε )∼=R1π∗OU (−3D)�OP2(−3).
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The vector bundle R1π∗OU (−3D) onM1,1 admits a filtration whose subquotients are line bundles
E∨, L1 and L⊗2

1 . Therefore, the integration of the Euler class is given by∫
Q
ε
1,0(P2,1)

e(R1πε∗(S
⊗3
Uε )) = 9 ·

∫
M1,1

(3ψ1 − c1(E)),

=
3
4
.

Here the last equality follows from the computation in [FP00],∫
M1,1

c1(E) =
∫
M1,1

ψ1 =
1
24
.

By the above example, the following problem seems to be interesting.

Problem 6.3. How do the invariants N ε
g,d(X) depend on ε when X =OP2(−3)?

6.3 Generalized tree level GW systems on hypersurfaces
Let X be a smooth projective variety, defined by the degree N homogeneous polynomial f of
n+ 1 variables,

X = {f = 0} ⊂ Pn.
Recall that in Lemma 2.15, the moduli stack Qε0,m(Pn, d) is shown to be smooth of the expected
dimension. We construct the closed substack

Q
ε
0,m(X, d)⊂Qε0,m(Pn, d) (118)

as follows. For an ε-stable quotient of type (1, n+ 1, d),

0→ S→O⊕n+1
C →Q→ 0,

we take the dual of the first inclusion,

(s0, s1, . . . , sn) :O⊕n+1
C → S∨.

Applying f , we obtain the section

f(s0, s1, . . . , sn) ∈H0(C, S⊗−N ). (119)

In genus zero, we have the vanishing

R1π∗ε (S
⊗−N
Uε ) = 0;

hence, (119) determines a section of the vector bundle πε∗(S
⊗−N
Uε ), which we denote as

sf ∈H0(Q0,m(Pn, d), πε∗(S
⊗−N
Uε )).

Then we define (scheme theoretically)

Q
ε
0,m(X, d) = {sf = 0}. (120)

Note that if ε > 2, then the above space coincides with the moduli stack of genus zero, degree d
stable maps to X. Since (120) is a zero locus of a section of a vector bundle on a smooth stack,
there is a perfect obstruction theory on it, determined by the two-term complex

(πε∗(S
⊗−N ))∨→ ΩQ

ε
0,m(Pn,d)|Qε0,m(X,d).

The associated virtual class is denoted by

[Qε0,m(X, d)]vir ∈A∗(Q
ε
0,m(X, d),Q).
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The evaluation map factors through X,

evi :Qε0,m(X, d)→X,

for 16 i6m. Hence we obtain the diagram

Q
ε
0,m(X, d) α //

(ev1,...,evm)

��

M0,m

X × · · · ×X
and a system of maps

Iε0,m,d =α∗(ev1, . . . , evm)∗ :H∗(X,Q)⊗m→H∗(M0,m,Q). (121)

It is straightforward to check that the above system of maps (121) satisfies the axiom of the tree
level GW system [KM94]. In particular, we have the genus zero GW type invariants

〈Iε0,m,d〉(γ1 ⊗ · · · ⊗ γm) =
∫
M0,m

Iε0,m,d(γ1 ⊗ · · · ⊗ γm)

for γi ∈H∗(X,Q). The formal function

Φε(γ) =
∑

m>3,d>0

1
n!
〈Iε0,m,d〉(γ⊗m)qd

satisfies the WDVV equation [KM94], and induces the generalized big (small) quantum
cohomology ring

(H∗(X,Q)[[q]] , ◦ε)
depending on ε ∈ R>0. For ε > 2, the above ring coincides with the big (small) quantum
cohomology ring defined by the GW theory on X.

Remark 6.4. The above construction of the generalized tree level GW system can be easily
generalized to any complete intersection of the Grassmannian X ⊂G(r, n).

Remark 6.5. As discussed in [MOP09, § 10] for MOP-stable quotients, it might be possible to
define the substack (118) and the virtual class on it for every genera.

6.4 Enumerative invariants on projective Calabi–Yau 3-folds
The construction in the previous subsection enables us to construct genus zero GW type
invariants without point insertions on several projective Calabi–Yau 3-folds. One of the
interesting examples is a quintic 3-fold

X ⊂ P4.

We can define the invariant

N ε
0,d(X) =

∫
[Q
ε
0,d(X,d)]

vir

1

=
∫
Q
ε
0,d(P4,d)

e(πε∗(S
∨⊗5
Uε )) ∈Q. (122)

Another interesting example is a Calabi–Yau 3-fold obtained as a complete intersection of the
Grassmannian G(2, 7). Let us consider the Plücker embedding

G(2, 7) ↪→ P20,
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and take general hyperplanes

H1, . . . , H7 ⊂ P20. (123)

Then the intersection

X = G(2, 7) ∩H1 ∩ · · · ∩H7

is a projective Calabi–Yau 3-fold. The hyperplanes (123) define the section

sH ∈H0(Qε0,m(G(2, 7), d), πε∗(∧2S∨Uε)
⊕7),

and we define

Q
ε
0,m(X, d) = {sH = 0}. (124)

As in the previous subsection, there is a perfect obstruction theory and the virtual class on (124).
In particular, we can define

N ε
0,d(X) =

∫
[Q
ε
0,d(X,d)]

vir

1

=
∫
Q
ε
0,d(G(2,7),d)

e(πε∗(∧2S∨Uε)
⊕7) ∈Q. (125)

For ε > 2, both invariants (122) and (125) coincide with the GW invariants of X. As in
Problem 6.3, we can address the following problem.

Problem 6.6. How do the invariants N ε
0,d(X) depend on ε when X is a quintic 3-fold in P4 or a

complete intersection of G(2, 7) of codimension seven?

Acknowledgements

The author thanks V. Alexeev for pointing out the related work [MM07], and Y. Konoshi for the
information of the reference [AMV04]. This work is supported by the World Premier International
Research Center Initiative (WPI Initiative), MEXT, Japan. This work is also supported by a
Grant-in-Aid for Scientific Research (grant number 22684002) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

References

AMV04 M. Aganagic, M. Marino and C. Vafa, All loop topological string amplitudes from Chern–
Simons theory, Comm. Math. Phys. 247 (2004), 467–512.

AG08 V. Alexeev and M. Guy, Moduli of weighted stable maps and their gravitational descendants,
J. Inst. Math. Jussieu 7 (2008), 425–456.

BM09 A. Bayer and E. Macri, The space of stability conditions on the local projective plane, Preprint,
arXiv:0912.0043.

Beh97 K. Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997),
601–617.

BF97 K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45–88.
Ber94 A. Bertram, Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian,

Internat. J. Math. 5 (1994), 811–825.
Ber97 A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289–305.

BDW96 A. Bertram, G. Daskalopoulos and R. Wentworth, Gromov invariants for holomorphic maps
from Riemann surfaces to Grasmannians, J. Amer. Math. Soc. 9 (1996), 529–571.

1516

https://doi.org/10.1112/S0010437X11005434 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005434


Moduli spaces of stable quotients and wall-crossing phenomena

Bri10 T. Bridgeland, Hall algebras and curve-counting invariants, Preprint, arXiv:1002.4374.

CK09 I. Ciocan-Fontanine and M. Kapranov, Virtual fundamental classes via dg-manifolds, Geom.
Topol. 13 (2009), 1779–1804.

FP00 C. Faber and R. Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math.
139 (2000), 173–199.

GP99 T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999),
487–518.

Has03 B. Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), 316–352.

JS08 D. Joyce and Y. Song, A theory of generalized Donaldson–Thomas invariants, Preprint,
arXiv:0810.5645.

KMM87 Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv.
Stud. Pure Math. 10 (1987), 283–360.

KM10 Y. H. Kiem and H. B. Moon, Moduli spaces of weighted pointed stable rational curves via GIT,
Preprint, arXiv:1002.2461.

KP01 B. Kim and R. Pandharipande, The connectedness of the moduli spaces of maps to
homogeneous spaces, in Symplectic geometry and mirror symmetry (World Scientific
Publishing, River Edge, NJ, 2001), 187–201.

Kir85 F. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti
numbers, Ann. of Math. (2) 122 (1985), 41–85.

KM98 J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).

Kon95 M. Kontsevich, Enumeration of rational curves via torus actions. The moduli space of curves,
Progr. Math. 129 (1995), 335–368.

KM94 M. Kontsevich and Y. Manin, Gromov–Witten classes, quantum cohomology, and enumerative
geometry, Comm. Math. Phys. 164 (1994), 525–562.

KS08 M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants
and cluster transformations, Preprint, arXiv:0811.2435.

LM00 G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer
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