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ABSTRACT 
Graph-based design languages offer a promising approach to address several major issues in 
engineering, e. g. the laborious manual transfer between CAD and CAE. Such languages generate a 
digital meta- or system model storing all relevant information about a design and feed this into any 
relevant CAE tool as needed to simulate and test the impact of any design variation on the resulting 
product performance. As this can be automated in digital compilers to perform systematic design 
variation for an almost infinite amount of parameters, such graph-based languages are a powerful means 
to generate viable design alternatives and thus permit fast evaluations. 
To leverage the full potential of graph-based design languages, possibilities are presented to expand 
their applicability into the domain of product functions. This possibilities allow to cohesively link 
integrative function modelling to product structures. This intends to close the gap between the early, 
abstract stages and the systematic, concrete design generation and validation with relevant CAE tools. 
In this paper, the IFM Framework was selected as integrated function model to be linked with the graph-
based design languages. 
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1 INTRODUCTION 

Determining a suitable solution to a given design problem is an interplay between reasoning about what is 

required and what particular combination of solution elements will provide for it and how (Gero & 

Kannengiesser 2014; Chakrabarti & Bligh 2001). It is an iterative process as in analysing and gradually 

synthesising the potential solution, some of its features or constraints may necessitate redefinition of the 

problem (Braha & Reich 2003). Such iterations are not limited to individual design stages, but carry 

through the entire design process. This has to go hand-in-hand with continuously updating of models 

representing related information (Eckert et al., 2015). To support this, several recently proposed models 

specifically aim to coherently model functions and solutions, thus linking the conceptual and subsequent 

design stages (i.e. bridging between abstract/qualitative and increasingly quantitative information). These 

include System Modeling Language (SysML), Object-Process Methodology (OPM, Dori 1995) and the 

Integrated Function Modelling Framework (IFM, Eisenbart et al., 2016). Ultimately, all of these still 

remain at an abstract level in describing the resulting engineering system. This is to say, they mainly focus 

on the product structure and abstractly describe its compounding sub-systems, parts, etc. and their 

functional or operational links. The transition of this information into simulation tools for system design 

and testing, however, currently still relies on laborious manual transfer into individual calculation or 

Computer-Aided Engineering (CAE) tools like 3D modelling environments, Finite Element Analysis 

(FEA) for structural safety, thermodynamics, electromagnetic performance or the likes. Then, results from 

these CAE tools are not efficiently linked due to data formatting and exchange problems (Sztipanovits et 

al., 2012). Graph-based design languages offer a promising approach to address these issues. Such 

languages generate a digital meta- or system model storing all relevant information about a design and feed 

this into any relevant CAE tool as needed to simulate and test the impact of any design variation on the 

resulting product performance. As this can be automated in digital compilers to perform systematic design 

variation for an almost infinite amount of parameters, such graph-based languages are a powerful means to 

generate viable design alternatives – and thus permit fast comparison and selection – much faster than any 

design team manually could. 

Parameter variation and computing, by nature, mainly pertains to later stages, when product information is 

more quantitative. To leverage the full potential of graph-based design languages, we seek to expand its 

applicability into the domain of product functions. As such, we want to cohesively link integrative function 

modelling, spanning from the functional level to product structures with graph-based design models, to 

close the gap between the early, abstract stages of product development and systematic, concrete design 

generation and validation with relevant CAE tools. In this paper, the IFM Framework was selected as 

integrated function model to be linked with the graph-based design languages. Both are independent of a 

particular software platform, yet equally comprehensive representation tools in their respective domain. 

Consequently, the main research question can be formulated as: How can the IFM Framework and graph-

based design languages based on UML be combined to achieve holistic digital processes which include 

rich presentations on the functional level. In the following sections, the IFM Framework and graph-based 

design languages are subsequently introduced. Chapter 4 describes the conceptual, operational linking of 

both approaches, while Chapter 5 showcases their combined application based on a suitable, 

interdisciplinary engineering product, i.e. a multicopter. Chapter 6 discusses the results and proposes 

direction for further research. 

2 THE IFM FRAMEWORK 

The IFM framework is intended to provide designers with an integrated, cross-disciplinary approach for 

modelling system functionality, coupled with system structural modelling. Here, function is defined as an 

intended or already perceivable behaviour of a technical system to fulfil a specific task. In the framework, 

integration is facilitated through linking different types of contents prominently addressed in discipline-

specific and cross-disciplinary function models (see Eisenbart et al., 2016). The respective information is 

presented in associated views, which are briefly described in Table 1. Their adjacent placement (see Figure 

1) supports their parallel development and allows verification of their mutual consistency across the entire 

framework. Views are modular as they can be seamlessly added or omitted to ease flexible, demand-

specific adaptation. 

The central process flow view (Figure 1) represents the flow of transformation and interaction processes 

using standard symbols established for process/activity flow modelling similar to SysML, for instance. The 
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remaining views link to it and comprise of matrices equivalent to Design-Structure-Matrices (DSM) 

encompassing different entities related to system functionality and their interdependencies. Entities 

comprise use cases, transformation and interaction processes, effects, states, operands and actors. Use cases 

represent different scenarios of applying the technical system for a specific purpose (e.g. fulfilling a goal, 

changing the state of the system or user, etc.). 

Table 1: Associated views in the IFM framework 

View Description 

Process  

flow  

view 

…qualitatively visualises the flow of sequential or parallel (interaction or transformation) 

processes related to a specific use case. For each use case an associated set of views is 

created. In the vertical direction, the process flow is visualised related to time which 

matches the gradual devolution of states in the associated state view. Horizontally, process 

blocks are spread from left to right to enable a direct link to the actor view.  

State view 
…represents the states from initial to final of operands and actors as well as their 

changes associated with related processes.  

Actor view 

…indicates the involvement of one or more actors in the realisation of individual 

processes. Involvement may be active or passive. Actors can part of the system or 

external. 

Use case 

view 
…indicates the involvement of individual processes in the different use cases.  

Effect view 
…represents the effects, which enable individual processes and are provided by actors. 

For each process block in the process flow view, a separate effect view may be created. 

Interaction 

view 

…maps the bilateral impacts between actors and operands as well as their complementary 

contributions (or any other kind of dependency between them) in the realisation of use 

cases, associated processes, etc., and thus represents the system’s structure.  

 

Figure 1: The IFM framework 

Transformation processes describe technical and/or human processes - realised by basic physiochemical 

effects - that result in a change of state of operands or actors per every use case. Operands are specifications 

of energy, material and signals. Actors can be any human or other animate being and technical systems 

(hard- and/or software) that are actively or passively contributing to function fulfilment. Furthermore, 

actors include relevant parts of the environment that provide influences onto the system. Finally, interaction 

processes describe “cross-boundary” interactions between different actors jointly contributing to function 

fulfilment (similar to Eder & Hosnedl 2008). Figure 2 illustrates the particular entity-relations in the 

framework using a UML-based domain diagram. 
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In the application of the framework, designers start by deriving the central use cases the system will 

have to fulfil from a requirements specification. Subsequently, main processes for the use cases are 

determined and gradually detailed also taking into account any related operands and already known 

actors. Then, the views are gradually filled with more and more information until, finally, the system 

is known well enough to determine the mutual interactions among all involved actors and/or operands 

to fill the interaction view, thus resulting in a comprehensive system description on functional level. 

Examples of the application can be found in (Eisenbart et al., 2016). 

 

Figure 2: Domain diagram of the entity relations in the IFM framework 

3 GRAPH-BASED DESIGN LANGUAGES 

Graph-based design languages map product information into vocabulary and rules typically based on the 

Unified Modeling Language (UML) language. They provide a powerful engineering framework through 

their automates, systematic variation and calculation features, feeding into any relevant CAE tool, as per 

need. They permit machine execution and the reuse of design and manufacturing knowledge, through 

automated model generation, calculation and simulation. As such, it allows generation of a large number of 

design alternatives based on parameter variation across multiple simulation tools, in a fast and automated 

manner (Rudolph 2002, Kröplin & Rudolph 2005, Holder et al., 2017, Ramsaier et al., 2017, Zech et al., 

2019). In this context, graph-based means that the nodes of a graph serve as abstract placeholders for real 

objects and that a graph representation is machined on behalf of the design object. The advantages of 

graph-based languages can be used to their full extent if these methods are transferred to all phases of the 

lifecycle of products. One important objective of transferring these methods is to accelerate innovation. A 

second central goal of this transfer is to develop knowledge representations and, through this, to enable a 

processing of the product lifecycle that allows for more human-independent technological process 

integration, thereby improving knowledge transfer. 

The basic concept of a graph-based design language is illustrated in Figure 3. Individual components are 

UML classes, which represent the objects of the product (vocabulary, bottom right). These components can 

be arranged in ontologies, i.e. organised, annotated, related and/or hierarchical arrangements of engineering 

entities which may represent aspects of engineering knowledge. These classes are connected in the UML 

class diagram by different associations and are instantiated via UML model transformations (rules, bottom 

left). A sequence of such rules is modelled in an activity diagram. Here is also where we identified a 

suitable way to link to the IFM Framework, as will be discussed below: actors and their states and 

activities/processes overlap directly between both modelling approaches. In this paper, we specifically 

focus on the Design Compiler 43™ (DC43) by IILS mbH. DC43 uses this information to create the design 

graph. From this central meta- or system model, further models (for example CAD geometry models, 

simulation models like FEM or multi-body-system, MBS, reports, etc.) can be generated in a fully 

automatic manner. 

The main difference between graph-based design languages and conventional product development is 

that not a single product is designed but a whole family of products is designed automatically. It is one 

of the main advantages of graph-based design languages that the “members” of this product family 

cannot only be parametrically different but also topologically different. However, it also has to be 
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mentioned that the design automation of product families requires a novel mind-set of the designer and 

thus can be understood as paradigm shift. A central advantage of using graph-based design languages 

in connection with a design compiler is the possibility of a fully automated process that includes 

calculation and simulation steps. This characteristic allows the generation of a multitude of possible 

product configurations and through this the realization of optimization cycles which can lead to 

product configuration which represent an optimum solution in a multi-dimensional solution space. 

This is especially advantageous for systems with many configuration possibilities such as wire 

harnesses and pipe systems such as exhaust systems (Vogel and Rudolph 2016). The third notable 

advantage is the possibility to include multiple physical domains, e. g. it is possible to address 

simultaneously the mass and moment balance and thermal validation of a satellite (Vogel and Rudolph 

2018). 

 

Figure 3: Basic concept of graph-based design languages 

4 LINKING BOTH APPROACHES 

For linking both approaches, the class diagram shown in Figure 2 has been re-modelled in UML in 

order to be able to use it in a design language. The respective class diagram can be seen in Figure 4. 

The entities as they are represented in the IFM Framework are integrated with the classes and 

instantiations represented/modelled in DC43. Different from the IFM, for instance, DC43 can be used 

for requirements engineering as well. Therefore, the class “Requirement” has been added in Figure 4. 

The requirements are directly linked to use cases. This means, it is possible to identify, which use case 

fulfils which requirement and which requirements are not covered yet by any use case (c.f. Holder et 

al., 2017). Furthermore some links and hand-over interfaces had to be expanded and updated to match 

the DC43 UML environment, these changes are highlighted in red in Figure 4. 

The aim of the design language is to convert an existing IFM framework into a UML model fully 

automatically. A UML model enables the automatic further processing of the function model up to the 

creation of automatic verification scenarios. In this paper we concentrate on the creation of the UML-

model and not on its use in the further course of the modelling process. Based on the current state it is 

possible to identify actors, which are not connected to any functions. This means, the actors have no 

active role in the function model and their role needs to be clarified. Additionally, functions, which 

have no actors fulfilling them, can be identified. 
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Figure 4: UML Class Diagram for Function Modelling in DC43 

In the following, the workability of the expanded class diagrams for the integration of the IFM 

Framework into DC43 is tested through application to the example of a multicopter (compare 

Ramsaier et al., 2016), as shown in Figure 5. 

  

Figure 5: Basic structure of a multicopter and its concrete realisation 

Mechanically, a multicopter is a rather simple system, which receives its stable flying ability mainly 

through complex control engineering. The simplest structure for a multicopter is a circular 

arrangement of four rotors placed in an angle of 90 degrees to each other (see Figure 5). The motors 

are mounted on a frame that includes a landing gear and appliances for mounting electronics and the 

power supply. This multicopter is one of the use cases in the underlying research project and serves for 

an investigation of promising approaches to combine mechanical design and control engineering in a 

holistic digital model. Additionally, it serves as an example for investigating lightweight design. The 

specific challenge in this lightweight development was to find geometries which lead to a very rigid 

frame structure that suppresses oscillations and lead to an easier flight control. Thus, the multicopter is 

modelled using graph-based design languages (compare Ramsaier et al., 2017) in order to be able to 

analyse multiple configurations and carry out multi-domain simulations. For a functional representation of 

the multicopter, it is necessary to take the fact into account that several use-cases (hovering, descending, 
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etc.) need to be considered. This leads initially to the formulation of a list of processes. One example 

of a process could be Process 2 “distribute energy according to need” which describes the controlling 

of the motor currents of the electrical motor, which drive the rotors on an abstract, solution-neutral 

level. The processes formulated in the multicopter function model are: (1) start system, (2) distribute 

energy according to need, (3) sending steering command, (4) send steering command via RC, (5) 

calculate flightpath and motor engagement, (6) increase / decrease rotation speed of motors, (7) track 

position, (8) track rate of ascent/descent, (9) track roll rate and angle, (10) hold position, (11) landing 

quadrocopter, (12) switch system off and (13) distribute forces as illustrated in the process flow view 

in Figure 7. 

The developed IFM model of the multicopter is illustrated in the subsequent figures. As stated above, 

the IFM consists of up to five views on the system under development; Figure 6 shows the state view. 

 

Figure 6: IFM Model: State view 

This state flow starts with the state “resting on ground” of the chassis/frame and shows possible 

processes which may lead to a change in state. For instance, the processes P1, P2 and P13 may result 

in a state change to “in flight, distributing forces” again for the chassis/frame. A close look on these 

process is fostered through the process flow view (compare Figure 7). In this view, the processes also 

visible in the state diagram are linked and the interplay of these processes becomes transparent. It is 

important to note that certain decision points can be included in the process flow view.  

ti
m
e
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Figure 7: IFM Model: Process flow view 

All processes in technical systems such as the multicopter under consideration are realised by means 

of actors; their connection to the processes are illustrated in the actor view (compare Figure 8). 

 

Figure 8: IFM Model: Actor view 

In the actor view (Figure 8), a distinction between active actors indicated by an “x” (such as the actor 

“Battery” in the process “distribute energy according to need”) and passive actors indicated by an “o” 

(such as the “Battery” in the process “start system”) is possible, thus allowing the identification of 

especially active actors. 

Here, the discussed link between the IFM Framework and the DC43 UML model becomes nicely 

pertinent: through the actor view and interaction view that represent a concise system model which 

links directly into the UML model in DC43 and the instantiation of objects/actors therein. This model 

can be a basis for the further development steps of the technical system (i.e. the multicopter). 

Based on the IFM model presented above, the design language automatically generates a design graph 

represented in UML (see Figure 9). Based on the UML model, the above mentioned automated 

reasoning tests can be applied. From the high-level central data model represented in the design graph, 

different interfaces generate domain specific, generic models such as geometry models or simulation 

models. In the multicopter project, several generic models can be generated (Figure 9). 
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Figure 9. Design graph illustration of the multicopter function model 

Thus, the IFM model presents a framework which allows modelling the abstract structure of a systems 

in a way which fosters the automated generation of cross-domain models including geometry and 

allowing the automated exploration of numerous product configurations; i.e. a large product portfolio. 

As it is shown in Figure 9, different domain-specific models are generated based on the design graph. 

These models are often used in order to verify the products required functions. For the multicopter 

example, a desired rate of climbing and turning around each axis is required. This is verified by 

simulation with a control model. Further, the frame has to withstand the loads from the lifting force of 

the rotors. This can also be simulated with an FEM model. Additionally, a cost target can be set at the 

beginning of the design phase. After all parts are defined and the manufacturing methods/process are 

chosen, the bill of materials and the cost calculation will tell if the goal can be achieved - in turn, 

design variations that do not fulfil the cost requirements can be flagged and automatically sifted out. 

With the IFM model it is possible to check, which actor has achieved its functions and which actor has 

not - and also if the function fulfilment and behaviour is within the set design targets based on 

simulation. This enables the engineer to focus quickly on what has to be changed in order to comply 

with all requirements. Additionally it is possible, due to the fully automated execution, to investigate a 

large number of possible multicopter configurations and to generate an optimum configuration. 

5 CONCLUSIONS 

In recent years, several models were proposed which share the objective to coherently model functions 

and solutions. However, up to now these models still remain at an abstract level in describing the 

resulting engineering system. The research described in this paper intends to expand the possibilities 

to apply function modelling approaches for the automated generation of product configurations, i. e. 

parametrical and topological variations of the developed product family. In order to do so, graph-based 

languages are used in combination with the well-known IFM Framework. It was shown, how function 

modelling can be done with the IFM model approach within an integrated framework. Further, this 

framework can be automatically processed by a graph-based design language, which translates the 

IFM function model into an UML model. This UML model can be used for automated reasoning tests 

of the function model. A unique strength of the proposed application of graph-based languages is the 

possibility to generate viable design alternatives and to simulate their behaviour, thus permitting fast 

comparison and selection. Another strength of the developed approach, compared with other powerful 

approaches based on SysML, is represented in the possibility to create detailed geometrical models 

directly from a central data model formulated in UML.The language generates a digital meta- or 

system model which contains all relevant information about a design. This information can be fed into 

many relevant CAE tool such as finite element analysis systems, thus allowing an in-depth evaluation 

of the impact of a design variation. In this paper, a multicopter design served as a basis for validation. 

Obviously, future research work is necessary in order to achieve general applicability. Additional 

aspects of further research are to increase the automation level and expanding the cross-domain 
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modelling capabilities. Future application possibilities include automated reasoning test on the 

functional level, which will range from plausibility checks to simulations of the parametrical and 

topological relations between the different elements of the function model. 
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