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THE UNIQUENESS OF POSITIVE SOLUTIONS OF
PARABOLIC EQUATIONS
OF DIVERGENCE FORM ON AN UNBOUNDED DOMAIN

MASAHARU NISHIO

§1. Introduction

Let R = R" X R be the (n + 1)-dimensional Euclidean space (z = 1).
For X € R™", we write X = (z, #) with £ € R” and { € R. We consider para-
bolic operators of the following form:

0 0

_0 _ ¥ 0 0

i,i=1
where the coefficients a,, are measurable functions with @,, = a;, and satisfy
n
(2) M7NEP < 3 a,x, 0 &8 a,(x, H <M
1,j=1

with some positive constant M, for every € = (£,,...,E) € R” and almost all
(x’ t) c RM+I
For an unbounded domain £ in R"H, we put

H(Q,L) ={u=20;Lu=00n 2, u=0o0n3d,2,

where 0,8 denotes the parabolic boundary of £.

In this paper, we assume that for every T€ R, D, = {xr € R"; (x, ©) € 2}
is a bounded Lipschitz domain. Then H,(£) coincides with Hy(Q N R™ X (— oo,
@)) for every a € R. For a bounded Lipschitz domain D in R" and a continuous
function ¢ > 0 on (— %, @), we put

QD, ¢) ={(x,t) ER™;t<a, () 'x € D}.

By using a special form of the boundary Harnack principle for 2(D, ¢), we shall
show the following
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THEOREM 1. Let D be a bounded Lipschitz domain in R” and ¢ >0
a 1/2-Holder continuous function on (— o , a) for some a € (— oo , o] | If
liminf | 7| 72@(2) < o0, then there exists u # O such that

T —00

Hy(QD, ¢), L) = {cu; c > 0}.

§2. Some estimates of L-parabolic measures

For a domain 2 in R™" and a point (z, f) in £, we denote by wg" the

L-parabolic measure at (z, ) with respect to 2.

First we recall the Aronson estimate of the fundamental solution of L. For an
M > 0, we denote by £(M) the class of the parabolic operators of the form (1)
satisfying (2).

Lemma 1 (see [1)). Let I'(x, t;y,s) be the fundamental solution of
L € £(M). Then there exist positive constants C,, C,, 11, 7, depending only on M, n
such that for all (z, 1), (y, s) € RnH,

Cig lx,t;y,9)<Ix t;y,s)<Cug,lz, t;y,s),
where g, is the fundamental solution of 0/ 0t — 7A.
We shall use parabolic dilations. For a > 0, we denote by 7, the parabolic
dilation defined by 7,(z, ) = (ar, a’). We note that £(M) is invariant for ev-
ery parabolic dilation, that is, for any L € £(M) and a > 0, L, € £(M), where

L,(u°7,) = Lu.
For a closed ball B in R", we put

TB) = {(x, H;t<0, (—D 2z € B},
and for > 0 and a starlike open neighborhood V of 0 in R”, we put
V,=A{, H;r 'z V, |t <.
LEMMA 2. Let V be a starlike open neighborhood of O in R” and B a closed ball

contained in V. For 0 < s < 1, there exists v > 0 such that for any L € £(M) and
Xev,

wy, @V, N T(B) > v.

Proof. Take a closed ball B, contained in the interior of B. Put
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vz, t) = fR"\B 'z, t;y, — Ddy

and
wz, ) = wy” @V, N T(B)).

By Lemma 1,
vz, ) = le g (x,t;y, — Ddy,
R™\B, !

so that by the maximum principle there exists a constant K > 0 such that
1—w<KvonV,.

By Lemma 1, we can choose (§, 7) € V, with — 1 <7< — s” such that
0, D) < 5
’ 2K
By the Harnack inequality (see [4], p. 102), for any (z, ) € V
C
w(x, ) > CwE, 1) > =,
which shows Lemma 2.

Remark 1. By using parabolic dilations, Lemma 2 implies that for » > 0 and
for 0 <s <1,

wy, @V,N T(B)) > v for XEV,

Sr?

where v is the constant in Lemma 2.
The above lemma gives the following

LemMa 3. Let V be a starlike open neighborhood of 0 in R" and B a closed ball
contained in V. For any ¢ > 0, there exists s > 0 such that for any L € £ (M) and
X eV, \T®B),

wjlf,\rw) @V,\T(B)) <.

This shows that 0 is a regular point in V,\ T(B) with respect to the Dirich-
let problem.
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Proof. By using parabolic dilations, we may assume that »= 1. For

L e ¥$(M), we put
u,(x, ) = a))lfl\T(B,(aVl\ T(B)).
For 0 < s <1and (x, § € V,, we have
u(z, ) <wy” @V,\TB) <1 -y,
where v is the constant in Lemma 2. Since u,°7,(z, ) = u,(sx, s°1) is a solution
of Lyy = 0, by the maximum principle,
oty < (1—vu, on V,\T(B),
and inductively we have for every integer k > 0,
Uty < 1 — u)kuLs,‘ on V,\T(B),
which implies
w, <A - on Vu\TB).

This shows Lemma 3.

§3. The existence of positive solutions

A domain Q in R is said to be spatially bounded if for every T € R, D, =
{r €R"; (x, D € Q) is bounded. A domain 2 in R™"" is called a (1,1/2)-
Lipschitz domain with the Lipschitz constant m if for every boundary point
(y, s) € 09, there exist a coordinate system (z,,...,z,) of R” a function f on
R"™ X R and a neighborhood U of (y, s) such that for every x*, E* € R" and
every t, T € R,

| F*, 0 — FE" D <m(z*— 5|+t —|"®
and

(3) QN U={*z,t € U;z,>fx* d}.

n+1

Let D be a bounded Lipschitz domain in R”, 7 € R and m > 0. A point X € R
is called a proper inner point with respect to (D, 7, m) if X €  for every
(1, 1/2)-Lipschitz domain £ with the Lipschitz constant m satisfying {x € R”;
(x,7) € 2} =D.

Hereafter we shall give a special form of the boundary Harnack principle,
which is used to show the existence of a non-zero solution in Hy(£2, L).
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LEmMMA 4. Let @ be a spatially bounded (1, 1/2)-Lipschitz domain in R
with the Lipschitz constant m. For t € R, we put D = D,. For x, € R" and 7, > 0,
we assume that (X, T+ T,) is a proper inner point with respect to (D, T, m). Then
there exists a constant C > 0 such that for any solution u = 0 of Lu = 0 on Q7=

QN R" X (z, ) which vanishes continuously on 82 N R* X [z, o),
u(x, ) < Culx, 7+ t) for (x, 1) € QT

where C depends only omn, M, m, D, x, and T,.

Proof. Put V= {(z,...,x);lz,| <3m,j=1,....n}. For r>0and ¥, €
R™ we set V,(Y,) = {Y,} + V, (for the notation V,, see the paragraph 2). If a
solution # >0 of Lu = 0 on 2 vanishes continuously on 92 N R” X [z, o),
then for any (z, ) € 27

u(x, t) = f u(y, D dogs @),
Dx{r}

. (z,t) . . . (Zy,7+7¢)
and the parabolic measure wge is absolutely continuous with respect to wg® °

on D X {7}. Hence it suffices to show that
(4) wges (V, (o, D) < Cags™™ (V, (g, D)

for (z, ) € Q7 and sufficiently small » > 0. As £ is (1, 1/2)-Lipschitz,
there exist a finite family (U,) of open sets in R"*" with U U, D 8D x {7} such
that U, associates with a coordinate system and a function satisfying (3). If
(o, D €D X {\U U, we put A,y 0 = (@, ©+ 2¢°). Otherwise we
choose another open set U in R™, an associated coordinate system in R™" and a
function f satisfying (3). Put A,(y,, ©) = (y:‘, Yo, + 3mr, T+ 27°), where Yo =
(y:, Yo) € R" X R, and

v(z, D = wges (V,(y, D).
We shall show that there exists C, > 0 such that
(5) v(@, ) = Cy w58 (A, D), (@, D € 27\ Vi, (Yo, )

2k+1 2

for every integer k = 0 with 2 " = £,/2. By Remark 1 and the Harnack ine-

quality, we have for some C, > 0,
1 (9%
viz, ) <1< ;v(A,,z(yo, 7)) < D v(A,(y,, 7).

Similarly
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v(A,(y,, D) < C,v(A4,, ¥, 7)),
so that
g (1)
vix, H < 5 v(A, (Y, D), (&, D E R \V(y, .

By using Lemma 3 for e = 1/C, and for B= {(z*, z,) € R";|2* I’ + (z, +
2m)’ < m’/(1 + m’)}, there exists 0 < s < 1 such that

w)‘f,(Y)\((Y)+T(B))({Y} + T(B)) < %, XeVv,M\UY} + T(B)

for every ¥ € R"". Hence for every Y € 027\ V,,(y,, © and (z, » € V,_ (),

2
v(z, ) < —;Lv(AZ,(yO, T))w:/I,’(l;)\(<y>+T(B>)({Y} + T(B))
<G

v A, (Y, 0).
On the other hand, for every (z, t) € dV,,(y, 7) which is not included in any
V,(Y) with ¥ € 327\ V,,(y,, 7). the Harnack inequality gives
vz, t) < C,v(A,,(y, 1)
with some constant C, > 0. Therefore by the maximum principle, we have
v, ) < Covldy, (g D), (2, ) € 27\V,, (g, D

for Cy = max(C,/v, C,), which shows (5) for k¥ = 1. Thus inductively we have
(5) for every integer k > 0.
Furthermore we have

(6) V(A2 (Yo, D) < Cyolag, 7+ 1)
by the Harnack inequality, where C; > 0 is a constant depending only on #n, M,
m, D, x, and ¢, Combining (5) and (6), we obtain (4), which shows Lemma 4.

This gives the following

LEMMA 5. In the same situation as in Lemma 4, we have

u(x, D < Culxy, T+ 1) Wgirey (Dyyry X {7+ 1))

(T+7y)

for every (x, ) € 2 , where C > 0 is the constant in Lemma 4.
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Using the above two lemmas, we obtain the Harnack inequality of the follow-
ing form.

ProposiTiON 1. Let 2 be a spatially bounded (1, 1/2)-Lipschitz domain in
R™, ¢ € R and K a compact subset of Q7. Then there exists a constant C > 0
such that for every L € $(M) and every solution u >0 of Lu =0 on 2 which
vanishes continuously on 02 N R" X [r, o),

max ¥ < Cmin «.
K K

In [2], E.B. Fabes, N. Garofalo and S. Salsa show a similar Harnack inequality
in the case £ is a Lipschitz cylinder.

We shall prove the existence of non-zero # € H,(2, L) by using Lemma 5

and Proposition 1.

PROPOSITION 2. Let £ be a spatially bounded (1, 1/2)-Lipschitz domain in
R™. Then there exists a now-zero positive solution u of Lu = 0 on Q such that u

vanishes continuously on 082.

Proof. Let Y, = (y,, s, € £2 be fixed. For 7 < s, we put

wa (D, x {1})
w;‘(’r) (DT X {T})

u(zx, ) =

Then #,(Y;) = 1. Therefore by Proposition 1, for every ¢, <'s, the sequence
{#,} ., is uniformly bounded and hence equicontinuous on every compact set in
2% Then there exist a decreasing sequence {r,};_, tending to — co and a solu-
tion # of Lu = 0 on £2 such that

lim #,, = u (compact uniformly).

k—oo

Using Lemma 5 for U, and letting k£ tend to the infinity, we see that # vanishes
continuously on 882, so that ¥ € H,(£2, L). This completes the proof.

§4. The uniqueness of positive solutions

Let D be a bounded Lipschitz domain in R” and ¢ a strictly positive
1/2-Hslder continuous function on R.
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Remark 2. 2(D, @) is a (1, 1/2)-Lipschitz domain with Lipschitz constant
max(c, m(1 + ¢)d(0, 0D)), where ¢ is the Lipschitz constant of D, m is the
1/2-Holder constant and d(0, D) is the distance from 0 to 8D.

The following lemma is a kind of boundary Harnack principle.

LEMMA 6. For a bounded Lipschitz domain D in R" and a 1/2-Hslder con-
tinuous function ¢ > 0 on R, we put Q2 = Q(D, ¢). Let 7, > 0, TE R and 4 be a
non-empty subdomain of D with A C D. Then there exists a constant C > 0 indepen-
dent of T such that

sup u<C inf u
@(T)Dx {7} e(D)Ax{t}

- 2
for every solution u =0 of Lu=0 on Q" which vanishes continuously on
32 N R" X [t — 7,0 (0)*, ).

Proof. Let 2, €A be fixed. Put f, = (r; >+ m)™?, where m is the
1/2-Hslder constant of ¢. Then there exists 0 < T < 7,0(2)” such that

T

oz — D*

Applying Lemma 4 to 7, = ¢,/2 and using the parabolic dilation 7,,_z), we have

—T, .[2

for any solution # = 0 of Lu = 0 on Q@D
92 N R" X [t — 1,0(0)?, ),

T T .
sup u(x, 7) < C ulo T—5) Ly Ty < CC, inf u(z,7),

zxee(r)D zeg(nA

= ¢,

which vanishes continuously on

which shows Lemma 6.

Let L* be the adjoint operator of L € £(M). Then for any solution # of
L*u=0,v(x, d = ulx, — D is a solution of Lv =0 for some L € £(M), so
that the analogous assertions to Lemma 6 hold. This yields Lemma 7, which plays
an important role to show the uniqueness.

LEMMA 7. For a bounded Lipschitz domain D in R" and a 1/2-Holder con-
tinuous function @ > 0 on R, we put Q = Q(D, ¢). Let 7, > 0, 7€ R and A be a
non-empty subdomain of D with A C D. Then there exists a constant C > 0 indepen-
dent of T such that
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we (@@ D x {1}) < Cadd (o) 4 x {1})

(T+70(D) )

for every (x, t) € R

Proof. Let G(x, t;y, s) be the Green function of L with respect to 2(D, ¢).
Then for (x,) € (D, ¢),

(x,t)

weo = Gz, t;y,Ddy on @)D X {7},

2
where dy denotes the #-dimensional Lebesgue measure. For (z, ) € QrRe® ),

G(x,t;- ,+ )is a solution of the adjoint operator L™ of L on 2 N R" X
(— oo, ). Applying Lemma 6 to L*, we obtain
sup Gz, t;y, D <C inf Gz, t;y, 1),

yep(nD yep(nA

which shows our lemma.

We shall show our main theorem, which implies the preceding assertion in the
paragraph 1.

THEOREM 2. Let D be a bounded Lipschitz domain in R” and ¢ >0 a locally
1/2-Hilder continuous function on (— o, @) with a € (— 0, ] . Suppose that

there exist m > 0, T, > 0 and a sequence {t,},_, tending to — co as k— oo

such that

(7 lim inf| ¢, |7 %p(t,) <
and that for every k = 1,2, ...,

(8) o) — @) | <m|t—s|"?

fort, s € [t,, t, + To@(t,)°]. Then there exists u # 0 such that

H,(Q(D, ¢), L) = {cu;c = 0}.

Proof. By Proposition 1 and Remark 2, H,(2(D, ¢), L) # {0} . Hence it
suffices to show that there exist C > 0 and 2 € H,(Q(D, ¢), L) with h(Y,)) =1
for fixed Y, € 2(D, ¢) such that u = C h for every u € H,(2(D, ¢), L) with
u(Y,) (see [3], p.253).

Let w € H,(2(D, ¢), L) with u(Y;) =1 and put 2 = (D, ¢). Taking a
subsequence of {#},., and replacing 7, by smaller one if necessary, we may
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assume that
b
t+ ) < 5

for every positive integer k. Put

AN
T, = t, + 850

Let 4 be a non-empty subdomain of D and take x, € A. Then by Lemmas 6 and 7,
2
we have for every positive integer k and every (z, f) € QKR

ue, D= [ uly, T) doi @)
(T DXAT,}

> uly, T, dosdy (y)

(T PAxX{T )

> ( inf u) wgitn (@(T) A x {T,})

(T AXAT )}
> C ule(T) 7, T) wgiw (9(TY)D x {T)),

where C; > 0 is a constant independent of k, # and (z, . On the other hand, by
Lemma 5, there exists a constant C, > 0 such that

1=u(Y) < Culp(T)x, T,) wptew ((T) D X {T,}),
so that
w> C_lc_lh on Q(t,,+ro¢(t,,)2)
— 1 2 k y
where

waity (@(TYD x {T)
wptro (0(T)D X {T)})

h(x, =

Similarly to Proposition 2, we can take a subsequence of {A,},_, which converges
a certain h € Hy (L2, L) with h(Y,) = 1, which shows

u>C'C;'h on Q.

This completes the proof.

Remark 3. The assumptions (7), (8) in Theorem 2 can be replaced by

Lo — @(s) | <m|t—s|"”?
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for t, s € [t, — 7,0(t)% t, + 7,0(t)°).
Applying Theorem 1 to ¢, () = (— % (¢t < 0), we have

CoROLLARY. Let — oo < a < 1/2. For a bounded Lipschitz domain D in R”,
put

Q,={x,0);t<0, (—) ™ “x € D}.

Then every non-zero elements in Hy(2,, L) are mutually proportional.

ExampLE. Let D be a bounded Lipschitz domain in R” and put 2 = D X R.
Then

0

H0<Q, T A) = {ce f(x);c =0},

where A is the first eigenvalue of — 4 (Laplacian) and f is the eigenfunction.
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