
JFP 23 (4): 452–514, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000075
452

Modular verification of preemptive OS kernels

A L E X E Y G O T S M A N
IMDEA Software Institute

(e-mail:)alexey.gotsman@imdea.org)

H O N G S E O K Y A N G
University of Oxford

(e-mail:)Hongseok.Yang@cs.ox.ac.uk)

Abstract

Most major OS kernels today run on multiprocessor systems and are preemptive: it is possible for
a process running in the kernel mode to get descheduled. Existing modular techniques for verifying
concurrent code are not directly applicable in this setting: they rely on scheduling being implemented
correctly, and in a preemptive kernel, the correctness of the scheduler is interdependent with the
correctness of the code it schedules. This interdependency is even stronger in mainstream kernels,
such as those of Linux, FreeBSD or Mac OS X, where the scheduler and processes interact in
complex ways. We propose the first logic that is able to decompose the verification of preemptive
multiprocessor kernel code into verifying the scheduler and the rest of the kernel separately, even in
the presence of complex interdependencies between the two components. The logic hides the ma-
nipulation of control by the scheduler when reasoning about preemptable code and soundly inherits
proof rules from concurrent separation logic to verify it thread-modularly. We illustrate the power of
our logic by verifying an example scheduler, which includes some of the key features of the scheduler
from Linux 2.6.11 challenging for verification.

1 Introduction

Developments in formal verification now allow us to consider the full verification of an
operating system (OS) kernel, one of the most crucial components in any system today.
Several recent projects have demonstrated that a formal verification of can tackle realistic
OS kernels, such as a variant of the L4 microkernel (Klein et al., 2009) and Microsoft’s
Hyper-V hypervisor (Cohen et al., 2010). However, these projects only dealt with relatively
small microkernels; tackling today’s mainstream operating systems, such as Windows
and Linux, remains a daunting task. A way to approach this problem is to verify OS
kernels modularly, i.e., by considering each of their components in isolation. In this paper,
we tackle a major challenge OS kernels present for modular reasoning—handling kernel
preemption in a multiprocessor system. Most major OS kernels are designed to run with
multiple CPUs and are preemptive: it is possible for a process running in the kernel mode
to get descheduled. Reasoning about such kernels is difficult for the following reasons.

First of all, in a multiprocessor system several invocations of a system call may be run-
ning concurrently in a shared address space, so reasoning about the call needs to consider
all possible interactions among them. This is a notoriously difficult problem; however,

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 453

we now have a number of logics that can reason about concurrent code (O’Hearn, 2007;
Gotsman et al., 2007; Feng et al., 2007a; Vafeiadis & Parkinson, 2007; Dinsdale-Young
et al., 2010; Cohen et al., 2010; Dinsdale-Young et al., 2013). The way the logics make
verification tractable is by using thread-modular reasoning principles that consider every
thread of computation in isolation under some assumptions about its environment and thus
avoid direct reasoning about all possible interactions (Jones, 1983; Pnueli, 1985).

The problem is that all these logics can verify code only under so-called interleaving
semantics, expressed by the well-known operational semantics rule:

Ck −→C′
k

C1 ‖ . . . ‖Ck ‖ . . . ‖Cn −→C1 ‖ . . . ‖C′
k ‖ . . . ‖Cn

This rule effectively assumes an abstract machine where every process Ck has its own
CPU, whereas in an OS, the processes are multiplexed onto available CPUs by a scheduler,
which is part of the OS kernel. Furthermore, in a preemptive kernel, the correctness of the
scheduler is interdependent with the correctness of the rest of the kernel (which, in the
following, we refer to as just the kernel). This is because, when reasoning about a system
call implementation in a preemptive kernel, we have to consider the possibility of context-
switch code getting executed at almost every program point. Upon a context switch, the
state of the system call will be stored in kernel data structures and subsequently loaded for
execution again, possibly on a different CPU. A bug in the context switch code can load an
incorrect state of the system call implementation upon a context switch, and a bug in the
system call can corrupt the scheduler’s data structures. It is, of course, possible to reason
about the kernel together with the scheduler as a whole, using one of the available logics.
However, in a mainstream kernel, where kernel preemption is enabled most of the time,
such reasoning would quickly become intractable.

Contributions. In this paper, we propose a logic that is able to decompose the verifica-
tion of safety properties of preemptive OS code into verifying preemptable code and the
scheduler (including the context-switch code) separately. This is the first logic that can
achieve this in the presence of interdependencies between the scheduler and the kernel
typical for mainstream OS kernels, such as those of Linux, FreeBSD and Mac OS X. The
modularity of the logic is reflected in the structure of its proof system, which is partitioned
into high-level and low-level parts. The high-level proof system verifies preemptable code
assuming that the scheduler is implemented correctly (Section 5.2). It hides the complex
manipulation of control by the context-switch code, which stores program counters of
processes, describing their continuations, and jumps to one of them. In this way, the high-
level proof system provides the illusion of an abstract machine where every process has its
own virtual CPU—the control moves from one program point in the process code to the
next without changing its state. This illusion is justified by verifying the scheduler code
separately from the kernel in the low-level proof system (Section 5.3). Achieving this level
of modularity requires us to cope with several technical challenges.

First, the setting of a preemptive OS kernel introduces an obligation to prove that the
scheduler and the kernel do not corrupt each other’s data structures. A common way to
achieve this is by introducing the notion of ownership of memory areas: only the compo-
nent owning an area of memory has the right to access it (Clarke et al., 2001; Reynolds,

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

454 A. Gotsman and H. Yang

2002). A major difficulty of decomposing the verification of the mainstream OS kernels
mentioned above lies in the fact that, in such kernels, there is no static address space
separation between data structures owned by the scheduler and the rest of the kernel: the
boundary between these changes according to a protocol for transferring the ownership
of memory cells and permissions to access them in a certain way. For example, when an
implementation of the fork system call asks the scheduler to make a new process runnable,
the scheduler usually gains the ownership of the process descriptor provided by the system
call implementation.

To deal with this, we base our proof systems on concurrent separation logic (O’Hearn,
2007), which we recap in Section 4. The logic allows us to track the dynamic memory parti-
tioning between the scheduler and the rest of the kernel and prohibit memory accesses that
cross the partitioning boundary. For example, assertions in the high-level proof system talk
only about the memory belonging to the kernel and completely hide the memory belonging
to the scheduler. A frame property, validated by concurrent separation logic, implies that
in this case any memory not mentioned in the assertions, e.g., the memory belonging to
the scheduler, is guaranteed not to be changed by the kernel. A realistic interface between
the scheduler and the kernel is supported by proof rules for ownership transfer of logical
assertions between the two components, describing permissions to access memory cells.

Using an off-the-shelf logic, however, is not enough to prove the correctness of a sched-
uler, as this requires domain-specific reasoning: e.g., we need to be able to check that a
scheduler restores the state of a preempted process correctly when it resumes the process.
To this end, the low-level proof system for reasoning about schedulers includes special
Process assertions about the continuation of every OS process the scheduler manages,
describing the states from which it can be safely resumed. A novelty of these assertions
is the semantics of the separating conjunction connective on them, which treats the as-
sertions affinely and allows us to interpret them as exclusive permissions to schedule the
corresponding processes. This enables reasoning about scheduling on multiprocessors, as
it allows checking that the scheduler invocations on different CPUs coordinate decisions
about process scheduling correctly. Another interesting feature of Process assertions is that
they describe only the part of the process state the scheduler is supposed to access and hide
the rest; this ensures that the scheduler indeed cannot corrupt the latter. In this our Process

assertions are similar to abstract predicates (Parkinson & Bierman, 2005).
Even though a scheduler is supposed to provide an illusion of running on a dedicated

virtual CPU to every process, in practice, some features available to the kernel code can
break through this abstraction: e.g., a process can disable preemption and become aware
of the physical CPU on which it is currently executing. For example, some OS kernels
use this to implement per-CPU data structures (Bovet & Cesati, 2005)—arrays indexed by
CPU identifiers such that a process can only access an entry in an array when it runs on the
corresponding CPU. We demonstrate that our approach can deal with such implementation
exposures by extending the high-level proof system for the kernel code with axioms that
allow reasoning about per-CPU data structures (Section 7).

In reasoning about mainstream operating systems, assertions describing the state trans-
ferred between the scheduler and the kernel can be complicated. The resulting ownership
transfers make even formalising the notion of scheduler correctness non-trivial, as they
are difficult to accommodate in an operational semantics of the abstract machine with

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 455

one CPU per process the scheduler is supposed to implement (Gotsman et al., 2011). We
resolve this problem in the following way. In our logic, the desired properties of OS code
are proved with respect to the abstract machine using the high-level proof system; the
low-level system then relates the concrete and the abstract machines. However, proofs in
neither of the two systems are interpreted with respect to any semantics alone. Instead, our
soundness statement (Section 8) interprets a proof of the kernel in the high-level system
and a proof of the scheduler in the low-level one together with respect to the semantics of
the concrete machine. To this end, the statement has to construct a global property of the
machine from local assertions about OS components in a non-trivial way.

Even though all of the OS verification projects carried out so far had to deal with a
scheduler (see Section 9 for a discussion), to our knowledge they have not produced
methods for handling practical multiprocessor schedulers with a complicated scheduler/
kernel interface. We illustrate the power of our logic by verifying an example scheduler
(Sections 2.2 and 6), which includes some of the key features of the scheduler from Linux
2.6.11 exhibiting the issues mentioned above.

Limitations. Our goal here is not to verify an industrial-strength preemptive OS kernel—
such an endeavour is beyond the scope of a single paper. Rather, we develop principles of
how a given logic for verifying concurrent programs can be extended to verify preemptive
kernel code with real-world features. These principles can then be used in verification
projects that target different operating systems. To communicate the proposed principles
cleanly and understandably, we present our results in a simplified setting:

• Instead of a realistic processor, such as x86, we consider an idealised machine
(Sections 2.1 and 3).

• Since we are primarily interested in interactions of components within an OS kernel,
our machine does not make a distinction between the user mode and the kernel mode.

• We base our logic for verifying OS kernels on one of the simplest logics for con-
current code—concurrent separation logic (O’Hearn, 2007). This logic would not be
able to handle complicated concurrency mechanisms employed in modern OS ker-
nels (Bovet & Cesati, 2005). However, as we argue in Section 8.2, our development
can be adapted to its more advanced derivatives (Feng et al., 2007a; Gotsman et al.,
2007; Vafeiadis & Parkinson, 2007; Dinsdale-Young et al., 2010; Dinsdale-Young
et al., 2013).

• Since we concentrate on modular reasoning about concurrency and preemptive
scheduling, our logic provides only rudimentary means of modular reasoning about
sequential code and, in particular, procedures. We discuss ways of addressing this
problem in Section 10.

• We consider scheduling interfaces providing only the basic services—context switch
and process creation. We discuss how our logic can be extended to schedulers with
more elaborate interfaces in Sections 5.5 and 10.

• Due to our focus on scheduling, we ignore many other aspects of an OS kernel, such
as virtual memory and interrupts not related to scheduling.

• Our logic is designed for proving safety properties only. Proof methods for liveness
properties usually rely on modular methods for safety properties. Thus, our logic is
a prerequisite for attacking liveness in the future.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

456 A. Gotsman and H. Yang

ip if ss sp

gr1 . . . grm

CPU 1

interrupt: schedule

ip if ss sp

gr1 . . . grm

CPU NCPUS

interrupt: schedule

1

Locks:

n

...
. . .

RAM

Fig. 1. The target machine.

Even though we develop our logic in this simplified setting, we hope that its modular nature
makes it more likely that it will compose with logics for features and abstractions that we
currently do not handle. A preliminary indication of this is our ability to deal with per-CPU
data structures, despite the fact that these break through the abstraction implemented by a
scheduler.

2 Informal development

We first explain our results informally, sketching the machine we use for formalising them
(Section 2.1), illustrating the challenges of reasoning about schedulers by an example
(Section 2.2) and describing the approach we take in our program logic (Section 2.3).

2.1 Example machine

We formalise our results for a simple machine, defined in Section 3. Here, we present it
informally to the extent needed for understanding the rest of this section. We summarise
its features in Figure 1.

The machine has multiple CPUs, identified by integers from 1 to NCPUS, communicating
via the shared memory. We assume that the program the machine executes is stored sepa-
rately from the heap and may not be modified; its commands are identified by labels. For
simplicity, we also assume that programs can synchronise using a set of built-in locks
(in a real system they would be implemented as spin-locks). Every CPU has a single
interrupt, with its handler located at a distinguished label schedule (the same for all
CPUs). A scheduler can use the interrupt to trigger a context switch. There are four special-
purpose registers, ip, if, ss and sp, and m general-purpose ones, gr1, . . . ,grm. The ip

register is the instruction pointer. The if register controls interrupts: they are disabled on
the corresponding CPU when if stores zero, and enabled otherwise. As if affects only
one CPU, we might have several instances of the scheduler code executing in parallel on
different CPUs. Upon an interrupt, the CPU sets if to 0, which prevents nested interrupts.
The ss register keeps the starting address of the stack, and sp points to the top of the
stack, i.e., its first free slot. The stack grows upwards, so we always have ss � sp. As
we noted before, our machine does not make a distinction between the user mode and the

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 457

kernel mode—all processes can potentially access all available memory and execute all
commands.

The machine executes programs in a minimalistic assembly-like programming language.
It is described in full in Section 3; for now it suffices to say that the language includes
standard commands for accessing registers and memory, and the following special ones:

• lock(�) and unlock(�) acquire and release the lock �.
• savecpuid(e) stores the identifier of the CPU executing it at the address e.
• call(l) is a call to the function that starts at the label l. It pushes the label of the

next instruction in the program and the values of the general-purpose registers onto
the stack, and jumps to the label l.

• icall(l) behaves the same as call(l), except that it also disables interrupts by
modifying the if register.

• ret is the return command. It pops the return label and the saved general-purpose
registers off the stack, updates the registers with the new values, and jumps to the
return label.

• iret is a variant of ret that additionally enables interrupts.

When the if register is set to a non-zero value, an interrupt can fire at any time. This has
the same effect as executing icall(schedule).

2.2 Motivating example

The challenge. Figures 2–3 present an implementation of the scheduler that we use as
a running example. Our goal is to be able to verify safety properties of OS processes
managed by this scheduler using off-the-shelf concurrency logics, i.e., as though every
process has its own virtual CPU. To show what this entails, consider the piece of code in
Figure 4, which could be a part of a system call implementation in the kernel (we explain
its proof later). The code removes some of the nodes from a cyclic doubly-linked list with a
sentinel head node pointed to by request_queue. Here and in the following, we use some
library functions: e.g., remove node deletes a node from the doubly-linked list it belongs
to. We assume that the code can be called concurrently by multiple processes, and thus
protect the list with a lock request_lock: the list can only be accessed by the process
that holds this lock.

There are a number of properties we might want to prove about this code: e.g., that
pointer manipulations done by the invocation of remove_node in line 25 in Figure 4 do
not overwrite a memory cell storing critical information elsewhere in the kernel, or that the
doubly-linked list shape of request_queue is preserved. Modern concurrency logics can
prove such properties by considering every process in isolation. Namely, every assertion
in Figure 4 describes information about the state of the program relevant to the process
executing the code. These assertions are justified using essentially sequential reasoning,
and in particular, using the classical proof rule for sequential composition:

{P1} C1 {P2} {P2} C2 {P3}
{P1} C1;C2 {P3}

(1)

We would like such reasoning (and the proof in Figure 4) to be sound even when the code is
managed by the scheduler in Figures 2–3. Hence, we need to be able to ignore the fact that

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

458 A. Gotsman and H. Yang

the control flow of the code in Figure 4 can jump to the schedule function in Figure 2 at
any time, with the state of the former stored in kernel data structures and loaded from them
again later. Furthermore, we need to achieve this even though the scheduler and the system
call implementation execute in a shared address space and can thus potentially access each
other’s data structures.

Example scheduler. The example scheduler in Figures 2–3 includes some of the key
features of the scheduler from Linux 2.6.11 (Bovet & Cesati, 2005) that are challenging
for verification, as detailed below.1

The scheduler’s interface consists of two functions: schedule and create. The former
is called as the interrupt handler or directly by a process and is responsible for switching
the process running on the CPU and migrating processes between CPUs. The latter can be
called by the kernel implementation of the fork system call and is responsible for inserting
a newly created process into the scheduler’s data structures, thereby making it runnable.
Both functions are called by processes using the icall command that disables interrupts,
so that the scheduler routines always execute with interrupts disabled.

Programming language. Even though we formalise our results for a machine executing
a minimalistic programming language, we present the example in C. We now explain how
a C program, such as the one in Figures 2–3, is mapped to our machine.

We assume that every global variable x is allocated at a fixed address &x in memory.
Local variable declarations allocate local variables on the stack in the activation records
of the corresponding procedures; these variables are then addressed via the sp register.
When the variables go out of scope, they are removed from the stack by decrementing
the sp register. The general-purpose registers are used to store intermediate values while
computing complex expressions. In our C programs, we allow the ss and sp registers to
be accessed directly as _ss and _sp. Function calls and returns are implemented using
the call and ret commands of the machine. By default, parameters and return values are
passed via the stack; in particular, a zero-filled slot for a return value is allocated on the
stack before calling a function. Parameters of functions annotated with _regparam (such
as create, line 64 in Figure 3) are passed via registers. We assume macros lock, unlock,
savecpuid and iret for the corresponding machine commands.

Data structures. Every process is associated with a process descriptor of type Process.
Its prev and next fields are used by the scheduler to connect descriptors into doubly-
linked lists of processes it manages (runqueues). The scheduler uses per-CPU runqueues
with dummy head nodes pointed to by the entries in the runqueue array. These are pro-
tected by the locks in the runqueue_lock array. The entries in the current array point
to the descriptors of the processes running on the corresponding CPUs; these descriptors
are not members of any runqueue. Thus, every process descriptor is either in the current
array or in some runqueue. Note that every CPU always has at least one process to run—the

1 We took an older version of the Linux kernel (from 2005) as a reference because its scheduler uses simpler
data structures. Newer versions use more efficient data structures (Love, 2010) that would only complicate our
running example without adding anything interesting.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 459

1 #define StackSize ... // size of the stack
2 #define FORK_FRAME sizeof(Process*)

3 #define SCHED_FRAME sizeof(Process*)+sizeof(int)

4

5 struct Process {

6 Process *prev, *next;

7 word kernel_stack[StackSize];

8 word *saved_sp;

9 int timeslice;

10 };

11

12 Lock *runqueue_lock[NCPUS];

13 Process *runqueue[NCPUS];

14 Process *current[NCPUS];

15

16 void init() {

17 for (int cpu = 0; cpu < NCPUS; cpu++) {

18 Process* dummy = alloc(sizeof(Process));

19 Process* process0 = alloc(sizeof(Process));

20 dummy->prev = dummy->next = dummy;

21 process0->timeslice = SCHED_QUANTUM;

22 ... // initialise the stack of process0
23 runqueue[cpu] = dummy;

24 current[cpu] = process0;

25 }

26 }

27

28 void schedule() {

29 int cpu;

30 Process *old_process;

31 savecpuid(&cpu);

32 load_balance(cpu);

33 old_process = current[cpu];

34 ... // update the timeslice of old process
35 if (old_process->timeslice) iret();

36 old_process->timeslice = SCHED_QUANTUM;

37 lock(runqueue_lock[cpu]);

38 insert_node_after(runqueue[cpu]->prev, old_process);

39 current[cpu] = runqueue[cpu]->next;

40 remove_node(current[cpu]);

41 old_process->saved_sp = _sp;

42 _sp = current[cpu]->saved_sp;

43 savecpuid(&cpu);

44 _ss = current[cpu]->kernel_stack;

45 unlock(runqueue_lock[cpu]);

46 iret();

47 }

Fig. 2. The example scheduler (continued in Figure 3).

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

460 A. Gotsman and H. Yang

47 void load_balance(int cpu) {

48 int cpu2;

49 Process *proc;

50 if (random(0, 1)) return;

51 do { cpu2 = random(0, NCPUS-1); } while (cpu == cpu2);

52 if (cpu < cpu2) {

53 lock(runqueue_lock[cpu]); lock(runqueue_lock[cpu2]); }

54 else { lock(runqueue_lock[cpu2]); lock(runqueue_lock[cpu]); }

55 if (runqueue[cpu2]->next != runqueue[cpu2]) {

56 proc = runqueue[cpu2]->next;

57 remove_node(proc);

58 insert_node_after(runqueue[cpu], proc);

59 }

60 unlock(runqueue_lock[cpu]);

61 unlock(runqueue_lock[cpu2]);

62 }

63

64 _regparam void create(Process *new_process) {

65 int cpu;

66 savecpuid(&cpu);

67 new_process->timeslice = SCHED_QUANTUM;

68 lock(runqueue_lock[cpu]);

69 insert_node_after(runqueue[cpu], new_process);

70 unlock(runqueue_lock[cpu]);

71 iret();

72 }

73

74 int fork() {

75 Process *new_process;

76 new_process = alloc(sizeof(Process));

77 memcpy(new_process->kernel_stack, _ss, StackSize);

78 new_process->saved_sp = new_process->kernel_stack+

79 _sp-_ss-FORK_FRAME+SCHED_FRAME;

80 _icall create(new_process);

81 return 1;

82 }

Fig. 3. The example scheduler (continued).

one in the corresponding slot of the current array. Every process has its own kernel stack
of a fixed size StackSize, represented by the kernel_stack field of its descriptor. When
a process is preempted, the saved_sp field is used to save the value of the stack pointer
register sp; the other registers are saved on the stack. Finally, while a process is running,
the timeslice field gives the remaining time from its scheduling time quantum and is
periodically updated by the scheduler. The init function in Figure 2 sketches code that
could be used to initialise the scheduler data structures.

Apart from the data structures described above, a realistic kernel would contain many
others not related to scheduling, including additional fields in process descriptors. The ker-
nel data structures reside in the same address space as the ones belonging to the scheduler;

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 461

1 #define StackSize ... // size of the stack
2 struct Request {

3 Request *prev, *next;

4 int data;

5 };

6 Request *request_queue; // a cyclic doubly−linked list with a sentinel node
7 Lock *request_lock; // protects the list
8

9 ...

10 Request *req, *tmp;

11 {req � sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
12 lock(request_lock);

13 {req � ∃x,y,z.&request queue �→ z∗ z.prev �→ y∗ z.next �→ x∗ z.data �→ ∗
14 dllΛ(x,z,z,y)∗ locked(request lock)∗
15 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
16 req = request_queue->next;

17 {req � ∃y,z.&request queue �→ z∗ z.prev �→ y∗ z.next �→ req∗ z.data �→ ∗
18 dllΛ(req,z,z,y)∗ locked(request lock)∗
19 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
20 while (req != request_queue) {

21 {req � ∃x,y,z,u,v.&request queue �→ z∗ z.prev �→ v∗ z.next �→ x∗ z.data �→ ∗
22 dllΛ(x,z,req,y)∗ req.prev �→ y∗ req.next �→ u∗ req.data �→ ∗dllΛ(u,req,z,v)∗
23 locked(request lock)∗sp..(ss+StackSize−1) �→ ∧
24 sp = ss+2 ·sizeof(Request∗)}
25 if (stale_data(req->data)) remove_node(req);

26 {req � ∃x,y,z,u,v.&request queue �→ z∗ z.prev �→ v∗ z.next �→ x∗ z.data �→ ∗
27 dllΛ(x,z,u,y)∗ req.prev �→ y∗ req.next �→ u∗ req.data �→ ∗dllΛ(u,y,z,v)∗
28 locked(request lock)∗sp..(ss+StackSize−1) �→ ∧
29 sp = ss+2 ·sizeof(Request∗)}
30 tmp = req;

31 req = req->next;

32 free(tmp);

33 {req � ∃x,y,z,v.&request queue �→ z∗ z.prev �→ v∗ z.next �→ x∗ z.data �→ ∗
34 dllΛ(x,z,req,y)∗dllΛ(req,y,z,v)∗ locked(request lock)∗
35 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
36 }

37 {req � ∃x,y,z.&request queue �→ z∗ z.prev �→ y∗ z.next �→ x∗ z.data �→ ∗
38 dllΛ(x,z,z,y)∗ locked(request lock)∗
39 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
40 unlock(request_lock);

41 {req � sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
Fig. 4. An example system call part. The assertions are explained in Section 4.

thus, while verifying the OS, we have to prove that the two components do not corrupt each
other’s data structures.

The schedule function. According to the semantics of our machine, when schedule

starts executing, interrupts are disabled and the previous values of ip and the general-
purpose registers are saved on the top of the stack. The scheduler uses the empty slots
on the stack of the process it has preempted to store activation records of its procedures

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

462 A. Gotsman and H. Yang

activation records ip gr1 grm cpu old_process

saved_sp
memory addresses

......

saved upon interrupt
activation record of

schedule

Fig. 5. The invariant of the stack of a preempted process.

and thus expects the kernel to leave enough of these. Intuitively, while a process is running,
only this process has the right to access its stack, i.e., owns it. When the scheduler preempts
the process, the right to access the empty slots on the stack (their ownership) is transferred
to the scheduler. When the scheduler returns the control to this process, it transfers the
ownership of the stack slots back. This is one example of ownership transfer we have to
reason about.

The schedule function first calls load_balance (line 32 in Figure 2), which migrates
processes between CPUs to balance the load; we describe it below. It then updates the
timeslice of the currently running process, and if it becomes zero, proceeds to schedule
another one (line 35); here we abstract from the particular way the timeslice is updated.
The processes are scheduled in a round-robin fashion; thus, the function inserts the current
process at the end of the local runqueue (line 38) and dequeues the process at the front
of the runqueue, making it current (line 40).2 The former is done using a library function
insert node after, which inserts the node given as its second argument after the list
node given as its first argument. The schedule function also refills the scheduling quantum
of the process being descheduled (line 36). The runqueue manipulations are done with the
corresponding lock held (lines 37 and 45). Note that in a realistic OS choosing a process
to run would be more complicated, but still based on scheduler-private data structures
protected by runqueue locks.

To save the state of the process being preempted, schedule copies sp into the saved_sp
field of the process descriptor (line 41 in Figure 2). This field, together with the
kernel stack of the process, forms its saved state. The stack of a preempted process
contains the activation records of functions called before the process was preempted, the
label of the instruction to resume the process from and the values of general-purpose
registers, saved upon the interrupt, as well as the activation record of schedule, as shown
in Figure 5. This invariant holds for descriptors of all preempted processes.

The actual context switch is performed by the assignment to sp (line 42), which switches
the current stack to another one satisfying the invariant in Figure 5. Since this changes the
activation record of schedule, the function has to update the cpu variable (line 43), which
lets it then retrieve and load the new value of ss (line 44). The iret command at the end
of schedule (line 46) loads the values of the registers stored on the stack and enables
interrupts, thus completing the context switch.

2 Actually, in Linux 2.6.11 the descriptor of the current process stays in the runqueue. We dequeue it because
this simplifies the following formal treatment of the example.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 463

The load balance function checks if the CPU given as its parameter is underloaded
and, if it is the case, tries to migrate a process from another CPU to this one. The particular
way the function performs the check and chooses the process is irrelevant for our purposes,
and is thus abstracted by a random choice (line 50 in Figure 3). To migrate a process, the
function chooses a runqueue to steal a process from (line 51) and locks it together with the
current runqueue in the order determined by the corresponding CPU identifiers, to avoid
deadlocks (lines 52–54). The function then removes one process from the victim runqueue
(line 57), if it is non-empty (line 55), and inserts the process into the runqueue of the CPU it
runs on (line 58). Note that two concurrent scheduler invocations executing load balance

on different CPUs may try to access the same runqueue. While verifying the scheduler, we
have to ensure that they synchronise their accesses correctly. We also need to deal with the
fact that, due to load balance, processes cannot be tied to a CPU statically.

The create function inserts the descriptor of a newly created process with the address
given as its parameter into the runqueue of the current CPU. We pass the parameter via a
register, as this simplifies the following treatment of the example. The descriptor must be
initialised like that of a preempted process, and hence its stack must satisfy the invariant
in Figure 5. Upon a call to create, the ownership of the descriptor is transferred from the
kernel to the scheduler. The create function must be called using icall, which disables
interrupts; if interrupts were enabled, schedule could be called while create holds the
lock for the current runqueue, resulting in a deadlock.

The fork function is formally not part of the scheduler. It illustrates how the rest of
the kernel can use create to implement a common system call that creates a clone of
the current process. This function allocates a new descriptor (line 76), copies the stack
of the current process to it (line 77) and initialises the stack as expected by create

(Figure 5). This amounts to discarding the topmost activation record of fork and pushing
a fake activation record of schedule (line 78). We do not initialise the latter record, since
schedule refreshes the values of the variables (line 43) when it receives control. Note that
the values of registers in the initial state of the new process have been saved on the stack
upon the call to fork. Since stack slots for return values are initialised with zeros, this is
what fork in the child process will return; we return 1 in the parent process.

The need for modularity. We could try to verify the scheduler and the rest of the kernel
(including, say, the system call in Figure 4) as a whole, modelling every CPU as a process
in one of the existing program logics for concurrency (O’Hearn, 2007; Gotsman et al.,
2007; Feng et al., 2007a; Vafeiadis & Parkinson, 2007; Dinsdale-Young et al., 2010; Cohen
et al., 2010; Dinsdale-Young et al., 2013). However, in this case our proofs would have to
consider the possibility of the control flow going from any statement in a process to the
schedule function, and from there to any other process. Thus, in reasoning about the
system call implementation in Figure 4 we would end up having to reason explicitly about
invariants and actions of both schedule and all other processes, making the reasoning
non-modular and, most likely, intractable. In the rest of the paper, we propose a logic that
avoids this pitfall.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

464 A. Gotsman and H. Yang

2.3 Approach

Before presenting our logic for preemptive kernels in detail, we give an informal overview
of the reasoning principles behind it. The goal of the logic is to reason about the kernel and
the scheduler separately. Following previous work on OS verification (Feng et al., 2008b;
Yang & Hawblitzel, 2010), our logic uses different proof systems for this purpose: the
high-level one for the kernel and the low-level one for the scheduler.

Modular reasoning via memory partitioning. The first challenge we have to deal with
in separating the reasoning about the kernel and the scheduler is the fact that they share the
same address space. To this end, our logic partitions the memory into two disjoint parts.
The memory cells in each of the parts are owned by the corresponding component, meaning
that only this component can access them. In our running example, the runqueues from
Figure 2 will belong to the scheduler, and the request queue from Figure 4 to the kernel.
It is important to note that this partitioning does not exist in the semantics, but is enforced
by proofs in the logic to enable modular reasoning about the system. Modular reasoning
becomes possible because, while reasoning about one component, one does not have to
consider the memory partition owned by the other, since it cannot influence the behaviour
of the component. An important feature of our logic, required for handling schedulers from
mainstream kernels, is that the memory partitioning is not required to be static: the logic
permits ownership transfer of memory cells between the areas owned by the scheduler
and the kernel according to an axiomatically defined interface. For example, in reasoning
about the scheduler of Section 2.2, the logic permits the transfer of the descriptor for a
new process from the kernel to the scheduler at a call to create; this descriptor then
becomes part of a runqueue owned by the scheduler. Of course, assigning the ownership
of parts of memory to OS components requires checking that a component does not access
the memory it does not own. To this end, our logic implements a form of rely-guarantee
reasoning between the scheduler and the kernel, where one component assumes that the
other does not touch its memory partition and provides well-formed pieces of memory at
ownership transfer points.

Concurrent separation logic. Our logic is based on concurrent separation logic (O’Hearn,
2007), which we recap in Section 4. In particular, this logic provides us with means for
modular reasoning within a given component, i.e., either among concurrent OS processes
or concurrent scheduler invocations on different CPUs. The choice of concurrent separation
logic was guided by the convenience of presentation; see Section 8 for a discussion of
how more advanced logics can be integrated. However, the use of a version of sepa-
ration logic is crucial, because we inherently rely on the frame property validated by
the logic: the memory that is not mentioned by assertions in a proof of a command is
guaranteed not to be changed by it. As we have noted, while reasoning about a compo-
nent, we consider only the memory partition belonging to it. Hence, by the frame prop-
erty we automatically know that the component cannot modify the others. This makes
it easy to carry out the above-mentioned rely-guarantee reasoning between the sched-
uler and the kernel: one does not need to state assumptions about one component not

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 465

SchedulerKernel

CPU1

CPU2

lock1

lock2
process1

process2
process3

Fig. 6. The partitioning of the system state enforced by the logic. The memory is partitioned into
two parts, owned by the scheduler and the kernel, respectively. The memory of each component is
further partitioned into parts local to processes or scheduler invocations on a given CPU, and parts
protected by locks.

modifying the memory of the other explicitly, as they will be automatically validated by
the logic.

Concurrent separation logic lets us achieve modular reasoning within a given component
by further partitioning the memory owned by it into disjoint process-local parts (one for
each process or scheduler invocation on a given CPU) and protected parts (one for each
free lock). A process-local part can only be accessed by the corresponding process or
scheduler invocation, and a lock-protected part only when the process holds the lock. The
resulting partitioning of the system state is illustrated in Figure 6. The frame property
guarantees that a process cannot access the partition of the heap belonging to another one.
To reason modularly about parts of the state protected by locks, the logic associates with
every lock an assertion—its lock invariant—that describes the part of the state it protects.
Lock invariants restrict how processes can change the protected state and, hence, allow
reasoning about them in isolation. For example, in the program from Figure 4, the invariant
of request_lock can state that it protects the request_queue variable and the doubly-
linked list it identifies.

Scheduler-agnostic verification of kernel code. The high-level proof system
(Section 5.2) reasons about preemptable code assuming an abstract machine where every
process has its own virtual CPU with a dedicated set of registers. It relies on the partitioned
view of memory described above to hide the state of the scheduler, with all the remaining
state split among processes and locks accessible to them, as illustrated in Figure 7. We
have primed process identifiers in the figure to emphasise that the state of the process
can be represented differently in the abstract and physical machines: for example, if a
process is not running, the values of its local registers can be stored in scheduler-private
data structures, rather than in CPU registers.

Apart from hiding the state of the scheduler, the high-level system also hides the complex
manipulation of the control flow performed by its context-switch code: the proof system
assumes that the control moves from one point in the process code to the next without
changing its state, ignoring the possibility of the context-switch code getting executed upon
an interrupt. This is expressed by handling sequential composition in the proof system
essentially using the standard rule (1) from Hoare logic. Explicit calls to the scheduler are
treated as if they were executed atomically.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

466 A. Gotsman and H. Yang

lock1
process1

process2

process3Kernel

Fig. 7. The state of the abstract system with one virtual CPU per process. Process identifiers are
primed to emphasise that the state of the process can be represented differently in the abstract and
physical machines (cf. Figure 6). Dark regions illustrate the parts of process state that are tracked by
a scheduler invocation running on a particular physical CPU.

Technically, the proof system is a straightforward adaptation of concurrent separation
logic, which is augmented with proof rules axiomatising the effect of scheduler routines
explicitly called by processes. The novelty here is that we can use such a scheduler-agnostic
logic in this context at all. This is made possible by verifying the scheduler implementation
using the low-level proof system (Section 5.3).

Proving schedulers correct. Intuitively, a correct scheduler provides an illusion of the
above-mentioned abstract machine with one CPU per process, but what formal obligations
does this entail? First, a process should not notice any effects of being preempted and
then scheduled again: whenever the scheduler sets up a process to run on a CPU, it has to
restore the state of the CPU registers to the one the process had last time it was preempted.
The low-level proof system ensures this by recording these values in a special predicate
Process, which can be viewed as an assertion about the continuation of a process describing
the states from which it can be safely resumed.

In more detail, when a process is preempted and the control is given to the context-switch
routine of the scheduler (schedule in the example from Section 2.2), a Process predicate
recording the current values of the CPU registers appears in its precondition. When the
context-switch routine terminates and the control is given to the process it resumes, the
proof system requires the postcondition of the routine to exhibit a Process predicate with
register values equal to the ones loaded onto the CPU. Roughly speaking, we thus require
the following judgement to hold of the context-switch routine schedule:

{∃�r.Process(�r)∧�r =�r . . .} schedule {∃�r′.Process(�r′)∧�r =�r′ . . .}, (2)

where�r is the vector of CPU register names. The Process predicate in the postcondition
may correspond to a different process than the predicate in the precondition. For example,
when the scheduler from Section 2.2 preempts a process and links its descriptor into a
runqueue, assertions about the runqueue in the proof system can record the corresponding
Process predicate with register values equal to the ones stored in the descriptor. This
predicate can then be used to establish the postcondition of the context-switch routine
when it decides to schedule the process again.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 467

In the case of multiprocessors, ensuring that the scheduler preserves the state of a pre-
empted process is not enough for it to be correct. The scheduler should also be prevented
from duplicating processes at will: it would be incorrect to preempt one process and
then schedule two copies of it on two CPUs at the same time. To check that this does
not happen, the proof system interprets a Process predicate as not merely recording a
process state, but serving as an exclusive permission for the scheduler invocation owning
it to schedule the corresponding process. Technically, it treats Process predicates affinely,
prohibiting their duplication. Judgement (2) is then interpreted as stating that the scheduler
gets the ownership of a Process predicate when it preempts a process and gives it up when
scheduling that process again. This ensures that, at any time, only a scheduler invocation on
a single CPU can own a Process predicate for a given process and, hence, can schedule it.
In terms of Figure 6, a Process predicate can only belong to one partition in the scheduler-
owned memory at a time.

We note that the problem of interdependence between the correctness of the scheduler
and the rest of the kernel that we address in this paper also arises in preemptive unipro-
cessor kernels. The Process predicate also allows us to verify schedulers on uniprocessors;
however, its affine treatment described above is not relevant in this case.

Assertions of the low-level proof system can be thought of as relating the states of
the concrete machine and the abstract one the scheduler is supposed to implement. An
important feature of our logic is that this relation is local, in the sense that it does not
describe the whole state of the two machines. Namely, since we use concurrent separation
logic to reason about concurrent execution of scheduler invocations on different CPUs,
an assertion in the low-level proof system describes only the state owned by a scheduler
invocation on a particular CPU (e.g., the region marked CPU1 in Figure 6). Similarly, the
Process predicates describe only the registers of the processes a scheduler invocation has
permission to schedule (shown by the dark regions in Figure 7), but not the memory they
own. Since the assertions about the scheduler cannot talk about the memory owned by ker-
nel processes, the frame property automatically ensures that the scheduler cannot corrupt it.

Soundness. We establish the soundness of our logic using an approach atypical for the
kind of setting we consider. Since a scheduler is supposed to provide an illusion of an
abstract machine with one CPU per process, to formalise its correctness, we could define
an operational semantics of such an abstract machine and prove that it reproduces any be-
haviour of the concrete machine with the scheduler, thus establishing a refinement between
the two machines. However, for realistic OS schedulers defining a semantics for the ab-
stract machine that a scheduler implements is difficult. This is because, in reasoning about
mainstream operating systems, the state transferred between the scheduler and the kernel
can be described by complicated assertions; in such cases, defining ownership transfer
operationally is difficult (we discuss this further in Section 8).

To resolve this problem with stating soundness, we do not define the semantics of the
abstract machine operationally; instead, we describe its behaviour only by the high-level
proof system, thus giving it an axiomatic semantics. As expected, the low-level proof
system is used to reason about the correspondence between the concrete and the abstract
machines, with its assertions relating their states. However, proofs in neither of the two
systems are interpreted with respect to any semantics alone: our soundness statement

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

468 A. Gotsman and H. Yang

(Section 8) interprets a proof of the kernel in the high-level system and a proof of the
scheduler in the low-level one together with respect to the semantics of the concrete ma-
chine. Thus, instead of relating sets of executions of the two machines, like in the classical
refinement, the soundness statement relates logical statements about the abstract machine
(given by high-level proofs) to logical statements about the concrete one (given by a
constraint on concrete states). Note that in this case the soundness statement for the logic
does not yield a semantic statement of correctness for the scheduler being considered
in isolation. Rather, its correctness is established indirectly by the fact that reasoning in
the high-level proof system, which assumes the abstract one-CPU-per-process machine, is
sound with respect to the concrete machine.

To formulate the soundness statement in the above way, we need to construct a global
property about the whole system state shown in Figure 6 from local assertions about its
components, corresponding to partitions in Figure 6. This does not just boil down to
combining the assertions about the partitions using the separating conjunction, since the
high-level and low-level proof systems work on different levels of abstraction. In particular,
when conjoining assertions about the scheduler and the kernel, we need to make sure that
the view of the parts of kernel state in the assertions about the scheduler (dark regions
in Figure 7) is consistent with those about the kernel. This requires a delicate construc-
tion, combining relational composition and separating conjunction. Similar constructions
can potentially be used for justifying other program logics working on several levels of
abstraction at the same time.

3 Machine semantics

In this section, we give a formal semantics to the example machine informally presented
in Section 2.1.

3.1 Storage model

Figure 8 gives a model for the set of configurations Config that can arise during an execu-
tion of the machine. A machine configuration is a triple with the components describing
the values of registers of the CPUs in the machine (its global context), the state of the
heap and the set of locks taken by some CPU (the lockset of the machine). Note that we
allow the global context or the heap to be a partial function. However, the corresponding
configurations are not encountered in the semantics we define in this section. They come
in handy in Sections 5 and 8 to give a semantics to the assertion language and express the
soundness of our logic.

In this paper, we use the following notation for partial functions: f [x : y] is the function
that has the same value as f everywhere, except for x, where it has the value y; [] is a
nowhere-defined function; f
g is the union of the disjoint partial functions f and g.

3.2 Programming language

We consider a low-level language where programs are represented by structures similar
to control-flow graphs. The programs are constructed from primitive commands c, whose
syntax we define in Figure 9. In addition to the primitive commands listed in Section 2,

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 469

k ∈ CPUid = {1, . . . ,NCPUS} r ∈ Reg = {ip,if,ss,sp,gr1, . . . ,grm}
r ∈ Context = Reg → Val R ∈ GContext = CPUid ⇀ Context

� ∈ Lock = {�1, �2, . . . , �n} L ∈ Lockset = P(Lock)

h ∈ Heap = Loc ⇀ Val (R,h,L) ∈ Config = GContext×Heap×Lockset

Fig. 8. The set of machine configurations Config. We assume sets Loc of valid memory addresses
and Val of values such that Loc ⊆ Val.

r ∈ Reg−{ip,if}
� ∈ Lock

l ∈ Label = �

e ::= r | 0 | 1 | 2 | . . . | e+ e | e− e

b ::= e = e | e � e | b∧b | b∨b | ¬b

c ::= skip | r := e | r := [e] | [e] := e | assume(b) | lock(�) | unlock(�)
| savecpuid(e) | call(l) | icall(l) | ret | iret

Fig. 9. Primitive commands.

we have the following ones: skip and r := e have the standard meaning; r := [e] reads
the contents of a heap cell e and assigns the value read to r; [e] := e′ updates the contents
of cell e by e′; assume(b) acts as a filter on the state space of programs, choosing states
satisfying b. The assume command is used to treat branches in conditionals and loops
uniformly with the other primitive commands, as we explain below. We write PComm for
the set of primitive commands. Note that primitive commands cannot access the ip register
directly. Also, only icall and iret can affect the if register, a restriction that we lift in
Section 7.

Commands C are partial maps from Label to PComm×P(Label). Intuitively, if C(l) =
(c,X), then c is labelled by l in C and can be followed by any command with a label in
X . In this case, we let comm(C, l) = c and next(C, l) = X . We denote the domain of C by
labels(C) and the set of all commands by Comm.

The language constructs used in the example scheduler of Section 2, such as sequential
composition, loops and conditionals, can be expressed as commands in a standard way,
with conditions translated using assume. We illustrate this in Figure 10, where we repre-
sent the mapping C by a graph, with nodes annotated by labels and primitive commands
and edges defining the next function.

3.3 Operational semantics

We now give a standard operational semantics to our programming language. We interpret
primitive commands c using a transition relation �c of the following type:

State = Context×Heap×Lockset; (3)

�c ⊆
(
CPUid×State×Label×Label

)
×

(
(State×Label)∪{�}).

The input (k,(r,h,L), l, l′) to �c consists of the following components:

• k ∈ CPUid is the identifier of the CPU executing the command.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

470 A. Gotsman and H. Yang

if (x > 0) {
 y = 1;
} else {
 z = 1;
}
w = 2;

1: assume(x > 0)

0: skip

2: assume(x <= 0)

3: y = 1 4: z = 1

5: skip

6: w = 2

Fig. 10. Representing sequential composition and conditionals in our low-level language.

• (r,h,L) is the configuration of the system projected to this CPU, which we call
a state. It includes the context of the CPU and the information about the shared
resources—the heap and locks.

• l ∈ Label is the label of the command c.
• l′ ∈ Label is the label of a primitive command following c in the program.

Given this input, the transition relation �c for c computes the next state of the CPU after
running c, together with the label of the primitive command to run next. The former may
be a special � state signalling a machine crash. The latter may be different from l′ when c
is a call or a return.

The relation �c is defined in Figure 11. In the figure and in the rest of the paper, we write
for an expression whose value is irrelevant and implicitly existentially quantified and �gr

for the vector of general-purpose registers. The relation follows the informal meaning of
primitive commands given in Sections 2.1 and 3.2. We have omitted standard definitions
for skip and most of assignments (Reynolds, 2002). We have also omitted them for icall
and iret: the definitions are the same as for call and ret, but additionally modify if.
Note that �c may yield no poststate for a given prestate. Unlike a transition to the � state,
this represents the command getting stuck. For example, according to Figure 11, acquiring
the same lock twice leads to a deadlock, and releasing a lock that is not held crashes the
system.

The program our machine executes is given by a command C that includes a primitive
command labelled schedule, serving as the entry point of the interrupt handler. For such
a command C, we give its meaning using a small-step operational semantics, formalised
by the transition relation →C ⊆ Config×(Config∪{�}) in Figure 12. The first rule in the
figure describes a normal execution, where the value l of the ip register of CPU k is used to
choose the primitive command c to run. After choosing c, the machine nondeterministically
picks a label l′ ∈ next(C, l) identifying the command to follow c, runs c according to the
semantics �c, and uses the result of this run to update the registers of CPU k and the
heap and the lockset of the machine. For example, when a CPU executes the program in
Figure 10 from label 0, both labels 1 and 2 following it will be explored; however, only the
branch where the assume condition evaluates to true will proceed further.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 471

(k,(r,h[[[e]]r : u],L), l, l′) �
r:=[e] ((r[r : u],h[[[e]]r : u],L), l′)

(k,(r,h,L), l, l′) �
assume(b) ((r,h,L), l′), if [[b]]r = true

(k,(r,h,L), l, l′) ��
assume(b) if [[b]]r = false

(k,(r,h,L), l, l′) �
lock(�) ((r,h,L∪{�}), l′), if � �∈ L

(k,(r,h,L), l, l′) ��
lock(�) if � ∈ L

(k,(r,h,L), l, l′) �
unlock(�) ((r,h,L−{�}), l′), if � ∈ L

(k,(r,h[[[e]]r :],L), l, l′) �
savecpuid(e) ((r,h[[[e]]r : k],L), l′)

(k,(r,h[r(sp)..(r(sp)+m) :],L), l, l′) �
call(l′′)

((r[sp : r(sp)+m+1],h[r(sp) : l′,(r(sp)+1)..(r(sp)+m) : r(�gr)],L), l′′)

(k,(r,h[r(sp)−m−1 : l′′,(r(sp)−m)..(r(sp)−1) :�g],L), l, l′) �ret

((r[sp : r(sp)−m−1, �gr :�g],h[r(sp)−m−1 : l′′,(r(sp)−m)..(r(sp)−1) :�g],L), l′′)

(k,(r,h,L), l, l′) �c �, otherwise

Fig. 11. Semantics of primitive commands. The notation �c� indicates that the command c crashes,
and ��c that it does not crash, but gets stuck. The function [[·]]r evaluates expressions with respect to
the context r.

r(ip) = l ∈ labels(C) l′ ∈ next(C, l) (k,(r,h,L), l, l′) �
comm(C,l) ((r′,h′,L′), l′′)

(R[k : r],h,L) →C (R[k : r′[ip : l′′]],h′,L′)

r(ip) = l ∈ labels(C) r(if) = 1 (k,(r,h,L), l, l) �
icall(schedule) ((r′,h′,L′), l′′)

(R[k : r],h,L) →C (R[k : r′[ip : l′′]],h′,L′)

r(ip) = l ∈ labels(C) l′ ∈ next(C, l) (k,(r,h,L), l, l′) �
comm(C,l) �

(R[k : r],h,L) →C �

r(ip) �∈ labels(C)
(R[k : r],h,L) →C �

r(if) = 1 {r(sp), . . . ,r(sp)+m} �⊆ dom(h)
(R[k : r],h,L) →C �

Fig. 12. Operational semantics of the machine.

The second rule in Figure 12 concerns interrupts. Upon an interrupt, the interrupt handler
label schedule is loaded into ip, and the label of the command to execute after the handler
returns is pushed onto the stack together with the values of the general-purpose registers.
The remaining rules deal with crashes arising from erroneous execution of primitive com-
mands, undefined command labels and a stack overflow upon an interrupt.

4 Baseline concurrency logic

We start by presenting the variation of concurrent separation logic on which our logic for
verifying preemptive kernels is based (Section 5). The logic we present in this section
assumes that interrupts are disabled on all CPUs. Thus, we assume that all if registers
are initially set to zero and only consider programs that do not use icall, iret and
savecpuid commands. One can thus think of a single process having been pinned to every

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

472 A. Gotsman and H. Yang

x,y ∈ NVar

γ ∈ CVar

r ∈ Reg−{ip,if}
r ∈ {ip, if,ss,sp,gr1, . . . ,grm}
E ::= x | r | 0 | 1 | . . . | E +E | E −E | G(r)

G ::= γ | [ip : E, if : E,ss : E,sp : E, �gr : �E]

Σ ::= ε | E | ΣΣ
B ::= E = E | Σ = Σ | G = G | E � E | B∧B | B∨B | ¬B

P ::= B | true | P∧P | ¬P | ∃x.P | ∃γ.P

| emp | E �→ E | E..E �→ Σ | P∗P | dllΛ(E,E,E,E) | locked(�)

(r,h,L) |=η B iff [[B]]η r = true

(r,h,L) |=η P1 ∧P2 iff (r,h,L) |=η P1 and (r,h,L) |=η P2

(r,h,L) |=η emp iff h = [] and L = /0

(r,h,L) |=η E0 �→ E1 iff h = [[[E0]]η r : [[E1]]η r] and L = /0

(r,h,L) |=η E0..E1 �→ Σ iff ∃ j � 0.∃u1, . . . ,u j ∈ Val. L = /0, j = [[E1]]η r− [[E0]]η r +1,

u1u2 . . .u j = [[Σ]]η r and h = [[[E0]]η r : u1, . . . , [[E1]]η r : u j]
(r,h,L) |=η locked(�) iff h = [] and L = {�}
(r,h,L) |=η P1 ∗P2 iff ∃h1,h2,L1,L2. h = h1
h2, L = L1
L2,

(r,h1,L1) |=η P1 and (r,h2,L2) |=η P2

Predicate dllΛ is the least one satisfying the equivalence below:

dllΛ(Eh,Ep,En,Et) ⇐⇒ ∃x.(Eh = En ∧Ep = Et ∧ emp)∨
Eh.prev�→Ep ∗Eh.next�→x∗Λ(Eh)∗dllΛ(x,Eh,En,Et)

Fig. 13. Syntax and semantics of assertions of the baseline logic. We have omitted the standard
clauses for most of the first-order connectives. The function [[·]]η r evaluates expressions with respect
to the context r and the logical variable environment η .

CPU, so that we do not have to consider scheduling. Our logic for preemptive kernels in
Section 5 lifts this restriction.

4.1 Assertion language

Mathematically, assertions denote sets of states as defined by (3). However, they describe
properties of a single process, rather than the whole machine. Hence, unlike in Section 3.3,
here a heap can be a partial function, with its domain defining the part of the heap owned
by the process. Similarly, a lockset is now meant to contain only the set of locks that the
process has permission to release.

We use a minor extension of the assertion language of separation logic (Reynolds, 2002),
whose syntax and semantics are defined in Figure 13. We denote the set of assertions by
AssertH. We assume disjoint sets NVar and CVar containing logical variables for values
and contexts, respectively. The latter is needed for the extension of the current logic to
reasoning about preemptive kernels (Section 5). A context G is either a logical variable or

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 473

Eh

Ep Et

En

Fig. 14. An illustration of the dllΛ(Eh,Ep,En,Et) predicate.

a finite map from register labels r to expressions. Note that we use r to range over register
names in context expressions, but r elsewhere in assertions and in programs. Expressions
E and Booleans B are similar to those in programs, except that they allow logical variables
to appear and include the lookup G(r) of the value of the register r in the context G. Let
a logical variable environment η be a mapping from NVar∪CVar to Val∪Context that
respects the types of variables. Assertions denote sets of states from State as defined by
the satisfaction relation |=η in Figure 13. For an environment η and an assertion P, we
denote the set of states satisfying P by [[P]]η .

The assertions in the first line of the definition of P are connectives from the first-
order logic with the standard semantics. We can define the missing connectives from
the given ones. The assertions in the second line up to dllΛ are standard assertions of
separation logic (Reynolds, 2002). Informally, emp describes the empty heap, and E �→ E ′

the heap with only one cell at the address E containing E ′. The assertion E..E ′ �→ Σ is
the generalisation of the latter to several consecutive cells at the addresses from E to E ′

inclusive containing the sequence of values Σ. For a value u of a C type t taking several
cells, we shorten E..(E +sizeof(t)−1) �→ u to just E �→ u. For a field f of a C structure,
we use E.f �→ E ′ as a shorthand for (E + off) �→ E ′, where off is the offset of f in the
structure. The separating conjunction P1 ∗ P2 talks about the splitting of the local state,
which consists of the heap and the lockset of the process. It says that a pair (h,L) can be
split into two disjoint parts, such that one part (h1,L1) satisfies P1 and the other (h2,L2)
satisfies P2.

The assertion dllΛ(Eh,Ep,En,Et) is an inductive predicate describing a segment of a
doubly-linked list (Figure 14). We included it to describe the runqueues of the scheduler in
our example; predicates for other data structures can be added straightforwardly (Reynolds,
2002). The predicate assumes a C structure definition with fields prev and next. Here, Eh
is the address of the head of the list, Et is the address of its tail, Ep is the pointer in the
prev field of the head node, and En is the pointer in the next field of the tail node. The
Λ parameter is a formula with one free logical variable describing the shape of each node
in the list, excluding the prev and next fields; the logical variable defines the address of
the node. For instance, the request queue from Figure 4 can be described by the following
assertion:

∃x,y,z.&request queue �→ z∗z.prev �→ y∗z.next �→ x∗z.data �→ ∗dllΛ(x,z,z,y), (4)

where Λ(x) = x.data �→ .
Finally, the assertion locked(�) is specific to reasoning about concurrent programs and

denotes states with an empty local heap and the lockset consisting of �, i.e., it denotes a
permission to release the lock �. Note that locked(�)∗ locked(�) is inconsistent: acquiring
the same lock twice leads to a deadlock.

In the following, we write var � P for a local C variable or procedure parameter var
instead of ∃var.(sp− var off) �→ var ∗P, where var off is the offset of var with respect

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

474 A. Gotsman and H. Yang

to the top of the stack in the activation record of the function where it is declared (note that
here var is a program variable, whereas var is a logical one). Thus, the assertion at line 13
of Figure 4 states that the local state of a process executing the system call consists of the
local variables req and tmp, stored on its stack, the free part of the stack, the doubly-linked
list request queue and a permission to release request lock.

To summarise, our assertion language extends that of concurrent separation logic with
expressions to denote contexts and locked assertions to keep track of permissions to release
locks.

4.2 Proof system

The proof system for the baseline logic is obtained by adapting concurrent separation logic
to our low-level language. The judgements of the proof system are of the form I,Δ � C.
Here, C specifies the code executed by processes on all CPUs; note that even though C is
the same for all of them, the processes can still execute different programs if they start from
different program points in C. We explain I below. The parameter Δ : Label → AssertH in
our judgement specifies local states of a process given the program point it is at; these
states correspond to process partitions in Figure 7. It thus induces pre- and postconditions
for all primitive commands in C. The top-level rule PROG of the proof system requires us
to prove I,Δ �l′ {Δ(l)} c {Δ(l′)} for every primitive command c in C and the label l′ of a
command following c. This informally means that if c is run from an initial state satisfying
Δ(l), then it accesses only the memory specified by Δ(l) and either terminates normally
and ends up in a state satisfying Δ(l′), or jumps to a label l′′ whose assertion Δ(l′′) holds
in the current state. The proof rules for the above kind of judgements are also given in
Figure 15. They include the standard separation logic axioms for primitive commands,
such as ASSUME and STORE; see Reynolds (2002) for the others. Note that PROG treats
sequential composition, represented by Δ as illustrated in Figure 10, in the same way as
the classical proof rule (1).

The fact that I,Δ�l′ {Δ(l)} c {Δ(l′)} guarantees that c accesses only the memory spec-
ified by Δ(l) validates the frame property (Section 2.3): a process will not step out of the
boundaries of its partition in Figure 7. This also allows us to include the FRAME rule of
separation logic, which states that executing a command in a bigger local state does not
change its behaviour. The rule is useful to restrict the reasoning about primitive commands
to the memory they actually access. The rules CONSEQ, DISJ and EXISTS are standard
rules of Hoare logic. To keep the logic sound we have to forbid applying EXISTS and
FRAME to calls or returns.

The LOCK and UNLOCK axioms are inherited from concurrent separation logic and
provide tools for modular reasoning about concurrent processes. They use the mapping
I : Lock ⇀ AssertH, which specifies the invariants of locks that can be used in C (see
Section 2.3). An example of a lock invariant is the assertion (4), which states that the lock
request_lock from Figure 4 protects a non-empty cyclic doubly-linked list of Request
nodes with the head node at address request_queue. We do not allow lock invariants
to contain registers or free occurrences of logical variables and require them to have
an empty lockset: ∀�,η ,(r,h,L) ∈ [[I(�)]]η .L = /0. The latter does not allow us to prove
programs where a lock is released by a CPU other than the one that acquired it, which our
machine semantics allows. We put this restriction to simplify the explanation of soundness

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 475

∀l ∈ labels(C).∀l′ ∈ next(C, l).(I,Δ �l′ {Δ(l)} comm(C, l) {Δ(l′)})
I,Δ �C

PROG

I,Δ �l {P} assume(b) {P∧b} ASSUME

I,Δ�l {e �→ }[e]:=e′{e �→ e′} STORE

I,Δ�l {P}c{Q} mod(c)∩ free(F) = /0 c is not one of call, icall, ret and iret

I,Δ�l {P∗F}c{Q∗F} FRAME

P =⇒ P′ I,Δ �l {P′} c {Q′} Q′ =⇒ Q

I,Δ �l {P} c {Q} CONSEQ

I,Δ �l {P} c {Q} c is not one of call, icall, ret and iret

I,Δ �l {∃x.P} c {∃x.Q} EXISTS

I,Δ �l {P1} c {Q1} I,Δ �l {P2} c {Q2}
I,Δ �l {P1 ∨P2} c {Q1 ∨Q2}

DISJ

I,Δ �l {emp} lock(�) {I(�)∗ locked(�)} LOCK

I,Δ �l {I(�)∗ locked(�)} unlock(�) {emp} UNLOCK

(P∗ (sp..(sp+m) �→ l gr1 . . .grm)) =⇒ (Δ(l′)[(sp+m+1)/sp])

I,Δ �l {P∗ (sp..(sp+m) �→)} call(l′) {Q} CALL

∀l′ ∈ Label.(P∗ ((sp−m−1)..(sp−1) �→ E ′�E)∧E ′=l′) =⇒ (Δ(l′)[(sp−m−1)/sp][�E/�gr])

I,Δ�l {P∗ ((sp−m−1)..(sp−1) �→ E ′�E)}ret{Q}
RET

Fig. 15. Proof system of the baseline logic. Here, mod(c) is the set of registers modified by c, and
free(F) is the set of registers appearing in F .

in Section 8. We consider a version of concurrent separation logic where lock invariants
are allowed to be imprecise (O’Hearn, 2007) at the expense of excluding the conjunction
rule from the proof system (Gotsman et al., 2011).

The LOCK axiom says that upon acquiring a lock, the process gets the ownership of
its invariant and a permission to release it. In terms of Figure 7, we can think of the
corresponding lock partition becoming part of the process-local one, allowing the process
to modify it at will. According to UNLOCK, before releasing the lock, the process must
have the corresponding permission and must re-establish the lock invariant. When the lock
is released, the process gives up the ownership of the permission and the invariant. In terms
of Figure 7, the lock partition gets split off the process-local one.

The CALL and RET axioms mirror the operational semantics of call and ret (see
Section 2.1 and Figure 11). CALL requires us to provide enough space on the stack to store
the values of registers before a call. The precondition together with the modified stack then
has to establish the assertion given by Δ at the target label. The premiss of RET requires
us to make a case-split on all possible labels l′ we could return to; the precondition has to
establish the assertion at every such label after the values of general-purpose registers and
ip (denoted by �E and E ′) have been loaded from the stack.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

476 A. Gotsman and H. Yang

The axioms CALL and RET provide only a very rudimentary treatment of procedures.
In particular, our logic does not have analogues of the usual modular Hoare proof rules for
procedures and does not allow applying the EXISTS and FRAME rules over a procedure
call. This is because soundly formulating such proof rules in the setting where the stack
is visible to procedure code and can potentially be modified by it is non-trivial. Since we
are concerned with scheduler verification, in this paper we opted for a simplistic solution
and did not include more powerful proof rules for procedures (Feng et al., 2006). As we
discuss in Section 10, this issue also represents a promising direction of future work.

The soundness statement of the logic (presented in Section 8.1) constrains the states
obtained by running the machine with interrupts disabled: when CPUs are at given program
points l1, . . . , lNCPUS, the state of the machine can be obtained by combining the assertions
Δ(l1), . . . ,Δ(lNCPUS), describing their local states, and the lock invariants of free locks, as per
Figure 7. The set of free locks can be determined based on occurrences of locked predicates
in the assertions Δ(l1), . . . ,Δ(lNCPUS).

Figure 4 gives an example proof of a concurrent program in the baseline logic, where
every CPU executes the code shown in the figure. The assertions shown define the local
state of a process and thus the required mapping Δ; the lock invariant of request_lock
is (4). Note that the assertions describe the stack of a process explicitly. We introduced the
� notation in Section 4.1. When a process acquires request_lock, it gets the ownership
of the doubly-linked list it protects, together with the corresponding locked predicate. After
performing manipulations on the list, the process gives up its ownership upon releasing the
lock. Our proof ensures that the code in Figure 4 preserves the doubly-linked list shape
of request_queue and does not access memory cells other than those specified by the
assertions.

5 Logic for preemptive kernels

In this paper we consider schedulers whose interface consists of two routines: create and
schedule. Like in our example scheduler (Section 2.2), create makes a new process
runnable, and schedule performs a context switch. We discuss how our results can be
extended when new scheduler routines are introduced in Section 5.5 below. Our logic thus
reasons about programs of the form:

C
 [lc : (iret,{lc +1})]
S
 [ls : (iret,{ls +1})]
K. (OS)

where C and S are pieces of code implementing the create and schedule routines of the
scheduler, lc and ls are their exit points, and K is the rest of the kernel code. Our high-level
proof system is designed for proving K, and the low-level system for proving C and S.

We make several assumptions about programs:

• We require that C and S define primitive commands labelled create and schedule,
which are meant to be the entry points for the corresponding scheduler routines. The
create routine expects the address of the descriptor of the new process to be stored
in the register gr1. By our convention schedule also marks the entry point of the

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 477

interrupt handler. Thus, schedule may be called both directly by a process or by an
interrupt.

• For now, we ensure that the kernel may not affect the status of interrupts, become
aware of the particular CPU it is executing on, or change the stack address. Thus, K

may not contain savecpuid, icall and iret (except calls to the scheduler routines
schedule and create), and assignments writing to ss. In reality, a kernel might
need to disable interrupts, and we generalise our results to handle this in Section 7.

• To ensure that the scheduler routines execute with interrupts disabled, we require
that C and S may not contain icall and iret.

• We require that the kernel K and the scheduler C and S access disjoint sets of locks.
This condition simplifies the soundness statement in Section 8 and can be lifted.

• For simplicity, we assume that the scheduler data structures are properly initialised
when the program starts executing.

5.1 Interface parameters

As we noted in Section 2.3, our logic can be viewed as implementing a form of rely-
guarantee reasoning between the scheduler and the kernel. In particular, interactions be-
tween them involve ownership transfer of memory cells at points where the control crosses
the boundary between the two components. Hence, the high- and low-level proof systems
have to agree on the description of the memory areas being transferred and the properties
they have to satisfy. These descriptions form the specification of the interface between the
scheduler and the kernel and, correspondingly, between the two proof systems. Here we
describe parameters used to formulate it.

When the kernel calls the create routine of the scheduler, the latter might need to get the
ownership of the process descriptor supplied as the parameter. In the two proof systems,
we specify this descriptor using an assertion desc(d,γ) ∈ AssertH with two free logical
variables and no register occurrences. Our intention is that it describes the descriptor of
a process with the context γ , allocated at the address d. However, the user of our logic is
free to choose any assertion, depending on a particular scheduler implementation being
verified. This flexibility has an impact on the soundness statement of the logic, as we
discuss in Section 8. Since the scheduler and the kernel access disjoint sets of locks, we
require that [[desc(d,γ)]] have an empty lockset (Section 4.2). We assume that create does
not transfer anything back to the kernel at its return, and thus do not introduce an interface
parameter for this case.

The schedule routine can be called by the kernel explicitly, or as a consequence of an
interrupt at any time. Due to the latter case, schedule cannot make that many assumptions
about the state in which it is called. Therefore, rather than specifying the state to be
transferred from the kernel to schedule upon an interrupt abstractly, like in the case
of create, we fix it to be the free part of the stack of the process being preempted—
the minimum schedule needs to execute. The scheduler returns the ownership of this
memory to the process when it schedules the process again. The corresponding interface
parameters determine the size of the part of the stack being transferred: the size of the
stack StackSize ∈ � and the upper bound StackBound ∈ � on the stack usage by the
kernel (excluding the scheduler). To ensure that the stack does not overflow while calling

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

478 A. Gotsman and H. Yang

∀l ∈ labels(C).∀l′ ∈ next(C, l).(I,Δ �l′ {Δ(l)} comm(C, l) {Δ(l′)})
∀l ∈ Label(C).∃P ∈ AssertH.Δ(l) ⇐⇒

((0 � sp−ss � StackBound)∧ (sp..(ss+StackSize−1) �→)∗P)
I,Δ �C

PROG-H

I,Δ �l {P} icall (schedule) {P} SCHED

free(P)∩Reg = /0
P has an empty lockset

∀l′ ∈ Label.(∃γ. id = γ ∧ γ(ip) = l′ ∧sp..(ss+StackSize−1) �→ ∗P) =⇒ Δ(l′)
I,Δ �l {∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q} icall(create) {∃γ.Q} CREATE

Fig. 16. The rules specific to the high-level proof system. Here,
id = [ip : , if : 1,ss : ss,sp : sp, �gr : �gr].

an interrupt hander, we require that StackSize− StackBound � m + 1, where m is the
number of general-purpose registers.

In the following, we first present the high-level proof system used for verifying kernel
code, which adapts the baseline concurrency logic from Section 4. We then present the
low-level proof system for verifying scheduler code, which extends the high-level system.

5.2 High-level proof system

The high-level proof system is obtained from that of Section 4 with minimal changes.
The proof system reasons under an illusion that every process runs on a separate virtual
CPU with its own registers (but not memory), and its assertions now describe properties
of processes under this assumption, as illustrated in Figure 7. Whereas in Section 4 we
justified such reasoning by requiring processes to be pinned to physical CPUs by disabling
interrupts, here we do not make this assumption.

The judgements of the proof system are of the same form as before: I,Δ � C, where
C specifies all the code executed by kernel processes. As before, different processes can
execute different programs by starting at different program points in C. The high-level
proof system is meant for verifying the K part of the OS program and, hence, Δ in I,Δ �C
is now meant to give assertions only for the kernel code. When combining proofs in the
high-level and low-level proof systems in Section 5.4, we enforce this by restricting Δ
so that it is false everywhere except at labels in the kernel code. Similarly, I describes
invariants for locks accessible in the kernel code only.

The changes to the logic from Section 4 are as follows. The PROG rule from Figure 15
gets replaced by a similar rule PROG-H, shown in Figure 16, and the rest of the rules
in Figure 15 are left without changes. PROG-H inherits the premiss of PROG, and thus
subsumes the usual sequential composition rule of Hoare logic: it assumes that the control
follows the structure of the process code, even though the scheduler code can get executed
due to an interrupt at any time. This possibility is accounted for by the second premiss of
PROG-H. Recall from Section 5.1 that the kernel is supposed to transfer the ownership of
the free part of the stack to the scheduler at an interrupt, and get it back when it is scheduled
again. The second premiss of PROG-H ensures this by requiring all assertions in Δ to

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 479

satisfy some restrictions regarding stack usage, formulated using parameters StackSize
and StackBound from Section 5.1:

• the free part of the stack of the process must always be in its local state so that it can
be transferred to the interrupt handler at any time;

• this part must always be large enough for the handler to run without a stack overflow;
and

• the assertions should be independent of any changes to the empty slots of the stack,
which may be modified by the handler.

The latter condition is similar to that of stability in logics based on rely-guarantee
(Feng et al., 2007a; Vafeiadis & Parkinson, 2007).

To complete the illusion of uninterrupted control flow in a process, the high-level proof
system treats explicit calls to the create and schedule routines of the scheduler as
primitive commands, axiomatising their effect using SCHED and CREATE. These axioms
are formulated as if after the corresponding icall commands the control just proceeded to
the next statement in the program, instead of jumping to the implementation of the routines.
This is despite the fact that, after a call to schedule, the process may be preempted and
the control given to any other process in the system. In this way, the axioms abstract from
the scheduler implementation.

The SCHED axiom states that invoking schedule has no effect from the point of view
of the process—if it is preempted, the scheduler resumes it in the same context, and no
other process can touch its local state. The axiom does not place any requirements on the
process, as the preconditions necessary for the execution of schedule, which can anyway
be invoked at any time as the interrupt handler, are established by the second premiss of
PROG-H.

The CREATE axiom is more complicated. First, it requires the caller of create to
provide a new descriptor desc(gr1,γ) for the process being created with the context γ .
We pass the parameter via the register gr1 and not via the stack, as this simplifies the
following technical presentation. The context is required to have if set, since after the
context switch is finished, the process starts executing with interrupts enabled. Note that
the descriptor is not present in the postcondition: it gets transferred to the scheduler and
reappears in the precondition of the implementation of create (Section 5.4). The axiom
also allows us to transfer the ownership of the part of the heap given by P to the newly
created process, thus providing it with an initial local state. This is a typical idiom for high-
level reasoning about processes in separation logics (Gotsman et al., 2007). The premiss
of the rule correspondingly requires that, after the registers and the stack are properly
initialised, the state P we are transferring should establish the assertion at the label the
process starts executing from. The effect of loading registers from γ is formulated using
the context id.

For the example scheduler in Section 2.2, desc(d,γ) should describe a process descriptor
with the stack initialised according to the invariant of a preempted process pictured in
Figure 5:

desc(d,γ) = d.prev �→ ∗d.next �→ ∗desc0(d,γ),

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

480 A. Gotsman and H. Yang

where

desc0(d,γ) = (γ(if) = 1)∧ (γ(ss) = d.kernel stack)∧
(0 � γ(sp)− γ(ss) � StackBound)∧d.timeslice �→ ∗
d.saved sp �→ (γ(sp)+m+1+SCHED FRAME)∗
γ(sp)..(γ(sp)+m) �→ γ(ip)γ(�gr)∗
(γ(sp)+m+1)..(γ(ss)+StackSize−1) �→

and SCHED FRAME is the size of the activation record of schedule (Figure 2). The de-
scriptor does not include filled stack slots; they can be passed to the process directly in the
precondition P.

Now assume that we want to create a process that will start executing from a label l0
with an empty stack and the ownership of a cell at the address stored in the register gr1, so
that

Δ(l0) = (ss = sp∧ss..(ss+StackSize−1) �→ ∗gr1 �→).

To apply CREATE, we let

P = (γ(ip) = l0 ∧ γ(ss) = γ(sp)∧ γ(gr1) �→).

Then the left-hand side of the implication in the last premiss of CREATE is false for all
l′ �= l0, and in this case the implication holds trivially; it is easy to check that the implication
also holds for l′ = l0.

The proof in Figure 4, previously done using the baseline concurrency logic, is also a
valid proof in the high-level logic for StackBound = 2 ·sizeof(Request∗).

To summarise, the high-level proof system provides modern tools for modular reasoning
about concurrent processes using proof rules of concurrent separation logic and hides the
control flow of the scheduler by treating its routines as primitive commands. The soundness
of such an illusion is established by verifying the scheduler code using a low-level proof
system, which we describe next.

5.3 Low-level proof system

The low-level proof system is used for proving that the commands C and S of the OS

program implement scheduling correctly. This boils down to checking the two obligations
explained in Section 2.3:

1. A scheduler resumes a process with the state of the CPU registers it had the last time
it was preempted.

2. A scheduler does not duplicate processes arbitrarily.

To reason about these, we extend the assertion language of Section 4.1 with an additional
predicate:

P ::= . . . | Process(G),

where G ranges over context expressions. The predicate records the reference values G of
registers in between the time a process is preempted and scheduled again. In Section 5.4
below, we use it to formulate the proof obligation on the context-switch routine of the

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 481

(r,h,L),M |=η Process(G) iff h = [], L = /0, M = {[[G]]η r}
(r,h,L),M |=η P∗Q iff ∃h1,h2,L1,L2,M1,M2.h=h1
h2,L = L1
L2,M = M1
M2,

(r,h1,L1),M1 |=η P and (r,h2,L2),M2 |=η Q

(r,h,L),M |=η emp iff h = [], L = /0 and M = /0

(r,h,L),M |=η P∧Q iff (r,h,L),M |=η P and (r,h,L),M |=η Q

Fig. 17. Semantics of low-level assertions. The
 operation on multisets adds up the number of
occurrences of each element in its operands.

scheduler formalising (2) from Section 2.3 and thus ensuring property 1 above. We denote
the extended set of assertions by AssertL.

The addition of the Process predicate changes objects described by assertions: they now
denote relations defined by subsets of

SchedState = State×M (Context),

where M (Context) is the set of all finite multisets of contexts. Here, an element of
State describes a state local to a scheduler invocation on a CPU (Figure 6) and that of
M (Context) interprets Process predicates. We give the formal semantics of assertions
using the satisfaction relation |=η in Figure 17, parameterised by environments η . The first
two cases in the figure are the most interesting ones. The assertion Process(G) describes
a scheduler invocation having the empty heap and lockset and a permission to schedule a
single process with the register values G. The separating conjunction P∗Q splits all parts of
the state-multiset pair except the current scheduler context such that the first part satisfies
P and the second Q. This definition of ∗ prohibits duplicating Process and thus ensures
property 2 above:

¬(Process(G) =⇒ Process(G)∗Process(G)).

The semantic definitions for the remaining assertions are obtained from the corresponding
cases in our high-level proof system (Figure 13) either by requiring the multiset component
M to be empty, like in the case of emp, or by propagating M to their sub-assertions,
like in the case of P∧Q. For example, the assertion ∃γ.desc(d,γ) ∗Process(γ) denotes
a descriptor of a preempted process with a Process predicate matching the state stored in
it and thus certifying its validity. We denote the set of states satisfying P by [[P]]η .

Relations in SchedState can be thought of as connecting the states of the concrete ma-
chine and the abstract machine with one CPU per process. As we have noted in Section 2.3,
these relations do not describe the full state of the machines. The first component in a
relation describes the local state of a scheduler invocation running on a CPU, including its
context and the heap and the lockset local to it (e.g., the region marked CPU1 in Figure 6).
The multiset in the second part records information about the states of processes described
by Process predicates in the assertion (cf. the dark regions in Figure 7), which includes
their contexts, but excludes local heaps and locksets. The low-level logic we present in this
section is based on separation logic and, hence, the invisibility of these parts of process
state to the scheduler automatically guarantees that it cannot access them.

The judgements of the low-level proof system have the form I,Δ �k C, where k ∈CPUid,
I : Lock ⇀ AssertL is a vector of invariants for locks accessible to the scheduler, and

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

482 A. Gotsman and H. Yang

Δ : Label → AssertL is a mapping from program positions to low-level assertions. When
considering a complete system in Section 5.4, we restrict Δ so that it is false everywhere
except at labels in the scheduler code. Since we allow the scheduler to use the savecpuid
command, the judgement includes the identifier k of the CPU executing the code C.

The intuitive meaning of the judgements is the same as in the high-level system (Sec-
tion 5.2), with the component describing process states unchanged during the execution
of scheduler commands. The judgements thus express how the scheduler code changes
the relationship between the state of the scheduler on the CPU k and those of processes
running on the machine. The proof rule for deriving our judgements is identical to PROG

from Figure 15, modulo the addition of k:

∀l ∈ labels(C).∀l′ ∈ next(C, l). I,Δ �k
l′ {Δ(l)} comm(C, l) {Δ(l′)}

I,Δ �k C
PROG-L

Note that the syntactic structure of the OS program (see the beginning of Section 5) ensures
that the scheduler always executes with interrupts disabled. Thus, in the rule we are able
to follow the control flow of C. The low-level system inherits the proof rules for deriving
judgements for primitive commands I,Δ �l {P} c {Q} in Figure 15, adding the superscript
k to �l and ignoring the rules for icall(schedule) and icall(create). It also has a rule
for savecpuid, which makes use of the index k:

I,Δ �k
l {e �→ } savecpuid(e) {e �→ k}

CPUID

5.4 Putting the two proof systems together

The proof systems presented in Sections 5.2 and 5.3 allow us to reason about the kernel
and the scheduler code. We now describe a rule for combining judgements from the two
systems, which defines proof obligations for the OS components. This allows us to prove
the OS program defined at the beginning of Section 5.

As can be seen from the example of Section 2.2, a scheduler might need to maintain
some data structures related to every CPU, which can be accessed by a scheduler invocation
running on it. A data structure of this kind in our example scheduler is the element of
the current array corresponding to the current CPU. Let Jk be an invariant of such data
structures for CPU k, which is meant to hold when the scheduler is not running on it.
Similar to lock invariants, we do not allow Jk to contain free logical variables or registers,
except ss. In this case, we can allow ss because we have previously required that the
kernel cannot modify it. We denote the vector of invariants Jk by J.

Consider assertions IK,ΔK and IS,Δ
k
S for all k ∈ CPUid, corresponding to the kernel and

the scheduler code, respectively:

• dom(IK)∩dom(IS) = /0;

• ∀l. l �∈ dom(K) =⇒ ΔK(l) = false;

• ∀l. l �∈ dom(S)
dom(C)
{ls, lc} =⇒ Δk
S(l) = false.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 483

The proof rule for the program OS is as follows:

IK,ΔK � K

∀k ∈ CPUid. IS,Δ
k
S �k S, IS,Δ

k
S �k C

∀k ∈ CPUid.Δk
S(schedule) = Δk

S(ls) = Δk
S(lc) = SchedStatek

∀k ∈ CPUid.Δk
S(create)=(∃γ.γ(if)=1∧SchedStatek∗desc(gr1,γ)∗Process(γ))

IK,ΔK | IS,{Δk
S}k∈CPUid | J � (S,C,K)

OS

where

SchedStatek = ∃l,�g.0 � sp−ss−m−1 � StackBound∧
(sp−m−1)..(sp−1) �→ l�g∗sp..(ss+StackSize−1) �→ ∗

Jk ∗Process([ip : l, if : 1,ss : ss,sp : sp−m−1, �gr :�g]).

The first two premisses require us to prove the kernel and the scheduler code in their respec-
tive proof systems. The rest define pre- and postconditions for schedule and create by
fixing the assertions at the corresponding labels. This is done using the predicate
SchedStatek, which describes the state of a scheduler invocation at CPU k just after it
is called using icall or before it returns by executing iret.

According to the penultimate premiss of the proof rule, when schedule is called the
stack satisfies the bound on stack usage. The scheduler gets the ownership of the per-
CPU data structure Jk, a part of the stack of the process being preempted (which contains
the values of registers saved upon the call together with the empty slots), and a Process

predicate consistent with the registers saved on the stack. The predicate certifies that,
when the scheduler starts executing, the state of the preempted process in the machine
corresponds to its state in the abstract machine. The schedule routine has to re-establish
the same assertion before returning. In the case when it schedules a different process, this
will be done using a different Process predicate. However, since the scheduler can only get
a Process predicate in the precondition of schedule (and when a new process is created;
see below), its postcondition guarantees that the process being scheduled has the same
register values it had last time it was preempted. Note that the pre- and postconditions of
schedule mirror the second premiss of the PROG-H rule. Thus, the assumptions it makes
about the kernel are justified by the proof of the latter in the high-level system. Also, the
per-CPU state of the scheduler Jk is treated similarly to a piece of state protected by a lock:
a scheduler invocation gets its ownership when the scheduler starts executing, and gives it
up after giving the control back to a process.

The precondition of create is similar to that of schedule, but additionally assumes a
process descriptor for a new process with the address in gr1, and a corresponding Process

assertion initialised according to the information in the descriptor. This descriptor is guar-
anteed to be provided by the kernel by the precondition of the CREATE rule. Adding the
new Process assertion can be understood intuitively as creating a fresh virtual CPU for the
new process in the abstract machine.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

484 A. Gotsman and H. Yang

5.5 Extending the logic

Our logic considers scheduling interfaces providing only the fundamental routines for
context switch and process creation. However, our simple treatment of scheduler routines
allows extending the logic when routines are added to its interface by:

• adding axioms, similar to SCHED and CREATE, for the new routines to the high-
level proof system, specifying the pieces of state transferred between the scheduler
and the kernel at calls to and returns from the routines; and

• adding new obligations for the routines to the proof rule from Section 5.4, to be
discharged using the low-level proof system.

In this case, the pre- and postconditions of the routines in the low-level proof system should
mirror those of the axioms in the high-level proof system, similarly to how this is the case
for schedule and create. In Section 7 we demonstrate how a similar approach can be
used to deal with features that break through the virtual CPU abstraction implemented by
a scheduler, such as access to the interrupt status flag by the kernel.

6 Verifying the example scheduler

We have used the logic to manually construct a proof of the example scheduler of Sec-
tion 2.2, establishing the judgements about schedule and create required by the OS
proof rule from Section 5.4.3 By the soundness theorem for our logic (presented in Sec-
tion 8), this implies that any property of a piece of high-level code proved in concurrent
separation logic, including memory safety and functional correctness, holds of the code
when it is managed by the example scheduler. In particular, this is true of the properties
of the code in Figure 4 described in Section 4. The full proof is given in a Supplementary
Appendix available at http://dx.doi.org/10.1017/S0956796813000075 (Gotsman & Yang,
2013). Here, we present only lock and per-CPU scheduler invariants, together with a sketch
of the proof of schedule.

The invariants of runqueue locks are as follows:

I(runqueue lock[k]) = ∃x,y,z.runqueue[k] �→ z∗
desc0(z,)∗ z.prev �→ y∗ z.next �→ x∗dllΛ(x,z,z,y),

where Λ(d) = ∃γ.desc0(d,γ) ∗Process(γ) and desc0 is defined in Section 5.2. Thus, a
runqueue for a CPU k contains a list of descriptors of preempted processes together with
Process predicates matching the state stored in them. The per-CPU scheduler invariants
are:

Jk = ∃d.(d.kernel stack = ss)∧current[k] �→ d ∗
d.prev �→ ∗d.next �→ ∗d.timeslice �→ ∗d.saved sp �→ .

Thus, the invariant for CPU k includes the descriptor of the process currently running on
the CPU. We also know that the current stack is the one identified by its descriptor (recall
that the kernel cannot modify the ss register).

3 Since we do not support modular reasoning about procedures, we constructed a proof schema for the body of
fork in Figure 3, which is meant to be instantiated and inlined at every use.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 485

Below we give a sketch of the proof of the context-switch routine schedule with
the following main idea. When an invocation of schedule acquires the runqueue lock
and removes a descriptor from the runqueue, it gets the ownership of the corresponding
Process predicate, which lets it schedule the process by establishing the postcondition
SchedStatek of schedule. When the process is preempted again, schedule receives the
Process predicate in its precondition SchedStatek. This predicate and the state in Jk let the
scheduler insert the descriptor back into the runqueue while maintaining its invariant.

To make sure that the kernel leaves enough space on the stack for the activation records
of schedule and load_balance or create, we assume that

StackSize−StackBound � 2 ·m+2+4 ·sizeof(int)+2 ·sizeof(Process∗).

We abbreviate SCHED_FRAME to s. Below k is the identifier of the CPU for which the proof
is done.

{SchedStatek}
int cpu;

Process *old_process;

{cpu,old process � ∃l,�g,d.if = 0∧ Unpack SchedStatek.
d.kernel stack = ss∧ Local variables cpu and old_process

0 � sp−ss−m− s−1 � StackBound∧ are allocated on the stack.
current[k] �→ d ∗d.prev �→ ∗d.next �→ ∗ The assertion d.timeslice �→ allows
d.timeslice �→ ∗d.saved sp �→ ∗ us to prove the following commands
(sp− s−m−1)..(sp− s−1) �→ l�g∗ manipulating the timeslice field of
sp..(ss+StackSize−1) �→ ∗ the current descriptor.
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])}

savecpuid(&cpu);

load_balance(cpu);

old_process = current[cpu];

... // update the timeslice of old process
if (old_process->timeslice) iret();

old_process->timeslice = SCHED_QUANTUM;

{cpu,old process � ∃l,�g.if = 0∧ cpu is now equal to k, and
old process.kernel stack = ss∧ old_process points to the descriptor
cpu = k∧0 � sp−ss−m− s−1 � StackBound∧ of the current process.
current[k] �→ old process∗
old process.prev �→ ∗old process.next �→ ∗
old process.timeslice �→ ∗
old process.saved sp �→ ∗
(sp− s−m−1)..(sp− s−1) �→ l�g∗
sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])}

lock(runqueue_lock[cpu]);

{cpu,old process � locked(runqueue lock[k])∗ Acquiring the lock gets us ownership
∃l,�g.if = 0∧old process.kernel stack = ss∧ of the locked predicate and the lock
cpu = k∧0 � sp−ss−m− s−1 � StackBound∧ invariant.
current[k] �→ old process∗ This allows us to prove the commands
old process.prev �→ ∗old process.next �→ ∗ below that manipulate the runqueue.
old process.timeslice �→ ∗
old process.saved sp �→ ∗
(sp− s−m−1)..(sp− s−1) �→ l�g∗
sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])∗

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

486 A. Gotsman and H. Yang

∃x,y,z.runqueue[k] �→ z∗
desc0(z,)∗ z.prev �→ y∗ z.next �→ x∗dllΛ(x,z,z,y)}

insert_node_after(runqueue[cpu]->prev,

old_process);

current[cpu] = runqueue[cpu]->next;

remove_node(current[cpu]);

old_process->saved_sp = _sp;

{(cpu,old process � locked(runqueue lock[k])∗ old_process is now at the end of
∃l,�g.if = 0∧old process.kernel stack = ss∧ the runqueue, and process that was
cpu = k∧0 � sp−ss−m− s−1 � StackBound∧ at the front is now the current one.
current[k] �→ x∗old process.prev �→ y∗ We are still using the stack of
old process.next �→ z∗old process.timeslice �→ ∗ the old process.
old process.saved sp �→ sp∗
(sp− s−m−1)..(sp− s−1) �→ l�g∗
sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])∗
∃x,y,z,w,γ.runqueue[k] �→ z∗desc0(z,)∗
z.prev �→ old process∗ z.next �→ w∗ We have omitted the case
desc0(x,γ)∗Process(γ)∗ x.prev �→ ∗ x.next �→ ∗ corresponding to the runqueue
dllΛ(w,z,old process,y))∨ . . .} being originally empty.

_sp = current[cpu]->saved_sp;

savecpuid(&cpu);

_ss = current[cpu]->kernel_stack;

{(cpu,old process � locked(runqueue lock[k])∗ We are now using the stack of the new
∃l,�g,d.if = 0∧d.kernel stack = ss∧ process.
cpu = k∧0 � sp−ss−m− s−1 � StackBound∧ The descriptor of the old process has
current[k] �→ d ∗d.prev �→ ∗d.next �→ ∗ been merged into the dll predicate
d.timeslice �→ ∗d.saved sp �→ sp∗ representing the runqueue.
(sp− s−m−1)..(sp− s−1) �→ l�g∗
sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])∗
∃x,y,z.runqueue[k] �→ z∗
desc0(z,)∗ z.prev �→ y∗ z.next �→ x∗dllΛ(x,z,z,y)}

unlock(runqueue_lock[cpu]);

{cpu,old process � ∃l,�g,d.if = 0∧ After releasing the lock, we give up
d.kernel stack = ss∧ the ownership of the runqueue
0 � sp−ss−m− s−1 � StackBound∧ and the locked predicate.
current[k] �→ d ∗d.prev �→ ∗d.next �→ ∗
d.timeslice �→ ∗d.saved sp �→ ∗
(sp− s−m−1)..(sp− s−1) �→ l�g∗
sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : 1,ss : ss,sp : sp−s−m−1, �gr :�g])}

// We deallocate local variables here

{SchedStatek}
iret();

Note that the above proof would not go through if we forgot to acquire the runqueue
lock before accessing it in schedule. This is because, according to the STORE axiom
from Figure 15, we need to have ownership of a memory cell in order to access it. Without
acquiring the lock, we would not get the ownership of the doubly-linked list representing
the runqueue and, hence, would not be able to justify the correctness of runqueue manipu-
lations.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 487

Our logic is not tied to the particular scheduler implementation we consider here. For
example, if we represented the runqueue using a red-black tree sorted by process priorities,
like in the newer versions of the Linux kernel (Love, 2010), then we would be able to verify
the resulting scheduler as above, but with a new runqueue lock invariant.

7 Breaking through the scheduler abstraction: per-CPU data structures

Even though a scheduler is supposed to provide an illusion of running on a dedicated virtual
CPU to every process, in practice, some features available to the kernel code can break
through this abstraction: e.g., a process can disable preemption (which for our machine
corresponds to disabling interrupts) and become aware of the physical CPU on which it
is currently executing. So far we have ignored this possibility by not allowing the kernel
to access the if register or execute the savecpuid command (Section 5). One way in
which OS kernels, such as Linux, use preemption disabling is for implementing so-called
per-CPU data structures (Bovet & Cesati, 2005)—arrays indexed by CPU identifiers such
that a process can only access an entry in an array when it runs on the corresponding CPU.
This is widely used to implement CPU-local caches of data, which can be accessed without
synchronisation with processes running on other CPUs.

The code in Figure 18, whose proof we explain below, illustrates this by the example of
a memory allocator, whose routines can be called concurrently by multiple processes. The
allocator manages nodes of type Node, which it stores in a doubly-linked list free_list.
Since multiple invocations of the allocator routines can try to access the free list concur-
rently, such accesses have to be protected by list_lock. To avoid this synchronisation in
most cases, the deallocation routine shown in Figure 18 first stores nodes in a CPU-local
cache; only when this cache overflows does the routine acquire list_lock and move the
nodes from the cache to the free list. An allocation routine, which we have omitted, could
benefit from a similar optimisation, by trying to allocate a node from the CPU-local cache
first and accessing the shared free list only when this fails. For the manipulations of a
CPU-local cache to be safe, we need to make sure that at most one allocator invocation can
access it at a time. We achieve this by disabling interrupts, and hence, preemption, for the
duration of the access, using a pair of new commands cli (for disabling interrupts) and
sti (for enabling them). We also use the savecpuid command to index into the array of
per-CPU caches.

The use of per-CPU data structures makes it more challenging to separate the verification
of the kernel from that of the scheduler, as this exposes the notion of a physical CPU that
a scheduler is meant to hide. We now show that we can deal with such implementation
exposures while preserving the level of abstraction our logic has enabled so far. Instead of
exposing the low-level meaning of concepts such as interrupts and physical CPUs in the
logic, our approach is to hide them behind an axiomatic interface that allows only reasoning
about their intended uses in the kernel, such as per-CPU data structures.

We extend the set of primitive commands from Figure 9 with the above-mentioned
commands for disabling and enabling interrupts, meant for the use by the kernel code
only:

c ::= . . . | cli | sti

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

488 A. Gotsman and H. Yang

1 struct Node {

2 Node *prev, *next;

3 int data;

4 };

5

6 Node *free_list; // a cyclic doubly−linked list with a sentinel node
7 Lock *list_lock; // protects the list
8 Node *free_cache[NCPUS]; // CPU−local caches of free nodes
9 // (cyclic doubly−linked lists with sentinel nodes)

10 int count[NCPUS]; // number of nodes in each CPU−local cache
11

12 void free(Node *n) {

13 int cpu;

14 {n,cpu � n.prev �→ ∗n.next �→ ∗n.data �→ ∗
15 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
16 cli();

17 {n,cpu � ∃x,y,z, i,k.&count[k] �→ i∗&free cache[k] �→ z∗ z.prev �→ y∗ z.next �→ x∗
18 z.data �→ ∗dlliΛ(x,z,z,y)∗CPU(k)∗n.prev �→ ∗n.next �→ ∗n.data �→ ∗
19 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
20 savecpuid(&cpu);

21 {n,cpu � ∃x,y,z, i.&count[cpu] �→ i∗&free cache[cpu] �→ z∗ z.prev �→ y∗ z.next �→ x∗
22 z.data �→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗n.prev �→ ∗n.next �→ ∗n.data �→ ∗
23 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
24 insert_node_after(free_cache[cpu], n);

25 count[cpu]++;

26 {n,cpu � ∃x,y,z, i.&count[cpu] �→ i∗&free cache[cpu] �→ z∗ z.prev �→ y∗ z.next �→ x∗
27 z.data �→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
28 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
29 if (count[cpu] > LIMIT) {

30 lock(list_lock);

31 {n,cpu � ∃x,y,z, i.&count[cpu] �→ i∗&free cache[cpu] �→ z∗ z.prev �→ y∗ z.next �→ x∗
32 z.data �→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
33 ∃x′,y′,z′.&free list �→ z′ ∗ z′.prev �→ y′ ∗ z′.next �→ x′ ∗ z′.data �→ ∗dllΛ(x′,z′,z′,y′)∗
34 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
35 move_contents(free_cache[cpu], free_list);

36 {n,cpu � ∃z.&count[cpu] �→ ∗&free cache[cpu] �→ z∗ z.prev �→ z∗ z.next �→ z∗
37 z.data �→ ∗CPU(cpu)∗
38 ∃x′,y′,z′.&free list �→ z′ ∗ z′.prev �→ y′ ∗ z′.next �→ x′ ∗ z′.data �→ ∗dllΛ(x′,z′,z′,y′)∗
39 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
40 unlock(list_lock);

41 count[cpu] = 0;

42 }

43 {n,cpu � ∃x,y,z, i.&count[cpu] �→ i∗&free cache[cpu] �→ z∗ z.prev �→ y∗ z.next �→ x∗
44 z.data �→ ∗dlliΛ(x,z,z,y)∗CPU(cpu)∗
45 sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
46 sti();

47 {n,cpu � sp..(ss+StackSize−1) �→ ∧sp = ss+2 ·sizeof(Request∗)}
48 }

Fig. 18. A memory deallocation routine using per-CPU caches of free nodes.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 489

For v1,v2 ∈ CPUid∪{⊥} let v1 ◦ v2 = v ⇐⇒ (v1 = v∧ v2 = ⊥)∨ (v1 = ⊥∧ v2 = v)

(r,h,L,v) |=η CPU(e) iff h = [], L = /0, [[e]]r = v and v ∈ CPUid

(r,h,L,v) |=η P1 ∗P2 iff ∃h1,h2,L1,L2,v1,v2. h = h1
h2, L = L1
L2, v = v1 ◦ v2,

(r,h1,L1,v1) |=η P1 and (r,h2,L2,v2) |=η P2

(r,h,L,v) |=η emp iff h = [], L = /0 and v = ⊥
(r,h,L,v) |=η P∧Q iff (r,h,L,v) |=η P and (r,h,L,v) |=η Q

Fig. 19. Semantics of high-level assertions adjusted for handling per-CPU data structures. The
semantics of assertions not shown is adjusted similarly.

We furthermore lift the restriction we made in Section 5 that prohibits the kernel code from
using the savecpuid command. The semantics of our programming language is adjusted
by adding the following clauses for the new commands to the transition relation from
Figure 11:

(k,(r[if : 1],h,L), l, l′) �cli ((r[if : 0],h,L), l′); (k,(r[if : 0],h,L), l, l′) ��cli ;

(k,(r[if : 0],h,L), l, l′) �sti ((r[if : 1],h,L), l′); (k,(r[if : 1],h,L), l, l′) �sti �.

Note that according to this semantics, calling cli twice on a CPU freezes it and calling
sti twice crashes the system.

To handle the new commands in the high-level proof system, we extend its assertion lan-
guage from Figure 13 with the predicate CPU(e), which certifies that the process owning
it is running on the CPU with the identifier e:

P ::= . . . | CPU(e)

This requires us to adjust the domain over which assertions of the high-level proof system
are interpreted, replacing State defined in (3) by

StateI = Context×Heap×Lockset× (CPUid∪{⊥}).

The last component records the CPU that the current process is executing on, or ⊥ if
the assertion does not carry such information. The assertion semantics from Figure 13
is adjusted as shown in Figure 19. Note that, according to this semantics, the assertion
CPU(k1) ∗CPU(k2) is inconsistent for all k1,k2 ∈ CPUid. This ensures that an assertion
can denote at most one CPU(e) predicate: a process cannot be at two CPUs at the same
time. We denote the extended set of assertions by AssertI.

Judgements of the high-level proof system now have the forms I,H,Δ �C or I,H,Δ �l
{P} c {Q}, where the additional component H is a vector of invariants describing the
kernel data structures local to every CPU in the system. We do not allow invariants in H
to contain registers or free occurrences of logical variables and require them to have an
empty lockset (Section 4.2). We also require that invariants in I and H do not own CPU

predicates: ∀η ,(r,h,L,v) ∈ [[I(�)]]η .v = ⊥ and the same for H. To preserve the soundness
of the CREATE proof rule from Figure 16, we have to impose the same requirement on the
desc(d,γ) predicate and the assertion P used in the rule. All these restrictions ensure that a
CPU predicate never gets transferred between processes. This is necessary for soundness,

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

490 A. Gotsman and H. Yang

I,H,Δ�l {emp} cli {∃k.CPU(k)∗Hk}
STI

I,H,Δ�l {∃k.CPU(k)∗Hk} sti {emp} CLI

I,H,Δ�l {e �→ ∗CPU()} savecpuid(e) {∃k.e �→ k ∗CPU(k)} CPUID-FIXED

I,H,Δ�l {e �→ } savecpuid(e) {e �→ } CPUID-ANY

Fig. 20. Proof rules for per-CPU data structures.

since such a predicate makes a statement about the physical CPU that only a particular
process is executing on.

The proof rules for the new commands accessible to kernel code are given in Fig-
ure 20; these extend the rules in Figures 15 and 16. The rules express a simple rea-
soning method similar to that used for lock invariants (Section 4): a process executing
cli gets the ownership of a CPU predicate for some CPU identifier and the correspond-
ing per-CPU data structure (CLI); it gives both up when it executes sti (STI). In be-
tween calling cli and sti, the process may modify the CPU-local data structure in any
way. The last two axioms are similar to CPUID from Section 5.3. CPUID-FIXED en-
sures that the savecpuid command returns the value consistent with the CPU predi-
cate owned by the process. According to CPUID-ANY, we cannot make any constraints
on the value returned by savecpuid without such a predicate. We note that our proof
rules for interrupts are essentially identical to those in Feng et al. (2008a). Our goal
here is not to propose a new logic for interrupts, but to demonstrate how natural reason-
ing methods for such low-level features can be integrated into our logic for preemptive
kernels.

Figure 18 gives a proof of the example deallocation routine using our proof rules. We
assume the following lock and per-CPU data structure invariants:

I(list lock) = ∃x,y,z.&free list �→ z∗
z.prev �→ y∗ z.next �→ x∗ z.data �→ ∗dllΛ(x,z,z,y);

Hk = ∃x,y,z, i.&count[k] �→ i∗&free cache[k] �→ z∗
z.prev �→ y∗ z.next �→ x∗ z.data �→ ∗dlliΛ(x,z,z,y),

where Λ(x) = x.data �→ and dlliΛ is the straightforward generalisation of the dllΛ predicate
from Figure 13 that specifies the number i of nodes in the list.

The soundness statement for our logic, which we discuss next, includes the extension
presented in this section.

8 Soundness

A typical approach to proving the soundness of a logic such as ours would be to define
an operational semantics of the abstract machine with one CPU per process the scheduler
is supposed to implement. Then, the soundness statement of the high-level proof system
could restrict the behaviour of this machine, and that of the low-level proof system would
establish that any behaviour of the concrete machine with the scheduler is reproducible in

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 491

the abstract one. As a corollary, the statements about the behaviour of the kernel proved in
the high-level proof system would be carried over to the concrete machine.

Following this approach is difficult in our case for the following reason. In our logic,
the pieces of state whose ownership is transferred between the scheduler and the kernel
can be described by arbitrary logical assertions, e.g., desc(d,γ) from Section 5.1. In some
cases, e.g., when these assertions are imprecise (O’Hearn, 2007), their transfer from the
kernel to the scheduler is hard to express operationally when defining a semantics of the
abstract machine; see Gotsman et al. (2011) for a discussion. The situation would be worse
had we based our logic on a more advanced modular concurrency logic, such as deny-
guarantee (Dinsdale-Young et al., 2010), which would be needed to handle real OS code.
This is because proofs of soundness for such logics do not give an operational semantics
to separate components of a program.

For this reason, we do not define an operational semantics of the abstract machine,
and neither of the two proof systems of our logic is proved sound with respect to any
semantics alone. Instead, our soundness statement interprets a proof of the kernel in the
high-level system and a proof of the scheduler in the low-level one together with respect
to the semantics of the concrete machine. This makes it convenient for us to prove the
soundness of the fragment of our logic inherited from concurrent separation logic in a
way (Gotsman et al., 2011) other than its original proof (Brookes, 2007), as the latter relied
on giving a semantics to separate processes of the program in isolation. We therefore start
by formulating the soundness statement of the baseline concurrency logic from Section 4,
which allows us to introduce the basic techniques we use in stating soundness.

8.1 Soundness of the baseline logic

Assume a proof I,Δ �C in the logic of Section 4 and an environment η giving the values of
the logical variables used in this proof. Consider a point in an execution of the machine of
Section 3 when the CPUs are at program positions l1, . . . , lNCPUS ∈ labels(C). We formulate
the soundness of the logic by extracting the set of configurations that the machine can be
in at this point from the proof of C. We achieve this by combining the process-local states,
defined by Δ, and the states protected by the free locks, defined by I, as per Figure 7. This
formalises the intuitive explanations of the reasoning approach of concurrent separation
logic given in Section 2.3.

The mapping Δ describes the states that can be owned by processes at the program posi-
tions l1, . . . , lNCPUS: [[Δ(l1)]]η , . . . , [[Δ(lNCPUS)]]η ∈P(State). We now combine these states to
get a configuration from Config (Figure 8) that describes the contexts of all CPUs and the
part of the heap and the lockset of the machine belonging to the local state of any process.
To this end, we lift states to configurations using the operation �·�BA

k in Figure 22 below,
which tags their contexts with a CPU identifier k ∈ CPUid. We then combine the resulting
configurations using the operation �B in Figure 23 below, which merges the contexts for
different CPUs and takes the union of the heaps and locksets. In Figures 22 and 23 we also
summarise all other operations for lifting states to configurations and combining the latter
that we use in formulating soundness.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

492 A. Gotsman and H. Yang

Using the above operations, the set of configurations describing the process-local part of
the machine state is thus given by the following predicate over Config:

IProcη(l1, . . . , lNCPUS) = �B�
k∈CPUid

�[[Δ(lk)]]η�
BA
k ,

where �B� is the iterated version of �B. This predicate, however, does not describe the
whole heap and lockset of the machine, as we have not taken into account their parts
belonging to the invariants of free locks, which are not included into the local state of any
process (Figure 7). In any configuration (R,h,L) ∈ IProcη(l1, . . . , lNCPUS), L gives the set
of locks held by any process, so that the set of free locks is Lock−L. To combine their
invariants, we use the operation �·�BL in Figure 22, which lifts states, meant to come from
lock invariants, to configurations by discarding the context and assuming an empty lockset
(recall that lock invariants cannot have free register occurrences and are required to have
an empty lockset; see Section 4). The following predicate on configurations describes the
part of the machine state belonging to all locks from a set L′:

ILockL′ = �B�
�∈L′

�[[I(�)]]�BL.

Here, we omit an environment defining the values of logical variables from [[I(�)]], since
lock invariants are insensitive to these variables. The set of all configurations the machine
can be in when CPUs are at program positions l1, . . . , lNCPUS is obtained by combining the
above predicate with IProcη(l1, . . . , lNCPUS):

IProgη(l1, . . . , lNCPUS) = {(R,h1
h2,L) |
(R,h1,L) ∈ IProcη(l1, . . . , lNCPUS)∧ ([],h2, /0) ∈ ILockLock−L}.

Theorem 1
Assume I,Δ � C in the logic of Section 4, (R,h,L) →C (R′,h′,L′) and R(k,if) = 0 for
k = 1..NCPUS. Then for all environments η ,

(R,h,L) ∈ IProgη(R(1,ip), . . . ,R(NCPUS,ip)),

entails

(R′,h′,L′) ∈ IProgη(R′(1,ip), . . . ,R′(NCPUS,ip)).

Theorem 1 shows that IProgη defines an inductive invariant of the system. Since it excludes
the error configuration �, the provability of a program in our logic implies its safety.

To summarise, we obtain an overapproximation of the set of machine configurations in
two stages: first, we look up the local states at the program positions given in Δ; second,
we look up the lock-protected states using the lockset information extracted from the local
states. Although this formulation using lookups is easy to understand, it gets unwieldy for
more complicated logics, such as our logic for preemptive kernels. We therefore show how
to reformulate Theorem 1 in a somewhat less intuitive, but more compact way. First, we
replace the map IProcη from program positions to process-local parts of configurations by
a relation. Let

IProc′η = �B�
k∈CPUid

⋃
l∈labels(C)

�[[Δ(l)]]η ∩atB(l)�BA
k ,

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 493

where atB(l) = {(r,h,L) ∈ State | r(ip) = l}. The predicate IProc′η ⊆ Config describes
the part of the machine state belonging to processes for all possible program positions; it
can thus be viewed as an invariant of the process-local state. Since assertions in Δ do not
restrict the value of the ip register (Section 4.1), we have to do this explicitly using atB.
Then the set of configurations that the machine can be in at any time is now given by the
following predicate:

IProg′η =
⋃

L
L′=Lock

((IProcη �B ILockL′)∩heldB(L)),

where heldB(L) = {(R,h,L) ∈ Config}. Here we branch over all sets of locks L that could
be held by processes and compute the lock-protected state for its complement L′. We then
ensure that L is indeed the set of all held locks by intersecting the result with heldB(L).
The following theorem is equivalent to Theorem 1.

Theorem 2
If I,Δ � C in the logic of Section 4, then for all environments η , the set of configurations
IProg′η ∩{(R,h,L) | ∀k = 1..CPUid.R(k,if) = 0} is preserved by →C.

Theorems 1 and 2 follow from the proof of the soundness statement of our logic for
preemptive kernels, which we now formulate using the approach just presented.

8.2 Soundness of the logic for preemptive kernels

Consider a program OS of the form introduced in Section 5 and assume its proof

IK,H,ΔK | IS,{Δk
S}k∈CPUid | J � (S,C,K)

in our logic for preemptive kernels, including the extension to per-CPU data structures from
Section 7. We also assume an environment η giving the values of the logical variables
used in the proof. To explain the soundness statement informally, let us fix a point in a
machine execution and assume for simplicity that every CPU is executing the scheduler
code. We construct an inductive system invariant by conjoining the descriptions of pieces
of the machine state owned by different OS components, as per Figure 6. We extract these
descriptions from the proof as follows:

• If a CPU k is at a program position l in the scheduler code, then [[Δk
S(l)]]η ∈

P(SchedState) describes the state local to the scheduler invocation running on the
CPU, including its context, heap and lockset, and the contexts of the processes it has
a permission to schedule.

• The combined lockset of all these states tells us which of the locks accessible to the
scheduler are free. As in Section 8.1, this allows us to obtain a description of the
whole scheduler state by combining the local states with the invariants of all free
scheduler locks given by IS.

• The combined scheduler state contains not only the part of the heap belonging to it,
but also the contexts of all the processes that exist in the machine, including their
program positions. By looking up the assertions at these positions in ΔK, we obtain
a description of the local states of the processes, including their heaps and locksets.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

494 A. Gotsman and H. Yang

State = Context×Heap×Lockset

SchedState = State×M (Context)

Config = (CPUid → Context)×Heap×Lockset

SchedConfig = Config×M (Context)×P(CPUid)

KernelConfig = M (Context)×Heap×Lockset×P(CPUid)

Fig. 21. A summary of the semantic domains used in formulating soundness.

�pB�BA
k = {([k : r],h,L) ∈ Config | (r,h,L) ∈ pB}

�pB�BL = {([],h, /0) ∈ Config | (r,h, /0) ∈ pB}
�pS�SA

k,V = {(([k : r],h,L),M,V) ∈ SchedConfig | ((r,h,L),M) ∈ pS}
�pS�SL = {(([],h, /0),M, /0) ∈ SchedConfig | ((r,h, /0),M) ∈ pS}
�pK�KA

r = {({r},h,L,{v}−{⊥}) ∈ KernelConfig |
(r,h
 [r(sp)..(r(ss)+StackSize−1) :],L,v) ∈ pK ∧ (r(if) = 0 ⇐⇒ v �= ⊥)}

�pK�KL = {(/0,h, /0, /0) ∈ KernelConfig | (r,h, /0,⊥) ∈ pK}
Fig. 22. Operations lifting states to configurations. Here, pB ∈ P(State), pS ∈ P(SchedState),
pK ∈ P(StateI), k ∈ CPUid, V ∈ P(CPUid) and r ∈ Context. We have a pair of operations for
every domain of states, one for states coming from assertions in the code (marked by A) and another
for states coming from lock or per-CPU invariants (marked by L).

• Again, their combined lockset tells us which of the locks accessible to the kernel are
free, allowing us to obtain a description of all lock-protected kernel state from the
invariants IK.

We now define this construction formally and for the general case. As we have noted in
Section 8.1, we do this by packaging the results of all the lookups mentioned in the above
explanation into relations and then performing a relational composition on them.

We start by defining an invariant of the part of the machine state owned by the scheduler.
Let us again consider a point in a machine execution when every CPU is executing the
scheduler code. To combine the scheduler-local states given by Δk

S for all CPUs k ∈CPUid,
we lift them to configurations in the set SchedConfig defined in Figure 21 (in the figure
we also summarise all the other domains used in formulating soundness). A configuration
((R,h,L),M,V) describes the combined state of multiple scheduler invocations: R defines
the contexts on the corresponding CPUs, h and L the combined heap and lockset, and M
the contexts of the processes that the invocations have a permission to schedule. To handle
per-CPU data structures, we also add a component V describing the set of CPUs on which
processes have disabled interrupts using cli. When every CPU is executing the scheduler
code, this set is empty; we use the general case below. We lift states in SchedState to
configurations in SchedConfig using the operation �·�SA

k,V , defined in Figure 22 for k ∈
CPUid and V ∈ P(CPUid). We combine the resulting configurations using the operation
�S in Figure 23. This is similar to �B, but additionally combines the information about the
processes the scheduler invocations know about.

Thus, at those points in the machine execution when all CPUs are executing scheduler
invocations, the part of the machine state local to these invocations is described by the

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 495

•B : Config×Config ⇀ Config

•S : SchedConfig×SchedConfig ⇀ SchedConfig

•K : KernelConfig×KernelConfig ⇀ KernelConfig

•SK : SchedConfig×KernelConfig ⇀ Config

(R1,h1,L1)•B (R2,h2,L2) = (R1
R2,h1
h2,L1
L2)

((R1,h1,L1),M1,V1)•S ((R2,h2,L2),M2,V2) = ((R1
R2,h1
h2,L1
L2),M1
M2,V1
V2)

(M1,h1,L1,V1)•K (M2,h2,L2,V2) = (M1
M2,h1
h2,L1
L2,V1
V2)

((R,h1,L1),M1,V1)•SK (M2,h2,L2,V2) = (R,h1
h2,L1
L2), if M1 = M2 and V1 = V2

((R,h1,L1),M1,V1)•SK (M2,h2,L2,V2) undefined, otherwise

Let �B, �S, �K, �SK be the pointwise liftings of •B, •S, •K, •SK to sets of configurations. For
example, for p1, p2 ∈ P(Config), we define �B : P(Config)×P(Config) → P(Config) as
follows: p1 �B p2 = {(R1,h1,L1)•B (R2,h2,L2) | (R1,h1,L1) ∈ p1 ∧ (R2,h2,L2) ∈ p2}.

Fig. 23. Operations for combining configurations. Recall that the
 operation on multisets adds up
the number of occurrences of each element in its operands.

following predicate over SchedConfig:

�S�
k∈CPUid

⋃
l∈(labels(S
C)
{ls,lc})

�[[Δk
S(l)]]η ∩atS(l)∩ ifS(0)�SA

k, /0,

where atS(l) = {((r,h,L),M) ∈ SchedState | r(ip) = l} and ifS(v) = {((r,h,L),M) ∈
SchedState | r(if) = v}. Like in the definition of IProc′η in Section 8.1, we branch over
all program positions in the scheduler code and combine the local states at these positions
given by Δk

S; we also restrict the value of the ip and if registers explicitly.
We now need to consider the case when a process is running on some CPU k. Let l be its

program position. In this case, the scheduler still owns some state associated with the CPU,
e.g., the per-CPU scheduler invariant Jk. We describe this state by the following predicate
over SchedState:

SchedSleepk(l) = Jk ∗sp..(ss+StackSize−1) �→ ∗
Process([ip : l, if : if,ss : ss,sp : sp, �gr : �gr]).

Note that, when a scheduler invocation starts executing on a CPU, the invariant Jk is added
to its local state, which is why previously we did not have to take it into account when
defining the state local to active scheduler invocations. Although assertions in the high-
level proof system mention the empty slots of the process stack, the slots in fact belong
to the scheduler when the process is preempted. For the sake of uniformity, we choose
to count them in the scheduler state even when the process is running and, hence, add
them to SchedSleepk(l). The Process predicate in SchedSleepk(l) describes the currently
running process; it corresponds to the Process predicate that the scheduler lost when it
transferred the control to the process (see the postcondition of schedule in the OS proof
rule from Section 5.4). We took the liberty of using if in SchedSleepk(l), even though this
is prohibited in our logic, since this assertion is used only for formulating soundness.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

496 A. Gotsman and H. Yang

The following predicate over SchedConfig describes the scheduler state excluding that
protected by free locks:

ISchedη =
⋃

VI⊆VK,

VS
VK=CPUid

⎛
⎝

⎛
⎝ �S�

k∈VS

⋃
l∈(labels(S
C)
{ls,lc})

�[[Δk
S(l)]]η ∩atS(l)∩ ifS(0)�SA

k, /0

⎞
⎠�S

⎛
⎝ �S�

k∈VI

⋃
l∈labels(K)

�[[SchedSleepk(l)]]η ∩atS(l)∩ ifS(0)�SA
k,{k}

⎞
⎠�S

⎛
⎝ �S�

k∈VK−VI

⋃
l∈labels(K)

�[[SchedSleepk(l)]]η ∩atS(l)∩ ifS(1)�SA
k, /0

⎞
⎠
⎞
⎠.

Here, we branch over all splittings of CPUs into those executing the scheduler and the
kernel code, given by VS and VK. We also branch over all sets VI ⊆ VK of CPUs where
processes have disabled interrupts. For every CPU k, we then branch over all possible
program positions l. Depending on whether l is in the scheduler or the kernel code, we use
either the assertion in the scheduler proof or the invariant SchedSleepk. In the latter case,
VI determines the last component of the resulting configurations.

To obtain the whole state owned by the scheduler, we take into account the invariants
of free locks accessible to it, similarly to how it was done in the definition of IProg′η in
Section 8.1. To this end, we use the operation �·�SL in Figure 22 that converts states in
SchedState, meant to come from lock invariants, to configurations in SchedConfig. Then
the part of the machine state belonging to the scheduler locks from a set L′ is defined by
the following predicate:

ISchedLockL′ = �S�
�∈L′

�[[IS(�)]]�SL.

Hence, the invariant of the whole scheduler state is⋃
L
L′=dom(IS)

((ISchedη �S ISchedLockL′)∩heldS(L)), (5)

where heldS(L) = {((R,h,L),M,V) ∈ SchedConfig}. In a configuration ((R,h,L),
M,V) from the set (5), the components M and V give the information about all processes
that exist in the system, whether running or preempted, with the former taken into account
due to the inclusion of the corresponding Process predicate into SchedSleepk. In the fol-
lowing, we use this fact to connect the invariant of the scheduler with that of the kernel.
We now proceed to define the latter.

Consider a process with a context r, which could come from a configuration in the
scheduler invariant (5). Then its local state is given by [[ΔK(r(ip))]]η ∈P(StateI). We now
combine such states for different processes in a form appropriate for composing with the
scheduler invariant (5). We start by lifting them to configurations in the set KernelConfig

defined in Figure 21. A configuration (M,h,L,V) ∈ KernelConfig describes the combined
state of multiple processes, with the contexts M, the combined heap h and lockset L and the
set V of CPUs on which they have disabled interrupts. We perform the lifting using the op-
eration �·�KA

r in Figure 22 that selects the states with the context r ∈ Context and removes
the empty slots of the process stack, accounted for in the scheduler state (in SchedSleepk, if

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 497

the process is running, and in Δk
S and IS, if it is preempted). We then combine the resulting

configurations using the operation �K in Figure 23. The invariant of the process-local part
of the machine state is thus given by the following predicate over KernelConfig:

IKernelη =
⋃

M∈M (Context)

�K�
r∈M

�[[ΔK(r(ip))]]η�KA
r .

Here we branch over all possible finite multisets M of contexts of processes that may run on
the machine. For every context r in M, the local state of the corresponding process is then
determined by the assertion in the proof of the kernel at the program point r(ip), restricted
to the states with the context r. Note that the comprehension r ∈ M over a multiset M
considers every instance of an element in the multiset separately.

As before, to obtain the invariant of the whole kernel state, we need to take into account
the invariants of free locks accessible to the kernel. Additionally, we need to include kernel
per-CPU invariants Hk for all CPUs k where processes have not disabled interrupts (for
those where they have, the per-CPU data structures have been merged into their local
states). We use the operation �·�KL in Figure 22 to convert states in StateI, meant to come
from kernel lock invariants or kernel per-CPU data structure invariants, to configurations
in KernelConfig. Since the invariants cannot contain CPU predicates (Section 7), the oper-
ation assumes that the last component of the states it is given is always ⊥. Then the part of
the machine state belonging to kernel locks from a set L′ or per-CPU invariants for the set
of CPUs V are respectively given by

IKernelLockL′ = �K�
�∈L′

�[[IK(�)]]�KL; IPercpuV = �K�
k∈V

�[[Hk]]�
KL.

Hence, the invariant of the whole kernel state is⋃
L
L′=dom(IK)
V
V ′=CPUid

((IKernelη �K IKernelLockL′ �K IPercpuV ′)∩heldK(L)∩disabled(V)),

where

heldK(L) = {(M,h,L,V) ∈ KernelConfig};

disabled(V) = {(M,h,L,V) ∈ KernelConfig}.

Finally, we compose the above invariant of the kernel with that of the scheduler (5) to
obtain an invariant of the whole system. To this end, we use the operation �SK in Fig-
ure 23, which combines heaps and locksets, provided that the contexts of processes and
sets of CPUs on which they disabled interrupts match in both arguments. Then the system
invariant is given by the following predicate over Config:

IOsη =

⎛
⎝ ⋃

L
L′=dom(IS)

((ISchedη �S ISchedLockL′)∩heldS(L))

⎞
⎠�SK

⎛
⎜⎜⎜⎝

⋃
L
L′=dom(IK)
V
V ′=CPUid

((IKernelη �K IKernelLockL′ �K IPercpuV ′)∩heldK(L)∩disabled(V))

⎞
⎟⎟⎟⎠ .

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

498 A. Gotsman and H. Yang

The following theorem, proved in Appendix A, states the soundness of our logic for pre-
emptive kernels.

Theorem 3
If IK,H,ΔK | IS,{Δk

S}k∈CPUid | J � (S,C,K), then for all environments η , the set of config-
urations IOsη is preserved by →OS.

Consequences. Theorem 3 allows carrying over statements proved in the high-level proof
system about the abstract machine with one virtual CPU per process to the concrete ma-
chine. For example, it implies that the properties of the code in Figure 4 described in
Section 4 hold when it is managed by the example scheduler. To demonstrate this formally,
assume that the initial machine configuration satisfies IOsη . Then the soundness statement
ensures that the machine cannot reach an error label le on any CPU, provided that the
assertion at this program point in all high-level proofs is false. Indeed, in this case the
invariant IOsη does not contain any states where one of the CPUs is at le. Note that the
functional correctness of an OS kernel is usually formulated as a refinement between the
kernel and its specification. As an OS kernel does not usually make any assumptions about
user processes, complications with formulating this refinement that necessitate the unusual
soundness statement of our logic do not arise, and thus proving that it can be reduced to
proving an invariance property relating the kernel and its specification (Gargano et al.,
2005; Klein et al., 2009). Thus, Theorem 3 can also be used to justify such proofs.

Ownership transfer. It is instructive to analyse how the ownership transfer between the
scheduler and the kernel is handled by our soundness statement. For example, consider a
transfer of a new process descriptor desc(d,γ) from the kernel to the scheduler at a call
to create. Since the CREATE axiom requires the descriptor in its precondition, before
the kernel calls create, the state partitioning defined by IOsη counts the descriptor as
part of IKernelη . Since, by the OS proof rule, the implementation of create receives the
descriptor in its precondition, in the configuration immediately after the call to create,
IOsη defines it to be part of ISchedη . Thus, ownership transfer repartitions program state
among the parts defined above.

Proof idea and other concurrency logics. The proof of Theorem 3 is relatively straight-
forward, if technical. When the transition in →OS considered in the theorem corresponds
to a command associated with an ownership transfer in our logic, we prove that the tar-
get configuration belongs to IOsη by redistributing the state among components used to
construct this invariant, following the above explanation of ownership transfers. When the
transition in →OS corresponds to a command that is not associated with an ownership
transfer between components, such as an assignment, we first ‘unpack’ the IOsη invariant
to get the local state of the process or the scheduler invocation executing the command. We
then replace this local state with the new one specified by the proof and show that we can
‘pack’ the invariant back to obtain the target state of the machine.

We based our logic for preemptable code on concurrent separation logic, which would
not be able to handle complicated concurrency mechanisms employed in modern OS ker-
nels (Bovet & Cesati, 2005). The approach we take in stating and proving the soundness
of our logic has been applied extensively to various concurrent derivatives of separation

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 499

logic (Gotsman, 2009; Gotsman et al., 2011). This leads us to believe that we can integrate
more advanced logics from this class (Feng et al., 2007a; Vafeiadis & Parkinson, 2007;
Dinsdale-Young et al., 2010; Dinsdale-Young et al., 2013) without problems.

9 Related work

There have been a number of OS verification projects; see Klein (2009) for a survey. To our
knowledge, none of these has included the verification of a scheduler in a preemptive kernel
with the realistic features we consider. A representative example is the seL4 project (Klein
et al., 2009), which verified a variant of the L4 microkernel as a whole, together with the
scheduler. There, proofs about kernel components other than the scheduler had to ensure
the preservation of its invariants, e.g., the well-formedness of its runqueue. The proof
was still tractable because the kernel was running on a uniprocessor and used an event-
based execution model, so that preemption was disabled most of the time. However, such
architecture is not used by mainstream operating systems. If fact, as noted by Klein et
al. (2009), the absence of verification technology dealing with preemption was one of the
reasons for the choice of this architecture in seL4.

The closest work to ours is the one by Feng et al. (2007b; 2008a; 2008b), who proposed
a logic for verifying OS kernels, also based on separation logic. Like us, they structure
the logic into separate proof systems for the scheduler and preemptable code. We thus
share their vision (Feng et al., 2008b; Shao, 2010) of verifying different components of
systems software using specialised logics that allow reasoning on an appropriate level of
abstraction. However, there are differences between our work and theirs in the OS features
handled and in the general approach to formulating the logic and proving it sound.

As far as OS features are concerned, Feng et al. consider a uniprocessor and verify
an idealised scheduler without dynamic process creation or ownership transfer between
the scheduler and processes. As a consequence, they do not have an analogue of our affine
Process predicate needed to handle multiprocessing. On the other hand, Feng et al. support
modular reasoning about procedures, which we do not. As for the general approach, Feng et
al. formulate the logics for the scheduler and preemptive code and justify their soundness
by embedding them into OCAP (Feng et al., 2007b), a logic supporting first-class code
pointers. This support is then used to handle transfers of control between the scheduler
and the kernel and to reason modularly about procedures. In contrast, we establish the
soundness of our proof systems by a direct correspondence to an operational semantics,
without going through an intermediate logic.

The verification of realistic kernels requires supporting modular reasoning about pro-
cedures as well as multiprocessing and ownership transfer. Thus, both the logic of Feng
et al. and ours would need to be extended before they are up to the task. In the case
of Feng et al.’s logic, this would require extending OCAP to accommodate multipro-
cessing. This is not completely trivial, since on a multiprocessor, the scheduler and the
kernel can run at the same time on different CPUs, and OCAP currently requires the
control to be within a single component at any point of time. One would also need to
extend OCAP to treat assertions about code pointers affinely, as our Process predicates.
Conversely, to provide support for modular reasoning about procedures in our logic, we
would have to borrow the corresponding proof rules from one of the available logics

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

500 A. Gotsman and H. Yang

for storable code, possibly a relative of OCAP (Feng et al., 2006; Feng et al., 2007b;
Ni & Shao, 2006; Schwinghammer et al., 2009; Charlton, 2011). The soundness could
still be proved by a correspondence to an operational semantics, but our current proof
would have to be adjusted. Thus, both our approach and the one of Feng et al. can po-
tentially be extended to cover a wider range of OS features, possibly by exploiting tech-
niques from the other. It remains to be seen in which settings a given approach works
better.

Even though in this paper we focus on a low-level programming language, the reasoning
principles we propose are high level and analogous to those developed for control flow in
functional programs. For example, the Process predicate in our low-level proof system
can be viewed as an assertion about an affine continuation, providing a clean model for
capturing and resuming process state. Our use of separating conjunction over such pred-
icates is analogous to the use of linear typing in the study of continuations in functional
programs (Berdine et al., 2002; Hasegawa, 2002; Thielecke, 2003; Hasegawa, 2004; Laird,
2005). One can thus think of our work as layering clean functional reasoning on top of low-
level OS code.

Maeda and Yonezawa have proved a simple context-switch routine using an extension
of alias types (Maeda & Yonezawa, 2009). Their proof expresses the disjointness of data
structures belonging to the scheduler and the rest of the kernel using the tensor operator of
alias types, which corresponds to our separating conjunction. However, their type system
does not hide the internal data structures of the scheduler while proving the rest of the
kernel, and is thus non-modular.

Yang and Hawblitzel have recently developed a kernel where most of the codebase is
typechecked and therefore cannot directly access data structures belonging to the core part
of the kernel, including the scheduler (Yang & Hawblitzel, 2010). However, the guarantees
established by the type system do not take into account the contents of data structures,
so the kernel can still subvert the scheduler by leaving them in an inconsistent state.
The OS resorts to runtime checks in such cases, introducing a performance penalty. The
relationship to this work is that of a trade-off: type safety guarantees are easier to get, but
are not as strong as those provided by a program logic.

Refinement is a well-known approach in the verification of both operating systems
and general concurrent programs (Back, 1981; Gargano et al., 2005; Jones, 2007; Klein
et al., 2009; Turon & Wand, 2011). Our logic can be viewed as implementing a form of
refinement where the semantics of the abstract system is defined axiomatically by the high-
level proof system and refinement relations, defined by the low-level proof system, focus
only on the relevant state of the systems related. We thus advance the refinement theory to
systems with complex ownership transfers.

10 Conclusion

In this paper, we have neither verified a complete operating system nor built an automatic
tool. Instead, we have proposed a proof rule that allows decomposing the verification of
a preemptive OS kernel into two simpler tasks—verifying the scheduler and preemptable
code separately. Furthermore, we have, for the first time, achieved this for the patterns of
interaction between the scheduler and the kernel present in mainstream operating systems.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 501

Such a result is relevant no matter what type of formal analysis of OS code one is per-
forming: manual or automatic verification, or even bug-finding. Moreover, as we argued in
Section 2.2, the straightforward approach of verifying the scheduler together with the rest
of the kernel makes reasoning intractable; thus, a result such as ours is in fact indispensable
for verifying realistic OS kernels.

Despite our development being carried out for a particular baseline concurrency logic
and a class of scheduling interfaces, the key technical methods we proposed in this paper
are transferable and can be reused in OS verification projects. These include:

• exploiting a logic validating the frame property to hide the state of the scheduler
while verifying the kernel and vice versa;

• using the Process assertions to reason about the correct treatment of process states
by the scheduler and the affine semantics of ∗ on them to reason about scheduling
on multiprocessors;

• dealing with features breaking through the scheduler abstraction, such as interrupt
disabling, by axiomatising their intended uses when reasoning about the kernel; and

• formulating soundness by constructing a global property from local assertions on
different levels of abstraction using a combination of the separating conjunction and
relational composition.

Acknowledgments

We thank Anindya Banerjee, Xinyu Feng, Boris Köpf, Mark Marron, Peter O’Hearn,
Matthew Parkinson, Noam Rinetzky, Zhong Shao, Viktor Vafeiadis and Jules Villard for
comments and discussions that helped improve the paper. Gotsman was supported by the
EU FET ADVENT project. Yang was supported by EPSRC.

Supplementary materials

For supplementary material for this article, please visit dx.doi.org/10.1017/
S0956796813000075.

A Appendix. Proof of soundness

Auxiliary definitions. In the following, we write {E()}, where E is an expression with
occurrences of , to mean the set of values arising from evaluating E with substituted for
any values from the corresponding domains.

For a set Σ let P(Σ)� be the domain of subsets of Σ with a special element �. The
order � in the domain P(Σ)� is subset inclusion with � being the greatest element. We
define two partial operations interpreting the ∗ connectives in the high- and low-level proof
systems, respectively:

∗K : P(State)�×P(State)� → P(State)�;
∗S : P(SchedState)�×P(SchedState)� → P(SchedState)�.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

502 A. Gotsman and H. Yang

For p,q ∈ P(State) we let

p∗K q = {(r,h1
h2,L1
L2) | (r,h1,L1) ∈ p∧ (r,h2,L2) ∈ q}; �∗ p = p∗� = �.

For p,q ∈ P(SchedState) we let

p∗S q = {((r,h1
h2,L1
L2),M1
M2) | ((r,h1,L1),M1) ∈ p∧ ((r,h2,L2),M2) ∈ q};

�∗ p = p∗� = �.

We use the following definitions: for p ⊆ StateI, q ⊆ SchedState, l ∈ Label, k ∈ CPUid,
� ∈ Lock let

atK(l) = {(r,h,L,v) ∈ StateI | r(ip) = l};
lkK(�) = {(r, [],{�},⊥) ∈ StateI};
lkS(�) = {((r, [],{�}), /0) ∈ SchedState};
int(k) = {(r, [], /0,k) ∈ StateI};

toK(l, p) = {(r[ip : l],h,L,v) ∈ StateI | (r,h,L,v) ∈ p};
toS(l,q) = {((r[ip : l],h,L),M) ∈ SchedState | ((r,h,L),M) ∈ q}.

Finally, consider a process descriptor predicate desc(d,γ) with free logical variables d
and γ and an environment η . We define descη : Val×Context → State as follows: for
u ∈ Val and r ∈ Context we let descη(u,r) = [[desc(d,γ)]]η [d:u,γ:r].

Transformers for primitive commands. It is convenient for us to reformulate the seman-
tics of primitive commands c in Figure 11 and Section 7 in terms of transformers

f k
c : Label×Label×State → P(State)�, k ∈ CPUid

for c ∈ PComm, defined as follows: f k
c (l, l′,(r,h,L)) = �, if k,(r,h,L), l, l′ �c �; other-

wise,

f k
c (l, l′,(r,h,L)) =

⋃{
(r′[ip : l′′],h′,L′) | (k,(r,h,L), l, l′) �c ((r′,h′,L′), l′′)

}
.

We extend the transformers to operate on states in SchedState and StateI:

f k
c : Label×Label×SchedState → P(SchedState)�, k ∈ CPUid;

f k
c : Label×Label×StateI → P(StateI)

�, k ∈ CPUid.

We let

f k
c (l, l′,((r,h,L),M)) = {((r′,h′,L′),M) | (r′,h′,L′) ∈ f k

c (l, l′,(r,h,L))}, (A 1)

if f k
c (l, l′,(r,h,L)) �= �, and f k

c (l, l′,((r,h,L),M)) = �, otherwise. We let

f k
c (l, l′,(r,h,L,v)) = {(r′,h′,L′,v) | (r′,h′,L′) ∈ f k

c (l, l′,(r,h,L))}, (A 2)

if f k
c (l, l′,(r,h,L)) �= �, and f k

c (l, l′,(r,h,L,v)) = �, otherwise. We then lift these trans-
formers to the corresponding domains pointwise. For example, for p ∈ P(StateI)

� we
let

f k
c (l, l′, p) =

{⊔{ f k
c (l, l′,(r,h,L,v)) | (r,h,L,v) ∈ p}, if p �= �;

�, if p = �.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 503

The transformers thus defined satisfy the property of locality (Calcagno et al., 2007)
with respect to the operations ∗S and ∗K:

∀p,q ∈ P(SchedState). f k
c (p∗S q) � f k

c (p)∗S q; (A 3)

∀p,q ∈ P(StateI). f k
c (p∗K q) � f k

c (p)∗K q. (A 4)

Semantic proofs. To prove Theorem 3, we translate a syntactic proof in our logic into a
semantic form, which annotates every program point in the OS code with a description of
the state local to the process or the scheduler invocation executing the code. Namely, given
an environment η , a semantic proof (Gotsman et al., 2011) of the OS program is defined
as a tuple (GS,GK,IS,IK,H ,J), where

• Gk
S : Label → P(SchedState), k ∈ CPUid;

• GK : Label → P(StateI);
• IS ∈ Lock ⇀ P(SchedState);
• IK ∈ Lock ⇀ P(StateI);
• Hk ∈ P(StateI), k ∈ CPUid,
• Jk ∈ P(SchedState), k ∈ CPUid,

such that IK, IS, H , J satisfy the analogues of the well-formedness restrictions previ-
ously imposed on IK, IS , H, J, and the conditions in Figure A 1 hold. The latter conditions
are semantic counterparts of the axioms in the high- and low-level proof systems. The
following lemma shows that a syntactic proof can be converted into a semantic one.

Lemma 1
Given a proof IK,H,ΔK | IS,{Δk

S}k∈CPUid | J � (S,C,K) and an environment η , there exists
a semantic proof (GS,GK, [[IS]]η , [[IK]]η , [[H]]η , [[J]]η) such that for all l ∈ Label and k ∈
CPUid we have GK(l) = [[ΔK(l)]]η ∩atK(l) and Gk

S(l) = [[Δk
S(l)]]η ∩atS(l).

We omit the straightforward proof of the lemma and proceed to prove the main soundness
theorem.

Proof of Theorem 3. Let us fix an environment η . We first apply Lemma 1 to construct a
semantic proof (GS,GK,IS,IK,H ,J) from the given syntactic one. Assume now that
σ ∈ IOsη and σ →OS σ ′ for some σ ′ ∈ Config∪{�}. We need to show that σ ′ ∈ IOsη .
Let the command in σ →OS σ ′ be executed by CPU k. We can thus assume

σ = (R[k : r],h,L), R(k) is undefined, r(ip) = l, c = comm(OS, l), l′ ∈ next(OS, l).

By the definition of IOsη , there exist

h1,h2 ∈ Heap, L1 ⊆ dom(IS), L2 ⊆ dom(IK), M ∈ M (Context), V ∈ P(CPUid)

such that

((R[k : r],h1,L1),M,V) ∈ ISchedη �S ISchedLock
dom(IS)−L1

; (A 24)

(M,h2,L2,V) ∈ IKernelη �K IKernelLock
dom(IK)−L2

�K IPercpuCPUid−V (A 25)

h = h1
h2, L = L1
L2. (A 26)

We now consider several cases of how σ ′ may be obtained.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

504 A. Gotsman and H. Yang

∀l ∈ Label. l �∈ dom(K) =⇒ GK(l) = /0; (A 5)

∀l ∈ Label,k ∈ CPUid. l �∈ dom(S)
dom(C)
{ls, lc} =⇒ Gk
S(l) = /0; (A 6)

∀k ∈ CPUid.Gk
S(schedule) = [[SchedStatek]]η ∩atS(schedule); (A 7)

∀k ∈ CPUid.Gk
S(ls) = [[SchedStatek]]η ∩atS(ls); (A 8)

∀k ∈ CPUid.Gk
S(create) =

�∃γ.γ(if) = 1∧SchedStatek ∗desc(gr1,γ)∗Process(γ)�η ∩atS(create); (A 9)

∀k ∈ CPUid.Gk
S(lc) = [[SchedStatek]]η ∩atS(lc); (A 10)

∀l ∈ Label,(r,h,L,v) ∈ GK(l).0 � r(sp)− r(ss) � StackBound∧
dom(h) ⊇ {r(sp), . . . ,r(ss)+StackSize−1}∧

∀h′.(∀u �∈ {r(sp), . . . ,r(ss)+StackSize−1}.h(u) = h′(u)) =⇒ (r,h′,L,v) ∈ GK(l),
(A 11)

and for all l ∈ labels(OS), l′ ∈ next(OS, l), c = comm(OS, l) and k ∈ CPUid, we have:

• if c is not lock or unlock, and l ∈ labels(S)
 labels(C), then

f k
c (l, l′,Gk

S(l)) �= �∧∀((r,h,L),M) ∈ f k
c (l, l′,Gk

S(l)).((r,h,L),M) ∈ Gk
S(r(ip)); (A 12)

• if c is not lock, unlock, icall, cli or sti and l ∈ labels(K), then

f k
c (l, l′,GK(l)) �= �∧∀(r,h,L,v) ∈ f k

c (l, l′,GK(l)).(r,h,L,v) ∈ GK(r(ip)); (A 13)

• if c is lock(�) and l ∈ labels(S)
 labels(C), then

toS(l′,(Gk
S(l)∗S IS(�)∗S lkS(�))) ⊆ Gk

S(l′); (A 14)

• if c is lock(�) and l ∈ labels(K), then

toK(l′,(GK(l)∗K IK(�)∗K lkK(�))) ⊆ GK(l′); (A 15)

• if c is unlock(�) and l ∈ labels(S)
 labels(C), then

toS(l′,Gk
S(l)) ⊆ Gk

S(l′)∗S IS(�)∗S lkS(�); (A 16)

• if c is unlock(�) and l ∈ labels(K), then

toK(l′,GK(l)) ⊆ GK(l′)∗K IK(�)∗K lkK(�); (A 17)

• if c is cli and l ∈ labels(K), then

toK(l′,(GK(l)∗K Hk ∗K int(k))) ⊆ GK(l′); (A 18)

• if c is sti and l ∈ labels(K), then

toK(l′,GK(l)) ⊆ GK(l′)∗K Hk ∗K int(k); (A 19)

• if c is icall(schedule), then

toK(l′,GK(l)) ⊆ GK(l′); (A 20)

• if c is icall(create), then for some P,Q ∈AssertI such that free(P)∩Reg = /0, P does not own
CPU predicates and has an empty lockset, we have

GK(l) ⊆ [[∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q]]η ∩atK(l); (A 21)

GK(l′) ⊇ [[∃γ.Q]]η ∩atK(l′); (A 22)

∀r ∈ Context.{(r, [r(sp)..(r(ss)+StackSize−1) :], /0,⊥)}∗K[[P]]η [γ:r] ⊆ GK(r(ip)).

(A 23)

Fig. A 1. Conditions for a semantic proof (GS,GK,IS,IK,H ,J).

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 505

Case 1. σ ′ is obtained by applying the fourth rule in Figure 12. This case is impossible,
since by (A 24) and the definition of ISchedη we have l = r(ip) ∈ labels(OS).

Case 2. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
command executed by the scheduler and different from lock, unlock or iret. In this
case, l ∈ labels(S)
 labels(C) and

(f k
c (l, l′,(r,h,L)) = � =⇒ σ ′ = �)∧

(f k
c (l, l′,(r,h,L)) �= � =⇒ σ ′ ∈ ({(R, [], /0)}�B � f k

c (l, l′,(r,h,L))�BA
k)).

(A 27)

From (A 24), for some hS ∈Heap, LS ∈ Lockset, MS ∈M (Context), VS,VK ∈P(CPUid)
we have VS
VK
{k} = CPUid, V ⊆VK, r(if) = 0,

((r,h1,L1),M) ∈ Gk
S(l)∗S{((,hS,LS),MS)} (A 28)

and for W = V and W1 = L1 we have

((R,hS,LS),MS,W) ∈

⎛
⎝ �S�

j∈VS

⋃
l∈(labels(S
C)
{ls,lc})

�[[Δ j
S
(l)]]η ∩atS(l)∩ ifS(0)�SA

j, /0

⎞
⎠�S

⎛
⎝�S�

j∈VI

⋃
l∈labels(K)

�[[SchedSleep j(l)]]η ∩atS(l)∩ ifS(0)�SA
j,{ j}

⎞
⎠�S

⎛
⎝ �S�

j∈VK−VI

⋃
l∈labels(K)

�[[SchedSleep j(l)]]η ∩atS(l)∩ ifS(1)�SA
j, /0

⎞
⎠�S

ISchedLock
dom(IS)−W1

.

(A 29)
We have:

f k
c (l, l′,((r,h,L),M))

= f k
c (l, l′,{((r,h1,L1),M)}∗S{((,h2,L2), /0)}) by (A 26)

� f k
c (l, l′,Gk

S(l)∗S{((,h2
hS,L2
LS),MS)}) by (A 28)
� f k

c (l, l′,Gk
S(l))∗S{((,h2
hS,L2
LS),MS)} by (A 3)

From this and (A 12), f k
c (l, l′,Gk

S(l)) �= �, hence, by (A 1) and (A 27), σ ′ �= �. Let σ ′ =
(R[k : r′],h′,L). Then, r′(if) = r(if) = 0 and from the above, (A 27) and (A 12), we have

((R[k : r′],h′,L),M,V) ∈ {((R, [], /0), /0, /0)}�S

�(Gk
S(r

′(ip))∩ ifS(0))∗S{((,h2
hS,L2
LS),MS)}�SA
k,V .

From this and (A 6) we get r′(ip)∈ dom(S)
dom(C)
{ls, lc}. Hence, by (A 29) we have

((R[k : r′],h′,L),M,V) ∈ ISchedη �S ISchedLock
dom(IS)−L1

�S {(([],h2,L2), /0, /0)}.

Then, from (A 25) and the definition of �SK we get σ ′ ∈ IOsη .

Case 3. σ ′ is obtained by applying the first rule in Figure 12, with the scheduler execut-
ing lock. In this case

l ∈ labels(S)
 labels(C), c = lock(�), � �∈ L, σ ′ = (R[k : r[ip : l′]],h,L∪{�}).

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

506 A. Gotsman and H. Yang

From (A 24), for some hS,LS,MS,VS,VK we have VS
 VK
 {k} = CPUid, V ⊆ VK,
r(if) = 0,

((r,h1,L1),M) ∈ Gk
S(l)∗S IS(�)∗S{((,hS,LS),MS)}

and (A 29) holds for W = V and W1 = L1 ∪{�}. Then,

((r[ip : l′],h1,L1 ∪{�}),M) ∈ toS(l
′,(Gk

S(l)∗S IS(�)∗S lkS(�)))∗S{((,hS,LS),MS)}.

By (A 14), this implies

((r[ip : l′],h1,L1 ∪{�}),M) ∈ Gk
S(l

′)∗S{((,hS,LS),MS)}.

From this and (A 6) we get l′ ∈ dom(S)
dom(C)
{ls, lc}. Hence, by (A 29) for W = V
and W1 = L1 ∪{�},

((R[k : r[ip : l′]],h1,L1 ∪{�}),M,V) ∈ ISchedη �S ISchedLock
dom(IS)−(L1∪{�})

.

Then, from (A 25) and the definition of �SK we get σ ′ ∈ IOsη .

Case 4. σ ′ is obtained by applying the first or the third rule in Figure 12, with the sched-
uler executing unlock. In this case, l ∈ labels(S)
 labels(C), c = unlock(�) and (A 27)
holds.

From (A 24), there exist hS,LS,MS,VS,VK such that VS
VK
{k} = CPUid, V ⊆ VK,
r(if) = 0 and (A 28) and (A 29) hold for W = V and W1 = L1. From (A 28) we then get

((r[ip : l′],h1,L1),M) ∈ toS(l
′,Gk

S(l))∗S{((,hS,LS),MS)}.

Then by (A 16)

((r[ip : l′],h1,L1),M) ∈ Gk
S(l

′)∗S IS(�)∗S lkS(�)∗S{((,hS,LS),MS)}.

Hence, � ∈ L1, which by (A 27) implies σ ′ �= �. Then, σ ′ = (R[k : r[ip : l′]],h,L−{�}).
The above also implies

((r[ip : l′],h1,L1 −{�}),M) ∈ Gk
S(l

′)∗S IS(�)∗S{((,hS,LS),MS)}.

From this and (A 6) we get l′ ∈ dom(S)
dom(C)
{ls, lc}. Hence, by (A 29)

(R[k : r[ip : l′]],h1,L1 −{�}) ∈ ISchedη �S ISchedLock
dom(IS)−(L1−{�}).

Then, from (A 25) and the definition of �SK we get σ ′ ∈ IOsη .

Case 5. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
command executed by the kernel and different from lock, unlock, icall, sti or cli. In
this case, l ∈ labels(K) and (A 27) holds.

From (A 24), there exist hS,LS,MS,VS,VK such that VS
VK
{k} = CPUid, V ⊆ VK ∪
{k}, r(if) = 0 ⇐⇒ k ∈V , (A 29) holds for W = V −{k} and W1 = L1 and

((r,h1,L1),M) ∈ ([[SchedSleepk(l)]]η ∩atS(l))∗S{((,hS,LS),MS)}. (A 30)

The latter implies

((r,h1,L1),M) ∈ Jk ∗S{((, [r(sp)..(r(ss)+StackSize−1 :)]
hS,LS),{r}
MS)}.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 507

Then, for some h′1 ∈ Heap and

h0 ∈ {[r(sp)..(r(ss)+StackSize−1) :]}

we have h1 = h′1
h0 and

((r,h′1,L1),M) ∈ Jk ∗S{((,hS,LS),{r}
MS)}. (A 31)

Let h′2 = h2
h0, then

h = h′1
h′2, L = L1
L2. (A 32)

Also, let v = k, if k ∈V , and v = ⊥, otherwise.
Note that from (A 30) it follows that r ∈ M. Then by (A 25) and (A 11) for some hK ∈

Heap and LK ∈ Lockset we have

(r,h′2,L2,v) ∈ GK(l)∗K{(,hK,LK, /0)} (A 33)

and4

(M−{r},hK,LK,V −{k}) ∈ �K�
r′′∈M−{r}

�[[ΔK(r′′(ip))]]η�KA
r′′ �K

IKernelLock
dom(IK)−L2

�K IPercpuCPUid−V . (A 34)

We have:

f k
c (l, l′,(r,h,L,v))

= f k
c (l, l′,{(r,h′2,L2,v)}∗K{(,h′1,L1,⊥)}) by (A 32)

� f k
c (l, l′,GK(l)∗K{(,h′1
hK,L1
LK,⊥)}) by (A 33)

� f k
c (l, l′,GK(l))∗K{(,h′1
hK,L1
LK,⊥)} by (A 4)

By (A 13), f k
c (l, l′,GK(l)) �= �, hence, by (A 2) and (A 27), σ ′ �= �. Let σ ′ = (R[k :

r′],h′,L). Then, by (A 27) and (A 13), for some h3 ∈ Heap and L3 ∈ Lockset, we have
h′ = h3
h′1
hK, L = L3
L1
LK and (r′,h3,L3)∈GK(r′(ip)). Using (A 11), we conclude
that for some h′′2 ∈ Heap and

h′0 ∈ [r′(sp)..(r′(ss)+StackSize−1) :]

we have h′ = h′′2
h′0
h′1 and

({r′},h′′2 ,L2,{k}− (CPUid−V)) ∈ �[[ΔK(r′(ip))]]η�KA
r′ �K {(/0,hK,LK, /0)}.

From this and (A 5), we get r′(ip) ∈ dom(K). Let M′ = (M−{r})
{r′}. Then by (A 34)
this implies

(M′,h′′2 ,L2,V) ∈ IKernelη �K IKernelLock
dom(IK)−L2

�K IPercpuCPUid−V . (A 35)

Let h′′1 = h′1
h′0. Then from (A 31) we get

((r′,h′′1 ,L1),M
′) ∈ ([[SchedSleepk(r

′(ip))]]η ∩atS(r
′(ip)))∗S{((,hS,LS),MS)}.

Since r′(ip) ∈ dom(K), together with (A 29) for W = V and W1 = L1, this implies

((R[k : r′],h′′1 ,L1),M
′,V) ∈ ISchedη �S ISchedLock

dom(IS)−L1
.

4 Note that if there are several occurrences of r in M, M−{r} removes only one of them.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

508 A. Gotsman and H. Yang

By the definition of �SK, from this and (A 35) we get σ ′ ∈ IOsη .

Case 6. σ ′ is obtained by applying the first rule in Figure 12, with the kernel executing
lock. In this case

l ∈ labels(K), c = lock(�), � �∈ L, σ ′ = (R[k : r[ip : l′]],h,L∪{�}).

As in Case 5, there exist hS,LS,MS,VS,VK,h′1,h0,h
′
2,v satisfying the conditions stated

there. Additionally, from (A 25) for some hK,LK we get

(r,h′2,L2,v) ∈ GK(l)∗K IK(�)∗K{(,hK,LK,⊥)}

and

(M−{r},hK,LK,V −{k}) ∈ �K�
r′′∈M−{r}

�[[ΔK(r′′(ip))]]η�KA
r′′ �K

IKernelLock
dom(IK)−(L2∪{�})

�K IPercpuCPUid−V . (A 36)

This implies

(r[ip : l′],h′2,L2 ∪{�},v) ∈ toK(l′,(GK(l)∗K IK(�)∗K lkK(�)))∗K{(,hK,LK,⊥)}.

Hence, by (A 15)

(r[ip : l′],h′2,L2 ∪{�},v) ∈ GK(l′)∗K{(,hK,LK,⊥)}.

Then from (A 11) it follows that

({r[ip : l′]},h2,L2 ∪{�},{k}− (CPUid−V)) ∈ �[[ΔK(l′)]]η�KA
r[ip:l′] �K {(/0,hK,LK, /0)}.

From this and (A 5), we get l′ ∈ dom(K). Let M′ = (M−{r})
{r[ip : l′]}. Then by (A 36)
we get

(M′,h2,L2 ∪{�},V) ∈ IKernelη �K IKernelLock
dom(IK)−(L2∪{�})

�K IPercpuCPUid−V .

(A 37)
From (A 30) we get

((r[ip : l′],h1,L1),M
′) ∈ ([[SchedSleepk(l

′)]]η ∩atS(l
′))∗S{((,hS,LS),MS)}.

Since l′ ∈ dom(K), together with (A 29) for W = V −{k} and W1 = L1, this implies

((R[k : r[ip : l′]],h1,L1),M
′,V) ∈ ISchedη �S ISchedLock

dom(IS)−L1
. (A 38)

By the definition of �SK, from this and (A 37) we get σ ′ ∈ IOsη .

Case 7. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing unlock. In this case, l ∈ labels(K), c = unlock(�) and (A 27) holds.

As in Case 5, there exist hS,LS,MS,VS,VK,h′1,h0,h
′
2,v,hK,LK satisfying the conditions

stated there. Then using (A 33), we get

(r[ip : l′],h′2,L2,v) ∈ toK(l′,GK(l))∗K{(,hK,LK,⊥)}.

Hence, by (A 17)

(r[ip : l′],h′2,L2,v) ∈ GK(l′)∗K IK(�)∗K lkK(�)∗K{(,hK,LK,⊥)}.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 509

Hence, �∈ L2, which means that σ ′ �=�. Then σ ′ = (R[k : r[ip : l′]],h,L−{�}). The above
also implies

(r[ip : l′],h′2,L2 −{�},v) ∈ GK(l′)∗K IK(�)∗K{(,hK,LK,⊥)}.

Then from (A 11) it follows that

({r[ip : l′]},h2,L2 −{�},{k}− (CPUid−V)) ∈
�[[ΔK(l′)]]η�KA

r[ip:l′] �K �IK(�)∗K{(,hK,LK,⊥)}�KL.

From this and (A 5) we get l′ ∈ dom(K). Let M′ = (M−{r})
{r[ip : l′]}. Then by (A 34)
we get

(M′,h2,L2 −{�},V) ∈ IKernelη �K IKernelLock
dom(IK)−(L2−{�}) �K IPercpuCPUid−V .

As in the previous case, from (A 30) and (A 29) for W = V −{k} and W1 = L1, we can
establish (A 38). Together with the last inclusion, this implies σ ′ ∈ IOsη .

Case 8. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing cli or sti. These cases are similar to the previous two and are omitted. They
rely on (A 18) and (A 19) instead of (A 15) and (A 17).

Case 9. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
kernel executing icall(schedule). In this case, l ∈ labels(K), c = icall(schedule)
and (A 27) holds.

As in Case 5, there exist hS,LS,MS,VS,VK,h′1,h0,h
′
2,v,hK,LK satisfying the conditions

stated there. Additionally, r(if) = 1 and hence, k �∈V and v =⊥. From (A 33) we then get

(r[ip : l′],h′2,L2,⊥) ∈ toK(l′,GK(l))∗K{(,hK,LK,⊥)}.

By (A 20), this implies

(r[ip : l′],h′2,L2,⊥) ∈ GK(l′)∗K{(,hK,LK,⊥)}.

Then using (A 11) we get

({r[ip : l′]},h2,L2, /0) ∈ �[[ΔK(l′)]]η�KA
r[ip:l′] �K {(,hK,LK, /0)}.

Let M′ = (M−{r})
{r[ip : l′]}. Then by (A 34) we have

(M′,h2,L2,V) ∈ IKernelη �S IKernelLock
dom(IK)−L2

�S IPercpuCPUid−V . (A 39)

From (A 30) we get dom(h) ⊇ {r(sp), . . . ,r(sp)+ m + 1}, which implies that σ ′ �= �.
Then σ ′ = (R[k : r′′],h′′1
h2,L), where

r′′ = r[ip : schedule,sp : (r(sp)+m+1),if : 0]

and

h′′1 = h1[r(sp) : l′,(r(sp)+1) : r(gr1), . . . ,(r(sp)+m) : r(grm)]. (A 40)

From (A 30) we also get

((r,h1,L1),M
′) ∈ Jk ∗S

{((, [r(sp)..(r(ss)+StackSize−1) :]
hS,LS),{r[ip : l′]}
MS)}.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

510 A. Gotsman and H. Yang

Hence,

((r′′,h′′1 ,L1),M
′) ∈ Jk ∗S{((, [(r′′(sp)−m−1)..(r′′(sp)−1) : l′r(gr1) . . .r(grm),

r′′(sp)..(r′′(ss)+StackSize−1) :]
hS,LS),{r[ip : l′]}
MS)}.

From (A 33) and (A 11) we get 0 � r(sp)− r(ss) � StackBound, so that 0 � r′′(sp)−
r′′(ss)−m−1 � StackBound. Thus,

((r′′,h′′1 ,L1),M
′) ∈ ([[SchedStatek]]η ∩atS(schedule))∗S{((,hS,LS),MS)}.

Together with (A 29) for W = V −{k} and W1 = L1 and (A 7), this implies

((R[k : r′′],h′′1 ,L1),M
′) ∈ ISchedη �S ISchedLock

dom(IS)−L1
.

By the definition of �SK, from this and (A 39) we get σ ′ ∈ IOsη .

Case 10. σ ′ is obtained by applying the second or the last rule in Figure 12, i.e., by
executing an interrupt. This case is virtually identical to the previous one and is omitted.

Case 11. σ ′ is obtained by applying the first or the third rule in Figure 12, with the
scheduler executing iret at ls or lc. In this case

l ∈ {ls, lc}, l′ ∈ {ls +1, lc +1}, c = iret

and (A 27) holds.
From (A 24), there exist hS,LS,MS,VS,VK satisfying the conditions stated there, in par-

ticular, (A 28) and (A 29) for W = V and W1 = L1. Then from (A 28), (A 8) and (A 10) we
get

((r,h1,L1),M) ∈ ([[SchedStatek]]η ∩ (atS(ls)∪atS(lc)))∗S{((,hS,LS),MS)}. (A 41)

Hence, dom(h1) ⊇ {r(sp)−m−1, . . . ,r(sp)−1} and σ ′ �= �. Let

l′′ = h1(r(sp)−m−1), g1 = h1(r(sp)−m), . . . , gm = h1(r(sp)−1).

Then, σ ′ = (R[k : r′],h,L), where

r′ = r[ip : l′′,sp : (r(sp)−m−1),gr1 : g1, . . . ,grm : gm,if : 1].

From (A 41) we now obtain

((r[ip : l′′],h1,L1),M) ∈ ([[SchedStatek]]η ∩atS(l
′′))∗S{((,hS,LS),MS)}.

Hence,

((r′,h1,L1),M) ∈
atS(l

′′)∩ ({((, [sp..(ss+StackSize−1) :]
hS,LS),{r′}
MS)}∗S Jk),

which is equivalent to

((r′,h1,L1),M) ∈ ([[SchedSleepk(l
′′)]]η ∩atS(l

′′))∗S{((,hS,LS),MS)}.

Note that r′ ∈ M. Hence, from (A 25) and (A 5) we get l′′ ∈ labels(K). By (A 29) for W =V
and W1 = L1 we then have

((R[k : r′],h1,L1),M) ∈ ISchedη �S ISchedLock
dom(IS)−L1

.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 511

From (A 25) and the definition of �SK, we get σ ′ ∈ IOsη .

Case 12. σ ′ is obtained by applying the first or the third rule in Figure 12, with the kernel
executing icall(create). In this case, l ∈ labels(K), c = icall(create) and (A 27)
holds.

As in Case 5, there exist hS,LS,MS,VS,VK,h′1,h0,h
′
2,hK,LK satisfying the conditions

stated there. Additionally, r(if) = 1 and hence, k �∈V and v = ⊥. From (A 33) and (A 21)
we get

(r,h′2,L2,⊥) ∈ {(,hK,LK)}∗K[[∃γ.γ(if) = 1∧desc(gr1,γ)∗P∗Q]]η .

Hence, there exists r′ such that r′(if) = 1 and

(r,h′2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K[[Q]]η ′ ∗K{(,hK,LK,⊥)},

where u = r(gr1) and η ′ = η [γ : r′]. Since free(P)∩Reg = /0 and free(desc(d,γ))∩Reg =
/0, we have

(r[ip : l′],h′2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K toK(l′, [[Q]]η ′)∗K{(,hK,LK,⊥)}.

Using (A 22), we then get

(r[ip : l′],h′2,L2,⊥) ∈ descη(u,r′)∗K[[P]]η ′ ∗K GK(l′)∗K{(,hK,LK,⊥)}.

According to (A 11), this implies

({r[ip : l′]},h2,L2, /0) ∈ �descη(u,r′)�KL �K �[[P]]η ′ �KL �K

�[[ΔK(l′)]]η�KA
r[ip:l′] �K {(/0,hK,LK, /0)}.

Then for some h′′2 ,hd ∈ Heap such that h2 = h′′2
hd we have {(,hd , /0,⊥)} ⊆ descη(u,r′)
(recall that all states from descη(u,r′) have an empty lockset) and

({r[ip : l′]},h′′2 ,L2, /0) ∈ �[[P]]η ′ �KL �K �[[ΔK(l′)]]η�KA
r[ip:l′] �K {(/0,hK,LK, /0)}.

Then from (A 23) and (A 11) we get

({r[ip : l′],r′},h′′2 ,L2, /0) ∈ �[[ΔK(r′(ip))]]η�KA
r′ �K �[[ΔK(l′)]]η�KA

r[ip:l′] �K {(/0,hK,LK, /0)}.

Let M′ = (M−{r})
{r[ip : l′],r′}. Then by (A 34) we have

(M′,h′′2 ,L2,V) ∈ IKernelη �S IKernelLock
dom(IK)−L2

�S IPercpuCPUid−V . (A 42)

As in Case 9, we can assume that

σ ′ = (R[k : r′′],h′′1
h2,L) = (R[k : r′′],h′′1
hd
h′′2 ,L),

where

r′′ = r[ip : create,sp : (r(sp)+m+1),if : 0]

and h′′1 is defined by (A 40). Let h′′′1 = h′′1
hd . Then from (A 30) we get

((r,h′′′1 ,L1),M
′) ∈ Jk ∗S(descη(u,r′)×{ /0})∗S

{((, [r(sp)..(r(sp)+m) : l′r(gr1) . . .r(grm),

(r(sp)+m+1)..(r(ss)+StackSize−1) :]
hS,LS),{r[ip : l′],r′}
MS)}.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

512 A. Gotsman and H. Yang

Similar to how it was done in Case 9, using (A 9) we now establish

((r′′,h′′′1 ,L1),M
′) ∈ Gk

S(create)∗S{((,hS,LS),MS)}.

Together with (A 29) for W = V and W1 = L1, this implies

((R[k : r′′],h′′′1 ,L1),M
′,V) ∈ ISchedη �S ISchedLock

dom(IS)−L1
.

By the definition of �SK, from this and (A 42) we get σ ′ ∈ IOsη . �

References

Back, R.-J. (1981) On correct refinement of programs. J. Comput. Syst. Sci. 23, 49–68.

Berdine, J., O’Hearn, P. W., Reddy, U. S. & Thielecke, H. (2002) Linear continuation-passing.
Higher-order Symb. Comput. 15(2–3), 181–208.

Bovet, D. & Cesati, M. (2005) Understanding the Linux Kernel, 3rd ed. O’Reilly.

Brookes, S. D. (2007) A semantics of concurrent separation logic. Theor. Comput. Sci. 375(1–3),
227–270.

Calcagno, C., O’Hearn, P. W. & Yang, H. (2007) Local action and abstract separation logic. In
Symposium on Logic in Computer Science (LICS’07). IEEE, pp. 366–378.

Charlton, N. (2011) Hoare logic for higher order store using simple semantics. In Conference on
Logic, Language, Information and Computation (WoLLIC’11). LNCS, vol. 6642. Springer, pp.
52–66.

Clarke, D. G., Noble, J. & Potter, J. (2001) Simple ownership types for object containment.
In European Conference on Object-Oriented Programming (ECOOP’01). LNCS, vol. 2072.
Springer, pp. 53–76.

Cohen, E., Schulte, W. & Tobies, S. (2010) Local verification of global invariants in concurrent
programs. In Conference on Computer-Aided Verification (CAV’10). LNCS, vol. 6174. Springer,
pp. 480–494.

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. & Yang, H. (2013) Views:
Compositional reasoning for concurrent programs. In Symposium on Principles of Programming
Languages (POPL’13). ACM, pp. 287–300.

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. & Vafeiadis, V. (2010) Concurrent
abstract predicates. In European Conference on Object-Oriented Programming (ECOOP’10).
LNCS, vol. 6183. Springer, pp. 504–528.

Feng, X., Ferreira, R. & Shao, Z. (2007a) On the relationship between concurrent separation logic
and assume-guarantee reasoning. In European Conference on Programming (ESOP’07). LNCS,
vol. 4421. Springer, pp. 173–188.

Feng, X., Ni, Z., Shao, Z. & Guo, Y. (2007b) An open framework for foundational proof-carrying
code. In Workshop on Types in Language Design and Implementation (TLDI’07). ACM, pp.
67–78.

Feng, X., Shao, Z., Dong, Y. & Guo, Y. (2008a) Certifying low-level programs with hardware
interrupts and preemptive threads. In Conference on Programming Language Design and
Implementation (PLDI’08). ACM, pp. 170–182.

Feng, X., Shao, Z., Guo, Y. & Dong, Y. (2008b) Combining domain-specific and foundational
logics to verify complete software systems. In Conference on Verified Software: Theories, Tools,
Experiments (VSTTE’08). LNCS, vol. 5295. Springer, pp. 54–69.

Feng, X., Shao, Z., Vaynberg, A., Xiang, S. & Ni, Z. (2006) Modular verification of assembly code
with stack-based control abstractions. In Conference on Programming Language Design and
Implementation (PLDI’06). ACM, pp. 401–414.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

Modular verification of preemptive OS kernels 513

Gargano, M., Hillebrand, M., Leinenbach, D. & Paul, W. (2005) On the correctness of operating
system kernels. In Conference on Theorem Proving in Higher-Order Logics (TPHOLs’05).
LNCS, vol. 3603. Springer, pp. 1–16.

Gotsman, A. (2009) Logics and Analyses for Concurrent Heap-Manipulating Programs. PhD Thesis,
University of Cambridge.

Gotsman, A., Berdine, J. & Cook, B. (2011) Precision and the conjunction rule in concurrent
separation logic. ENTCS 276(1), 171–190. MFPS’11: Mathematical Foundations of Programming
Semantics.

Gotsman, A., Berdine, J., Cook, B., Rinetzky, N. & Sagiv, M. (2007) Local reasoning for storable
locks and threads. In Asian Symposium on Programming Languages and Systems (APLAS’07).
LNCS, vol. 4807. Springer, pp. 19–37.

Gotsman, A. & Yang, H. (2013) Electronic Appendix for This Paper. Available from
http://dx.doi.org/10.1017/S0956796813000075.

Hasegawa, M. (2002) Linearly used effects: Monadic and CPS transformations into the linear lambda
calculus. In International Symposium on Functional and Logic Programming (FLOPS’02).
LNCS, vol. 2441. Springer, pp. 167–182.

Hasegawa, M. (2004) Semantics of linear continuation-passing in call-by-name. In
International Symposium on Functional and Logic Programming (FLOPS’04). LNCS,
vol. 2998. Springer, pp. 229–243.

Jones, C. (2007) Splitting atoms safely. Theor. Comput. Sci. 375, 109–119.

Jones, C. B. (1983) Specification and design of (parallel) programs. In IFIP Congress,
pp. 321–332.

Klein, G. (2009) Operating system verification–an overview. Sādhanā 34, 26–69.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt,
K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. & Winwood, S. (2009) seL4: Formal
verification of an OS kernel. In Symposium on Operating Systems Principles (SOSP’09). ACM,
pp. 207–220.

Laird, J. (2005) Game semantics and linear CPS interpretation. Theor. Comput. Sci. 333(1–2), 199–
224.

Love, R. (2010) Linux Kernel Development, 3rd ed. Addison Wesley.

Maeda, T. & Yonezawa, A. (2009) Writing an OS kernel in a strictly and statically typed language.
In Formal to Practical Security. LNCS, vol. 5458. Springer, pp. 181–197.

Ni, Z. & Shao, Z. (2006) Certified assembly programming with embedded code pointers. In
Symposium on Principles of Programming Languages (POPL’06). ACM, pp. 320–333.

O’Hearn, P. W. (2007) Resources, concurrency and local reasoning. Theor. Comput. Sci. 375, 271–
307.

Parkinson, M. & Bierman, G. (2005) Separation logic and abstraction. In Symposium on Principles
of Programming Languages (POPL’05). ACM, pp. 247–258.

Pnueli, A. (1985) In transition from global to modular temporal reasoning about programs. In Logics
and Models of Concurrent Systems. Springer, pp. 123–144.

Reynolds, J. C. (2002) Separation logic: A logic for shared mutable data structures. In Symposium
on Logic in Computer Science (LICS’02). IEEE, pp. 55–74.

Schwinghammer, J., Birkedal, L., Reus, B. & Yang, H. (2009) Nested Hoare triples and frame rules
for higher-order store. In Conference on Computer Science Logic (CSL’09). LNCS, vol. 5771.
Springer, pp. 440–454.

Shao, Z. (2010) Certified software. Commun. ACM 53(12), 56–66.

Thielecke, H. (2003) From control effects to typed continuation passing. In Symposium on
Principles of Programming Languages (POPL’03). ACM, pp. 139–149.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

514 A. Gotsman and H. Yang

Turon, A. & Wand, M. (2011) A separation logic for refining concurrent objects. In Symposium on
Principles of Programming Languages (POPL’11). ACM, pp. 247–258.

Vafeiadis, V. & Parkinson, M. J. (2007) A marriage of rely/guarantee and separation logic.
In Conference on Concurrency Theory (CONCUR’07). LNCS, vol. 4703. Springer,
pp. 256–271.

Yang, J. & Hawblitzel, C. (2010) Safe to the last instruction: Automated verification of a type-
safe operating system. In Conference on Programming Language Design and Implementation
(PLDI’10). ACM, pp. 99–110.

https://doi.org/10.1017/S0956796813000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000075

