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Oscillatory behaviour of

first order delay

differential equations

Alexander Tomaras

Best possible conditions are given here, under which all solutions

of several delay differential equations are oscillatory.

1 . Introduction

The main interest in obtaining qualitative information for first order

functional differential equations is due to the fact that they often

provide mathematical models for physical systems (see, for instance, [/],

[3], [9], [72]).

Of particular importance however has been the study of oscillations of

delay differential equations, which are generated by the retarded argument

and which do not appear in the corresponding differential equation without

delay. Contributions in this area can be found, for example, in [2], [7],

[£], while a special effort in the direction of establishing oscillation

results of this kind for first order delay differential equations relevant

to an industrial problem was undertaken in [70], [//].

Sufficient conditions, under which all solutions of the delay

differential equation

(1.1) «/'(*) + p(t)y(t-t) = 0

are oscillatory, have been established by Ladas in [6], where it has also

been explained that they are the best possible. Our aim here is to extend

Ladas's results in [6] to the delay differential equation
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(1.2) y'it) + p(t)y[g{t)) = 0 .

Then the results obtained will be used to derive oscillatory-

information for the solutions of the delay differential equation:

(1.3) y'it) = pit)y[git)) + qit)y(t) ,

which is of more general form than an equation, arising as the mathematical

idealization and simplification of an industrial problem, involving wave

motion in the overhead supply line to an electrified railway system (see

also C4], [5]). Both (1.2) and (1.3) have been considered in [JO], but

here, the results, which will be obtained for (1.2), and for (1.3) through

(1.2), improve the results obtained in [J0], and, in some cases, they are

the best possible.

In the sequel a solution yit) of (1.2) or (1.3) is said to be

oscillatory, if it has arbitrarily large zeros, while it is said to be

nonoscillatory, if it is eventually of constant sign.

2. Main results

Assume tha t for (1 .2 ) , the conditions below are always t rue :

(Cl) pit) € C{[0, » ) , R+} ;

(C2) git) € ^ { [ O , » ) , i?+} , git) < t , lim git) = <=° , and

g'it) - o .

We state the following

THEOREM 2.1. In addition to (Cl) and (C2), suppose that the

following conditions hold for (1.2):

[t
(2.1) lim inf p(s)ds > 1/e ;

t~» 'git)

(2.2) for every function hit) € (p-{[0, °°), R+) , such that

git) < hit) < t , lim hit) = » , h'it) > 0 , the integral

f*
pis)ds is bounded away from zero.

'hit)

Then every solution of (1.2) oscillates.
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Proof. Let y(t) tie a nonoscillatory solution of (1.2), which we

assume to be positive for t > tQ , tQ being sufficiently large. Since

lim g{t) = oo , there exists a t > t , such that y {g(t)) > 0 and, from

(1.2),

y'it) < 0 , t > tx .

Hence,

y(t) <y\g(t)) for t > *2 > t^ .

Set

(2.3) w{t) = y(gtt))/y{t) , t > t2 .

Then w(t) > 1 , and dividing both sides of (1.2) by t/(t) for t > t„ ,

we obtain

(2.1*) y'{t)/y(t) + p(t)u(t) = 0 , t > t2 .

Integrating both sides of (2.1*) from g(t) to t , for £ > * _ > £ „

we get

rt
log y(t) - log y[g(t)) + p(s)w(s)ds = 0 , t > t ,

}g(t) J

or

(2

(2

, in view of

.5)

Set

.6)

(2.3),

log w{t) f*= p{e)w(s)d8 , t > t_ .

V*) 3

lim inf w(t) = m .

Then m i l , and it is finite or infinite.

CASE 1. m is finite. Then there exists a sequence t •* <=° , such
n

that lim inf w[t ) = m . From (2.5), we get
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r n r n
( 2 . 7 ) l og W(*M) = p{s)w{s)ds = w{vn) p(s)ds ,

w h e r e g [ t ) < v < t , n = 1 , 2 , . . . .

Taking limits on both sides of (2.7), as rc -• <=° , and account of

(2.6), we obtain

rt
log m > m lim inf p(s)ds ,

and so

ft
(2.8) (log m)/m > lim inf p(s)ds

Using the fact that

max (log m)/m = 1/e ,

(2.8) implies

f*
1/e > lim inf p(s)ds ,

which contradicts (2 .1 ) .

CASE 2. m = +°° . That i s ,

(2.9) lim w(o(t))/i/(t) = -K» .

Let then h(t) be a function as in (2.2).

Integrating both sides of (l.l) from hit) to £ > £ . > £ _ , for

sufficiently large t, , we obtain

(2.10) y(t) - y{Ht)) + f p(s)y{g(s))ds = 0 .
]h{t)

Since y[g(s)) > y[gU)) for ft(t) < s < t , (2.10) yields

(2.11) y(t) - y{h{t)) + y[g(t)) p(s)ds s 0 .

>h{t)
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Dividing both s i d e s of (2 .11) by yit) , t ak ing l i m i t s , as t -*•<*>,

and using (2 .9) and ( 2 . 2 ) , we conclude t h a t

(2.12) lim y[Ht))/yit) = •**> •

Dividing both sides of (2.11) by y[hit)) , we get

rt
yit)/y[hit)) - 1 + y[git))/y[hit)) pis)ds 5 0 ,

hit)

which, if we take limits, as t •*• °° , in view of (2.12) and (2.2), is

impossible. Since in both cases we are led to a contradiction, the proof

of the theorem is complete.

Let us now look at (1.3). In [70] it is shown that (1.3) can be led

to the form

(2.13) z'it) + lit)z{git)) = 0 ,

if we set

yit)exp - I ̂(tjcft = s(t)

and

lit) = -pit) exp qiT)dT ,
't

and that the oscillatory character of its solutions is maintained under the

above transformations.

Since (2.13) is the same as (1.2), we apply the previous theorem to

it, to establish the following result for (1.3).

THEOREM 2.2. Consider the delay differential equation (1.3), subject

to the following conditions:

(i) -pit) € C{[0, °°), i?+} ;

(U) git) € C^{[0, <*>), R+] , git) < t , lim git) = °° , and

g'it) > o ;

(Hi) qit) is continuous for any t # 0 .

If, in addition.
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ft r cgis) -i
(2.l!*) lim inf -pis) exp qiT)dT\ds > l/e ,

*»> Sgit) L Js J

and

(2.15) for every function hit) € Cr{[0, «>), i?+} , st^ch

< h ( t ) < t , lim ft(£) = °° , h'it) > 0 „ the integral

t r- rgis) —1
-pis) exp qiT)dTIds is bounded away from

I— J n —I

zero,

every solution yit) of (1.3) oscillates.

DISCUSSION. Conditions (2.1), (2.lU), and (2.2), (2.15) are

sufficient in Case 1 and Case 2 respectively, for all solutions of (1.2)

and (1.3) to oscillate.

If pit) is a positive constant p , that is, in the case of the

delay differential equation

(2.16) y'it) + py[git)) = 0 ,

condition (2.1) becomes

(2.17) lim inf [t-git)] > 1/pe

and, if in addition, git) = t - T , where x is a positive constant, it

becomes

(2.18) pte > 1 .

Then, clearly, (2.18) is the best possible condition for all solutions

of the delay differential equation

y'it) + pyit-T) = 0

to oscillate (this has been established by Ladas in [6]), and (2.17) is the

best possible condition for all solutions of the delay differential

equation (2.16) to oscillate, in Case 1. Accordingly, in the same case,

(2.1) is the best possible condition for all solutions of (1.2) to

oscillate, and (2.lU) is the best possible condition for all solutions of

(1.3) to oscillate.

It is to be noted that in Case 1, (2.l!*) is weaker than condition
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(2.k) in ['0]. On the other hand, Theorem 2.1 here, for (1.2), shows to

be not just an adaptation of Ladas's results in [6], for (l.l). This means

that results for nonconstant delays cannot be expected to occur immediately

from results concerning constant delays. Also, (1.2) has been again the

key to oscillatory information for (1.3) (see the relevant technique in

PC]).

Finally, the question "how far away from zero" the integrals in (2.2)

and (2.15) should be bounded, remains open.
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