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Abstract

A system of functional equations satisfied by the components of a quadratic function is derived via
their corresponding circulant matrix. Given such a system of functional equations, general solutions
are determined and a stability result for such a system is established.
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1. Introduction

LetneN, n>2, and let w, := exp(2ni/n) be a primitive nth root of unity. A type-j
function, first introduced by Schwaiger in [8], is a function f : C — C satisfying

F(waX) = W) f(0).

They are referred to as the components of f because
n—1 1 n—1
—kj gk
f= Z; fi where fi(x) =~ kZ{; W, f(wkx).
= -

Applying this concept, Schwaiger [8] derived and solved the following system of
functional equations satisfied by the components of an exponential function.

J . n—1 ]
fieragy = Y ol " @ fre )+ Y o @ ey, (1)
=0

=j+1

for j=0,1,...,n—1,where m € {0, 1,...,n — 1} is fixed. The stability of the system
(1.1) was established one year later by Forg-Rob and Schwaiger in [2]. In 2005,
Muldoon [7] simplified and systematised the results in [8] and [2] through the use
of a circulant matrix.
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A quadratic function is a function g : C — C satisfying

g(x+y)+g(x—y) =2q(x) +2q(y) (x,y€C). Q)

Note that quadratic functions are even functions, that is, g(—x) = g(x) for x € C.

Using Muldoon’s approach, we find here a system of functional equations satisfied
by the components of a quadratic function via their corresponding circulant matrix.
Given such a system of functional equations, their solutions are determined and the
stability of such a system is investigated.

2. Preliminary results

Throughout, let n be a fixed integer > 2 and let w, = exp(2xi/n) be a primitive nth
root of unity. As in Muldoon [7], the following notation is adopted.

The n X n (symmetric) Fourier matrix and its complex-conjugate matrix are defined,
respectively, by

| 1 11 .1
_ 1 1 wgl ... w;(”*l) _ 1 1 w,, ... a),(:kl)
=—. . . | T —
"o : . : " \n : :
1w D L. w—(n—n2 1 o™b ... w(n—1)2
n n n n

Note that .%#, is unitary, that is, .%,.%,; = I, = %#,.%,, where I, denotes the n x n
identity matrix.
The diagonal matrix €, is defined by

1 0 0

0 w, 0
Q, = diag(l,wn,wﬁ, .. .,w:,'_l) =

0O 0 ... !

n

Given a sequence {ay, . ..,a,-1} C C, its circulant matrix is defined by

apg  ay c Gp
. ap-1 4o - dp2

circ(ag, ai,...,a,_1) :=

al az ... ao

and its diagonal matrix is defined by

a 0 - 0

0 a - 0
dlag(aO’alv""a}’l—l) = .

0 0 ap—1
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The circulant matrix corresponding to the sequence {0, 1,0, ...,0} is

010 0
0 0 1 0
7, i= circ(0,1,0,...,0) =] : Lo :
00 0 - 1
1 0 0 - 0

Observe that

(1) ' = xl (T denoting transpose), that is, 7, is orthogonal.

(2) The circulant matrix circ(ag, ay, ..., a,_1) can be written as
circ(ag, ai, ..., a,-1) = aol, + ajm, + -+ + an_mz_l
3) Z;Q,%, =mn, and, equivalently, Q, = #,n,.%,.
The following basic results are taken from [7].
Lemma 2.1 [7, Lemmas 2.1 and 2.2].
@D IfA =circ(ag,ay, .. ., ap-1), then
ap
T AT = \ndiag(F:a)", a=
an-1
(I1) Let m be a nonnegative integer. If A is a circulant matrix, then
Fu(Q,"AUNF,, = T (Fn AT,

Lemma 2.2 [7, Lemma 2.4]. Any f: C — C can be written uniquely as a sum of
functions f; (j€{0,1,...,n—1}) of type-j (called its j-components):

J@) = fo() + fi(x) + -+ + fu1(x),

where
Jo(x) Jf(x) S(x)
fi) 1 f(@nx) 1| fw'
R A 7 |

: o : T :
fao1 (%) flwix) f(w," Vx)

The circulant matrix corresponding to a function f, whose j-components are f;, is

fox)  fik) - fuii(®)
) S () fo(x) - fa2(®)
F(x) := circ(fo(x), fi(x), ..., fum1(x)) = : . . )

fl&x) fztx) fo&x)
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Lemma 2.3. The circulant matrix function F(x) corresponding to f : C — C satisfies
D) F(x) = .Z; diag(f(x), f(wpx), ..., f(!1x).ZF, and, equivalently,

FF0)F, = diag(f(0), f(@),.., f(@) 0);
D) F(wix) = Q,"F(x)Q for each m € N.

Proor. Part I is Lemma 2.6 in [7]. The case m = 1 in Part II is Lemma 2.8 in [7]. We
proceed now to prove the general case of m € N. By multiplying the three matrices,

TG B A L
QR(OQ" = W 'fn—l (x) fofx) Wy .fn—z(x)
wy f1(x) " fr(x) - Jo(x)
folwy' ) filwy'x) -+ for(W)'x)
a1 (@'x) - folwy'x) -+ fua(w)ix)
= : : . : = F(w)'x).
filwyx)  flwyx) - folwy'x)
This completes the proof of Lemma 2.3. O
LEmmA 2.4,

() Let m be a nonnegative integer. If B = diag(by, b1, ..., b,-1), then
ﬂnnlBﬂ;m = dlag(bn’h bm+1’ R bm+ﬂ—1)’

where suffixes are taken modulo n.
(I) If B is a diagonal matrix, then ¥ B.#, is a circulant matrix.

Proor. (I) When m = 1, the result follows by multiplying the matrices:

JT,,BN;I = m,diag(by, by, . . ., bn_l)n;I
0 by O -« 0 1[0 1 0 01
0 0 b, --- 0 0 01 0
=l cooo e | =diagby, by, ... o).
0O 0 0 - by 00 0 --- 1
by 0 0 --- O 1 00 --- 0
Assume the result holds up to m, that is, ) Brr," = diag(b,, b1, - - -, bmsn—1), Where

suffixes are taken modulo n. Since 7! Bx"~! = z,(x"Br,™)n,!, using the induction
hypothesis and the result of the case m = 1,

”ZHIBﬂ;m_I = ”ndiag(bm’ bnst, ..., bm+n—1)7ry_ll = diag(bm+la bz, ..., bm+n)a

as desired.

https://doi.org/10.1017/5S000497271900025X Published online by Cambridge University Press


https://doi.org/10.1017/S000497271900025X

308 K. Ponpetch, V. Laohakosol and S. Mavecha [5]

(IT) The result follows from another matrix calculation:

dy di - dy
dn—l dO e dn—Z
Q;:Bﬁn = . . . :Circ(d()sdl’-"’dn—l)s
d d - do
where d; = (1/n) 212 wi b, (j=0,1,...,n-1). o

3. A system of functional equations

In this section, we first find a system of functional equations satisfied by the
components of a quadratic function (see (Q) in Section 1) via the corresponding
circulant matrix, and then consider the problem of solving such a system.

Tueorem 3.1. If f:C — C satisfies (Q), then its corresponding circulant matrix
function F(x) satisfies

F(wix+y) + Fw)'x —y) =2Q,"F(x)Q + 2F(y)
foranyme{0,1,...,n—1}.
Proor. From Lemma 2.3(I) and Lemma 2.3(II),
F(w;x+y) +Flw,'x—y)
= Z, diag(f(wy'x +y) + fwyx = y), flwp(wy'x + ) + fwp(wy'x = y)),
s @ @) x4 ) + [l (W x = )T
= F,diag2f(wyx) + 2 (), 2f(wn(w) X)) + 2f (@yy),

S 2 (W) + 2 (W Y))F
= 2F(w"x) + 2F(y) = 2Q, "F(x)Q" + 2F(y). O

The following lemma, whose easy proof is omitted, is needed in the proof of
Theorem 3.3.

Lemma 3.2. Let m€ {0, 1,...,n — 1} be fixed and let d = gcd(n, m). Then for every
s,uel{0,1,....,d—1}andt,ve{0,1,...,n/d — 1},

s+tmzu+vm (mod n),
except when s =u and t = v.

Tueorem 3.3. Let F(x) be a circulant matrix with first row (fo(x), f1(x), ..., fu-1(x)),
where f; : C — C are arbitrary functions which need not be components of the same
function. If F satisfies

F(w)x +y) + F(w)'x —y) =2Q,"F(x)Q} + 2F(y), (3.1
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fora fixedme{0,1,...,n— 1}, then putting d := gcd(m, n), when d = n,

JSo(x) By(x, x)
fikx) 1 By (x, x)
: - Wyn )
fn—l(x) Bn—l(x’ )C)
and when 1 <d <n,
Jo(x) a(x) By(x, x)
Ax) | a(w)'x) oo | B
= —%, . wiin a(x) = . s
: \n : :

facr(x) (W)™ V) By_1(x, %)

where the B; : C X C — C are symmetric, bi-additive functions defined by

n—1

1 .
Bi(x.y) = 7(@ix +3) = gix =y, with gi(0):= )| & fi() (=0..on 1),
k=0

Proor. Suppose that F(x) satisfies (3.1). Then
TRl x +0)F, + FF(whx —y).F) = 27,0 "F(0)Q F, + 2.7,F).Z,.
Using Lemma 2.1(I) and (II), this equation becomes
G(w)x +y) + G(w)x —y) =2G,(x) + 2G(y), (3.2)
where we write

diag(go(x), g1(x), ..., gn-1(x) = G(x) = F,F(0).Z; = Vn diag(:Z,, f(x))",  (3.3)
G (x) = 7' G(x)m,™.

Equation (3.2) and Lemma 2.4(I) yield a system of n equations

go(wy' x +y) + go(wy,'x — y) = 2gm(x) + 280(y)
gr(Wyx +y) + g1(wy'x —=y) = 2gmi1(x) + 281(y)

gn-1(wy X +y) + gu-1(Wy'x =) = 28men-1(X) + 28n-1(y).

Using Lemma 3.2, we subdivide these n equations into d different classes each with
n/d equations:

8t jm(Wy' X + ) + it jm (W) X = ¥) = 28k1(js 1ym(X) + 28k+ jm (), (3.4)
where j=0,1,...,n/d-1and k=0,1,...,d — 1. Substituting x =y = 0 in (3.4),
8k(0) = grym(0) = - - = gry(ujaym(0) = 0. (3.5)
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Substituting y = 0 in (3.4) and using (3.5),
S+ (j+1m(X) = grajm(wy'x) (j=0,1,...,n/d=1; k=0,1,...,d - 1). (3.6)
Substituting (3.6) into (3.4),
it jm(W' X + ) + 8w jm Wy X = ¥) = 2814 jm (W %) + 2814 jm(Y)- (3.7
Replacing x by w,x in (3.7),
8 jm(X +Y) + it jm(X = ) = 2814 jm(X) + 2814 jm(Y)-

This last relation shows that each g, ;,, is a quadratic function. Invoking Theorem 4.1
of [6, page 222],

8k jm(X) = By jm(X, X), (3.8)
where By, i, : C X C — C are symmetric bi-additive functions given by
Bies jm(%,5) = 1 (ks jm (X + ¥) = Grajm(X = Y)).
If d = n, then m = 0 and from (3.8),
gr(x)=Bi(x,x) (k=1,...,n—-1).

From (3.3) and the above relation,

JSo(x) go(x) By(x, x)
VACORN IS B I S1CO NN P Bi(x, %)
S Y7 B BV :
fnfl (x) 8n-1 (x) anl (x’ x)

If 1 < d < n, then the system (3.6) can be rewritten as

8rem(X) = gr(w))'x)

Sham(X) = ram(@!'X) = gi(w?"x)

Skt njdym(X) = Ghsnjd-nm(WIX) =+ -+ = (D™ ).

From (3.8) and these relations,

e jm(X) = gl 0) = Buw)"x,w)"x) (j=0,1,....,n/d=1; k=0,1,...,d - 1).

From (3.3) and the last relation,

Jo(x) go(x) a(x)
AUCONN S T B S1CO N N G (wy'x)
S A N s
fra(®) gn-1(%) a(wy ™V x)
with a(x) = [Bo(x, x) Bi(x,x) -+ By_1(x,x)]. o
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We work out two examples for the results of Theorem 3.3 corresponding to the
cases n = 2 and 3, respectively.
ExampLE 3.4. If n = 2, then (3.1) becomes
F(W5x +y) + F(w)x —y) =2Q,"F(x)Q) + 2F(y) (m=0,1) (3.9

where F(x) = circ(fy(x), fi(x)).
For m =0, (3.9) reads

F(x +y) + F(x — y) = 2F(x) + 2F(y) (3.10)

and Theorem 3.3 gives fo(x) = $(Bo(x, x) + B(x, %)), fi(x) = 2(Bo(x, x) — Bi(x, X)),
where By, B are symmetric, bi-additive functions. Equating the elements in (3.10),

Jilx+y) + filx =y) = 2fi(x) + 2fi(y) (=0, 1),

showing that fj, f; are quadratic functions.

If we assume that f;, f] are components of a function f, that is, f(x) = fo(x) + f1(x),
then f is a quadratic function, and so is an even function. Thus, its odd part fi(x) =0
yielding By(x, x) = Bi(x, x) and f(x) = fo(x) = Bo(x, x), that is, f has only trivial
components.

Form =1, (3.9) reads

Flwyx +y) + F(wyx —y) = 2Q£1F(X)Qz + 2F(y) 3.11)
and Theorem 3.3 gives
fo(x) = $(Bo(x, x) + Bo(wax, wax)), f1(x) = 3(By(x, x) — Bo(wax, w;x)),
where By is a symmetric, bi-additive function. Equating the elements in (3.11),
flwnx +y) + filwrx —y) = 205 fi(x) + 2£i(y) (i =0,1). (3.12)
Substituting x =y = 0 in (3.12),

fi(0) = 0. (3.13)
Substituting y = 0 in (3.12) and using (3.13),
filwax) = wh fi(x). (3.14)

Replacing y by w,y in (3.12) and using (3.14),
filx+y) + filx=y) =2fi(x0) + 2fi(y) (=0,1),

showing again that f;, f] are quadratic functions.

If we assume that f, f; are components of a function f, then as in the previous
case f is a quadratic function, fi(x) = 0, and f(x) = fo(x) = Bo(x, x), that is, f has only
trivial components.
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ExampLE 3.5. If n = 3, then (3.1) becomes
F(w5x +y) + F(wix —y) = 2Q7"F(x)Q3 + 2F(y) (m=0,1,2) (3.15)

where F(x) = circ(fy(x), f(1)(x), f2(x)).
Form =0, (3.15) reads

F(x +y) + F(x — y) = 2F(x) + 2F(y) (3.16)
and Theorem 3.3 gives

Jo(x) = 3(Bo(x, x) + Bi(x, x) + Ba(x, x))
flx) = %(Bo(x, x) + a)_%Bl(x, X) + w3By(x, X)) (3.17)
fo(x) = 3(Bo(x, X) + w3 By (x, x) + w3 By(x, X)),

where By, By, B, are symmetric, bi-additive functions. Equating the elements in (3.16),
filx+y) + filx—y) =2fi(x) + 2fi(y) (=0,1,2),

showing that fj, f1, f> are quadratic functions.

If we assume that fj, f1, f> are components of a function f, that is, f is given by
f(x) = fo(x) + fi(x) + fo(x), then f is also a quadratic function. In contrast to the case
n =2, we now show that f can have nontrivial components. So, suppose that f has
only trivial components, that is, the following three possibilities occur.

Either f(x)= fo(x) and fi(x) = fo(x) =0;
or f(x)=fi(x) and fo(x) = fo(x)=0;
or f(x)=fo(x) and fo(x)= fi(x)=0.

If £(x) = fo(x) and fi(x) = fo(x) = 0, by solving the system (3.17),
Bo(x, x) = By (x, x) = By(x, X). (3.18)

If £(x) = fi(x) and fy(x) = fo(x) = 0, by solving the system (3.17),
By (x, %) = w3By(x, ),  Ba(x,x) = wiBo(x, x). (3.19)

If £(x) = f>(x) and fo(x) = fi(x) = 0, by solving the system (3.17),
Bi(x,x) = w2Bo(x, x), By(x,x) = w3Bo(x, x). (3.20)

Since the three symmetric bi-additive functions By, By, B, are arbitrary, it is possible
to choose these B; in such a way that that the three requirements (3.18), (3.19) and
(3.20) do not hold.

We leave the discussion of the remaining cases (m = 1, 2) to the reader.
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4. Stability

The concept of the stability of functional equations arose in 1940 when Ulam
in [9] asked: Under what conditions does there exist an additive mapping near an
approximately additive mapping? This question was answered in 1941 by Hyers [3]
with the result: If f : E; — E, is a mapping satisfying

If(x+y) = f(x) = fOI <6

for all x,y € E|, where E| and E, are Banach spaces and ¢ is a given positive number,
then there exists a unique additive mapping 7 : E; — E, such that

If(x) =Tl <6
for all x € Ey. If f(x) is a real continuous function of x over R, and
lf(x+y) = f(x) = fI <6,
it was shown by Hyers and Ulam [5] that there exists a constant k such that
|f(x) — kx| < 26.

For recent developments, see [1, 4]. In this section, we establish the stability of the
circulant matrix functional equation

F(w)x +y) + F(w)'x —y) =2Q,"F(x)Q} + 2F(y).

As in [7], we use the usual 1-norm for a square matrix A = (a;;) defined by

n—1
Al = max Z a;il.
lAll= max >y
Jj=0

TueorREM 4.1. Let F(x) be a circulant matrix whose first row is (fo(x), f1(x), ..., fu—1(X)),
where f; : C — C are arbitrary functions which need not be components of the same
function, and let € > 0. If F satisfies

IF(@)x +y) + Fwx - y) - 20,"F)Q — 2FO)l| < &, @.1)
forafixedme {0,1,...,n— 1}, then there exists a circulant matrix Q(x) satisfying the
matrix functional equation

Q(x +y) + Q(x —y) =2Q(x) +2Q(y) (4.2)
such that
5n°

IF(x) = QU)ll < —-e.
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Proor. Multiplying by [|.%,| on the left-hand side and by ||.%,|| on the right-hand side
of (4.1),

| Z F(ix + 0)F, + FF(whx — )%, —2.7,Q,"F(x)Q F,; —2.%,Fy).Z, |
< 1 Zallell Z 1.

By Lemma 2.1(I) and (I), this last inequality becomes
IG(wi'x +y) + G(wyx —y) = 2G,(x) = 2GW)|| < ne, 4.3)
where

diag(go(x), 81(x), ..., gn-1(x)) = G(x) = F,F(x).%; = Vn diag (ZF,, f(x)),
G (x) = 1) G(x)m,".

Putting x =y = 0 in (4.3),
IGO0l < 5. (4.4)
Putting x = 0 in (4.3) and using (4.4),
IGG) = G-yl <2ne (yeO). 4.5)
Replacing x by x + z and x — z, respectively, in (4.3),

IG(wi'x + wi'z +¥) + Glwyx + wi'z —¥) — 2Gu(x + 2) = 2G|l < ne (4.6)
IG(w)'x — W'z +y) + G(W)'x — W'z = y) = 2Gpu(x — 2) = 2G(Y)|| < ne. 4.7

Replacing y by y + w'z and y — 'z, respectively, in (4.3),

IG(wi'x +y+ wy2) + Gy x —y — wy'z) — 2Gu(x) — 2G(y + wy'2)|l < ne (4.8)
IG(wix +y — wWi2) + Glwyx —y + w'z) = 2Gu(x) = 2G(y — wy'z)l| <ne.  (4.9)

Using (4.6) and (4.8),

IG(W)'x + wiz—y) — GW)x -y — w'z) — 2Gu(x + 2)
—2G() + 2G,(x) + 2G(y + w2l < 2ne. (4.10)

Using (4.7) and (4.9),

IG(w, x — wy'z = y) = Glw,'x =y + W,'2) = 2Gpu(x - 2)
-2G() + 2G;(x) + 2G(y — W) 2|l < 2ne. 4.11)

Using (4.10) and (4.11),

IGn(x + 2) + Gu(x — 2) = 2G (%) + 2G(y) — G(y + W)'z) — G(y — W'2)|| < 2ne.
(4.12)
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Replacing x by z in (4.3),

1G]z +y) + G(w)'z —y) — 2G,(2) — 2G| < ne. (4.13)
Using (4.12) and (4.13),

IG(x + 2) + Gu(x — 2) — 2G,(x) — 2G(2) + G(w)'z — ¥) — G(y — wi2)|| < 3ne.
“4.14)

Using (4.5), the inequality (4.14) becomes
IGm(x + 2) + Gl(x = 2) = 2Gp(x) = 2G, (2| < Sne.

By Lemma 2.4(I), the elements of G,,(x) and G(x) are the same (but possibly in a
different order), and so

[[G(x +2) + G(x — 2) — 2G(x) — 2G(2)|| < 5ne.
Since G(x) = diag(go(x), g1(x), ..., gn-1(x)), by the definition of norm,
gi(x +2) + gi(x — 2) — 28i(x) — 2gi(2)| < 5ne (i=0,1,...,n—-1).

By Theorem 6.24 of [6, page 323], there exist unique quadratic functions 4; : C —» C
satisfying (Q) such that

lg:(x) — ()] < 57”8 (=0.1.....n—1).

Let H(x) := diag(ho(x), hy(x), ..., h,—1(x)). Using the definition of norm,

n—1
5n?
IG@) ~ Hll = max ZO l84/06) = hij(0)| < e
=

Multiplying by ||.Z || on the left-hand side and by |.%,]| on the right-hand side of the
last relation and noting that F(x) = .%,'G(x).%#,,

5 3
IF(x) - QI| < %a,

where Q(x) = %, H(x).#,. Since H(x) is a diagonal matrix, Lemma 2.4(I) and its
proof show that Q(x) is a circulant matrix whose first row is (go(x), g1(X), . . ., gn-1(x)),
where

n-1
1 n—kj .
qj@0 =~ > & () (j=0.1.....n= 1.
k=0

Since each A satisfies (Q), the function elements g; satisfy (Q), that is Q(x) satisfies
4.2). O
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