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Abstract. Let {xi}∞i=1 be an arbitrary strictly increasing infinite sequence of
positive integers. For an integer n ≥ 1, let Sn = {x1, . . . , xn}. Let ε be a real number
and q ≥ 1 a given integer. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the eigenvalues of the power GCD

matrix ((xi, xj)ε) having the power (xi, xj)ε of the greatest common divisor of xi and
xj as its i, j-entry. We give a nontrivial lower bound depending on x1 and n for λ

(1)
n

if ε > 0. Especially for ε > 1, this lower bound is given by using the Riemann zeta
function. Let x ≥ 1 be an integer. For a sequence {xi}∞i=1 satisfying that (xi, xj) = x for
any i �= j and

∑∞
i=1

1
xi

= ∞, we show that if 0 < ε ≤ 1, then limn→∞λ
(1)
n = xε

1 − xε.
Let a ≥ 0, b ≥ 1 and e ≥ 0 be any given integers. For the arithmetic progression
{xi−e+1 = a + bi}∞i=e, we show that if 0 < ε ≤ 1, then limn→∞λ

(q)
n = 0. Finally, we show

that for any sequence {xi}∞i=1 and any ε > 0, λ
(n−q+1)
n approaches infinity when n goes to

infinity.

2000 Mathematics Subject Classification. 11C20, 11A05, 15A36.

1. Introduction. In 1876, H. Smith [25] published his celebrated theorem showing
that the determinant of the n × n matrix [(i, j)], which has the greatest common divisor
(i, j) of i and j as its (i, j)-entry, is the product

∏n
k=1 ϕ(k), where ϕ is Euler’s totient

function. Smith also proved that if f is an arithmetical function and [ f (i, j)] is the
n × n matrix having f evaluated at the greatest common divisor (i, j) of i and j as
its (i, j)-entry, then det[ f (i, j)] = ∏n

k=1( f ∗ µ)(k), where µ is the Möbius function and
f ∗ µ is the Dirichlet convolution of f and µ. In 1972, Apostol [2] extended Smith’s
result. In 1988, McCarthy [21] generalized Smith’s and Apostol’s results to the class of
even functions of m (mod r), where m and r are positive integers. A complex-valued
function β(m, r) is said to be an even function of m (mod r) if β(m, r) = β((m, r), r)
for all values of m. The functions considered by Smith and Apostol are even
functions of m (mod r). In 1993, Bourque and Ligh [5] extended the results of Smith,
Apostol, and McCarthy. In 2002, Hong [12] generalized the results of Smith, Apostol,
McCarthy and Bourque and Ligh to certain classes of arithmetical functions. In 2003,
Korkee and Haukkanen [18] considered a certain abstract generalization of Smith’s
determinant.
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Let 1 ≤ x1 < · · · < xn < · · · be a given arbitrary strictly increasing infinite
sequence of positive integers. For any integer n ≥ 1, let

Sn = {x1, . . . , xn}.
Denote by ( f (xi, xj)) the n × n matrix having f evaluated at the greatest common
divisor (xi, xj) of xi and xj as its i, j-entry and by ( f [xi, xj]) denote the n × n matrix
having f evaluated at the least common multiple [xi, xj] of xi and xj as its i, j-entry.
The set Sn is said to be factor closed if it contains every divisor of x for any x ∈ Sn.
From Bourque and Ligh’s result [6, Theorem 4], we can see that if Sn is a factor-closed
set and f is a multiplicative function such that f ∈ LSn , where LSn is a certain class of
arithmetical functions defined by

LSn := { f : ( f ∗ µ)(d) ∈ Z\{0} whenever d|lcm(Sn)},
where lcm(Sn) means the least common multiple of all elements in Sn, then the matrix
( f (xi, xj)) divides the matrix ( f [xi, xj]) in the ring Mn(Z) of n × n matrices over the
integers. Hong [13] showed that for any multiple-closed set Sn (i.e. y ∈ Sn whenever
x|y|lcm(Sn) for any x ∈ Sn) and for any divisor chain Sn (i.e. x1| · · · |xn), if f is a
completely multiplicative function such that f ∈ LSn , then the matrix ( f (xi, xj)) divides
the matrix ( f [xi, xj]) in the ring Mn(Z). But such a factorization is no longer true if f
is multiplicative.

Now let ε be a real number. The n × n matrix having the power (xi, xj)ε of the
greatest common divisor of xi and xj as its i, j-entry is called the power greatest common
divisor (GCD) matrix defined on Sn, denoted by ((xi, xj)ε), or abbreviated by ((Sn)ε). The
matrix having the power [xi, xj]ε of the least common multiple of xi and xj as its i, j-
entry is called the power least common multiple (LCM) matrix, denoted by ([xi, xj]ε), or
abbreviated by [(Sn)ε]. If we let ε = 1, then the power GCD matrix and the power LCM
matrix are said to be the GCD matrix defined on Sn and the LCM matrix defined on
Sn, respectively, and denoted by (Sn) and [Sn], respectively. In 1989, Beslin and Ligh [3]
initiated the study of the GCD matrix (Sn) on any set Sn in the direction of structure,
determinant and inverse. In particular, they proved that the GCD matrix (Sn) on any
set Sn of n distinct positive integers is positive definite. However, the LCM matrix
[Sn] on any set Sn is not positive definite in general. It may even not be nonsingular.
In fact, Hong [11] showed that for any integer n ≥ 8, there exists a GCD-closed set
Sn = {x1, . . . , xn} (i.e. one has (xi, xj) ∈ Sn for all 1 ≤ i, j ≤ n) such that the LCM
matrix [Sn] on Sn is singular. Note also that recently, Hong [14] proved that for any
positive integer ε and for any GCD-closed set Sn satisfying maxx∈Sn{ν(x)} ≤ 2, where
ν(x) denotes the number of distinct prime factors of the positive integer x, the power
LCM matrix [(Sn)ε] on Sn is nonsingular.

For a different form of a power GCD matrix

Nn :=
(

(i, j)2ε

iε · jε

)
1≤i,j≤n

,

Wintner [26] proved in 1944 that lim supn→∞�n(ε) < ∞ if and only if ε > 1, where
�n(ε) denotes the largest eigenvalue of the matrix Nn. Let λn(ε) denote the smallest
eigenvalue of the matrix Nn. Lindqvist and Seip [19] in 1998 use the work of [9] about
Riesz bases to investigate the asymptotic behavior of λn(ε) and �n(ε) as n → ∞. In
particular, they got a sharp bound for λn(ε) and �n(ε). However, for the power GCD
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matrix ((Sn)ε) on Sn, the eigenvalues do not seem to be known. In 1993, Bourque and
Ligh [5] extended Beslin and Ligh’s result by showing that for any ε > 0, the power
GCD matrix ((Sn)ε) on Sn is positive definite. From this, one can only conclude that
its eigenvalues are positive, but no further information is provided.

In the present paper, our main goal is to consider the asymptotic behavior of
the eigenvalues of the power GCD matrix ((Sn)ε) on Sn. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the

eigenvalues of the power GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}. Let
1 ≤ q ≤ n be a fixed integer and ε > 0. Then it follows from Bourque and Ligh’s result
[4] that

λ(q)
n > 0.

On the other hand, by Cauchy’s interlacing inequalities (see [15]) we have

λ
(q)
n+1 ≤ λ(q)

n .

Thus the sequence {λ(q)
n }∞n=q is a non-increasing infinite sequence of positive real

numbers and so it is convergent. Namely, we have the following result.

PROPOSITION 1.1. Let q ≥ 1 be a given arbitrary integer, ε > 0 and {xi}∞i=1 an arbitrary
given strictly increasing infinite sequence of positive integers. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the

eigenvalues of the n × n power GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}.
Then the sequence {λ(q)

n }∞n=q converges and

lim
n→∞ λ(q)

n ≥ 0.

Let x ≥ 1 be an integer. For an arbitrary strictly increasing infinite sequence
{xi}∞i=1 of positive integers satisfying that (xi, xj) = x for any i �= j and

∑∞
i=1

1
xi

= ∞,
we show, in section 2, that if 0 < ε ≤ 1, then limn→∞λ

(1)
n = xε

1 − xε. Let a ≥ 0, b ≥ 1
and e ≥ 0 be any given integers. In section 3, we show that for the arithmetic progression
{xi−e+1 = a + bi}∞i=e, if 0 < ε ≤ 1, then limn→∞λ

(q)
n = 0.

We give in Section 4 a lower bound for the smallest eigenvalue λ
(1)
n of the power

GCD matrix ((Sn)ε) on any set Sn. This improves the lower bound due to Beslin,
Bourque and Ligh. Then we use it to obtain a lower bound for the q-th largest eigenvalue
λ

(n−q+1)
n of the power GCD matrix ((Sn)ε) on any set Sn for any ε > 0 and any given

integer q ≥ 1. This lower bound then implies that for any ε > 0 and any given integer
q ≥ 1, the q-th largest eigenvalue of the power GCD matrix ((Sn)ε) on any set Sn tends
to infinity as n tends to infinity. The final section contains some remarks and questions.

For a comprehensive review of papers relating to greatest common divisor matrices
not presented here, we refer the readers to [8]. Throughout this paper, we let En denote
the n × n matrix with all entries equal to 1.

2. Some preliminary results. In this section we shall study the asymptotic
behavior of the smallest eigenvalue of the power GCD matrix defined on the ordered
finite subsequence of an infinite sequence of pairwise relatively prime positive integers.
First we state some results on certain symmetric matrices. The following lemma is
known.
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LEMMA 2.1. Let n ≥ 1 be an integer and let a1, . . . , an ∈ F such that ai �= 1 for all
1 ≤ i ≤ n, where F is an arbitrary field. Then




1 1 · · · 1

1 a1 · · · 1

·· ·· ·· ··
1 1 · · · an




−1

=




1 +∑n
i=1

1
ai−1 − 1

a1−1 − 1
a2−1 · · · − 1

an−1

− 1
a1−1

1
a1−1 0 · · · 0

− 1
a2−1 0 1

a2−1 · · · 0

· · · · · · · · · · · · · · ·
− 1

an−1 0 0 · · · 1
an−1




.

Assume now that {ui}∞i=1 is any given strictly increasing infinite sequence of real
numbers such that u1 > 1. Let Un := En + diag(0, u1 − 1, . . . , un−1 − 1). It is easy to
see that the n × n matrix Un is positive definite. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the eigenvalues

of the n × n matrix Un. Then λ
(1)
n > 0. Now let µ

(1)
n ≤ · · · ≤ µ

(n)
n be the eigenvalues of

the inverse matrix U−1
n . Then

λ(i)
n · µ(n−i+1)

n = 1, 1 ≤ i ≤ n. (2.1)

LEMMA 2.2. Suppose that {ui}∞i=1 is any given strictly increasing infinite sequence of
real numbers such that u1 > 1. Let Un = En + diag(0, u1 − 1, . . . , un−1 − 1) and µ

(n)
n the

largest eigenvalue of the inverse matrix U−1
n . Then

µ(n)
n > 1 +

n−1∑
i=1

1
ui − 1

.

Proof. Define an n × n matrix Vn as follows:

Vn =




1 +∑n
i=1

1
ui−1 − 1

u1−1 · · · − 1
un−1−1

− 1
u1−1 0 · · · 0

· · · · · · · · · · · ·
− 1

un−1−1 0 · · · 0


.

Then the characteristic polynomial of Vn is given by

|λIn − Vn| = λn−2

(
λ2 −

(
1 +

n−1∑
i=1

1
ui − 1

)
λ −

n−1∑
i=1

1
(ui − 1)2

)
.

So the largest eigenvalue λmax(Vn) of Vn satisfies

λmax(Vn) > 1 +
n−1∑
i=1

1
ui − 1

. (2.2)
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By Lemma 2.1 one gets

U−1
n =




1 +∑n
i=1

1
ui−1 − 1

u1−1 − 1
u2−1 · · · − 1

un−1−1

− 1
u1−1

1
u1−1 0 · · · 0

− 1
u2−1 0 1

u2−1 · · · 0

· · · · · · · · · · · · · · ·
− 1

un−1−1 0 0 · · · 1
un−1−1




.

Replacing all negative terms − 1
ui−1 (1 ≤ i ≤ n) by 1

ui−1 in the matrices Vn and U−1
n , we

get the corresponding nonnegative (element-wise) matrices |Vn| and |U−1
n |, respectively.

Clearly Vn, |Vn| are similar, and U−1
n , |U−1

n | likewise. Thus the spectral radii satisfy

ρ(|Vn|) = ρ(Vn) = λmax(Vn)

and

ρ
(∣∣U−1

n

∣∣) = ρ
(
U−1

n

) = µ(n)
n .

Since 0 ≤ |Vn| ≤ |U−1
n |, one deduces immediately from the Perron-Frobenius

theorem for nonnegative matrices (see, for example, [15]) that ρ(|Vn|) ≤ ρ(U−1
n ). So

we have

λmax(Vn) ≤ µ(n)
n . (2.3)

The result follows from (2.2) and (2.3). �
COROLLARY 2.3. Suppose that {ui}∞i=1 is any given strictly increasing infinite sequence

of real numbers such that u1 > 1 and

∞∑
i=1

1
ui

= ∞. (2.4)

Let λ
(1)
n be the smallest eigenvalue of the n × n matrix Un = En + diag(0, u1 −

1, . . . , un−1 − 1). Then

lim
n→∞ λ(1)

n = 0.

Proof. Let µ
(n)
n be the largest eigenvalue of the inverse matrix U−1

n . By (2.1)

λ(1)
n = 1

µ
(n)
n

.

It then follows from Lemma 2.2 that for n ≥ 2,

λ(1)
n <

1

1 +∑n−1
i=1

1
ui−1

<
1

1 +∑n−1
i=1

1
ui

. (2.5)

Since λ
(1)
n > 0 it follows from (2.4) and (2.5) that limn→∞λ

(1)
n = 0. �

https://doi.org/10.1017/S0017089504001995 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001995


556 SHAOFANG HONG AND RAPHAEL LOEWY

COROLLARY 2.4. Let {ri}∞i=1 be a strictly increasing infinite sequence of real numbers
satisfying r1 ≥ 1 and

∞∑
i=1

1
ri

= ∞.

Let λ
(1)
n denote the smallest eigenvalue of the n × n matrix En + diag(r1 − 1, . . . , rn − 1).

Then

lim
n→∞ λ(1)

n = r1 − 1.

Proof. Let

Rn := En + diag(r1 − 1, . . . , rn − 1).

Then

Rn = (r1 − 1)In + En + diag(0, (r2 − r1 + 1) − 1, . . . , (rn − r1 + 1) − 1).

Since r2 − r1 + 1 > 1 and

∞∑
i=2

1
ri − r1 + 1

= ∞,

the result follows immediately from Corollary 2.3. �

The following is the main result of this section.

THEOREM 2.5. Let 0 < ε ≤ 1 and x a positive integer. Let {xi}∞i=1 be a strictly
increasing infinite sequence of positive integers satisfying the following conditions.

(i) For every i �= j, (xi, xj) = x;
(ii)

∑∞
i=1

1
xi

= ∞.

If λ
(1)
n is the smallest eigenvalue of the n × n power GCD matrix ((xi, xj)ε) defined on the

set {x1, . . . , xn}, then

lim
n→∞ λ(1)

n = xε
1 − xε.

Proof. For i ≥ 1, let xi = x · x̄i. Note that x > 0. Then from (i) and (ii) we can easily
deduce that for any i �= j, (x̄i, x̄j) = 1 and

∞∑
i=1

1
x̄i

= ∞. (2.6)

Obviously we have

((x̄i, x̄j)ε) = En + diag
(
x̄ε

1 − 1, . . . , x̄ε
n − 1

)
.
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For 1 ≤ i ≤ n, let ri = x̄ε
i . Then r1 = x̄ε

1 ≥ 1 and for every 1 ≤ i ≤ n, ri ≤ x̄i. Hence we
have by (2.6)

∞∑
i=1

1
ri

= ∞.

Let λ̄
(1)
n be the smallest eigenvalue of the n × n power GCD matrix ((x̄i, x̄j)ε) defined on

the set {x̄1, . . . , x̄n}. Thus by Corollary 2.4 we have limn→∞λ̄
(1)
n = x̄ε

1 − 1. The result then
follows immediately from the fact that λ

(1)
n = xε · λ̄(1)

n . �

3. Arithmetic progressions and the q-th smallest eigenvalue. In this section, we
turn our attention to arithmetic progressions. First we introduce the following concept.

DEFINITION. Let e and r be positive integers. Let X = {x1, . . . , xe} and Y =
{y1, . . . , yr} be two sets of distinct positive integers. Then we define the tensor product
(set) of X and Y , denoted by X 	 Y , by

X 	 Y := {x1y1, . . . , x1yr, x2y1, . . . , x2yr, . . . , xey1, . . . , xeyr}.

REMARK. It must be pointed out that the elements in the tensor product set are
not necessarily arranged in increasing order. For example, let X = {1, 2, 3} and Y =
{3, 5}. Then X 	 Y = {3, 5, 6, 10, 9, 15}. We note also that the elements in the tensor
product set are not necessarily distinct. For example, let X = {2, 3} and Y = {4, 6}.
Then X 	 Y = {8, 12, 12, 18}.

LEMMA 3.1. Let ε be any real number. Let e and r be positive integers. Let
X = {x1, . . . , xe} be a set of e distinct positive integers such that for any 1 ≤ i �= j ≤ e,
(xi, xj) = 1. Let Y = {y1, . . . , yr} be a set of r distinct positive integers such that for any
1 ≤ i �= j ≤ r, (yi, yj) = 1. Assume that for all 1 ≤ i ≤ e, 1 ≤ j ≤ r, (xi, yj) = 1. Then
the following equality holds:

((X 	 Y )ε) = ((X)ε) ⊗ ((Y )ε).

Proof. First we have

((X)ε) =




xε
1 1 · · · 1

1 xε
2 · · · 1

·· ·· ·· ··
1 1 · · · xε

e


 and ((Y )ε) =




yε
1 1 · · · 1

1 yε
2 · · · 1

·· ·· ·· ··
1 1 · · · yε

r


 .

Since

(xi1 yj1 , xi2 yj2 ) =




xi1 yj1 if i1 = i2 and j1 = j2,

yj1 if i1 �= i2 and j1 = j2,

xi1 if i1 = i2 and j1 �= j2,

1 if i1 �= i2 and j1 �= j2,
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letting Yr = ((Y )ε) we get

((X 	 Y )ε) =




xε
1Yr Yr · · · Yr

Yr xε
2Yr · · · Yr

·· ·· ·· ··
Yr Yr · · · xε

eYr




=




xε
1 1 · · · 1

1 xε
2 · · · 1

·· ·· ·· ··
1 1 · · · xε

e


⊗ Yr

= ((X)ε) ⊗ ((Y )ε)

as desired. �
LEMMA 3.2. Let b ≥ 1 be an integer and 0 < ε ≤ 1. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be

the eigenvalues of the n × n power GCD matrix ((1 + bi, 1 + bj)ε) defined on the set
{1 + bi}n−1

i=0 . Then for any given integer q ≥ 1 we have

lim
n→∞ λ(q)

n = 0.

Proof. By Dirichlet’s theorem (see [1], or [17]) there are infinitely many primes in
the arithmetic progression {1 + bi}∞i=0. Let p1 < · · · < pn < · · · denote the primes in
this arithmetic progression. By Mertens’ theorem (see [22])

∞∑
i=1

1
pi

= ∞,

and since 0 < ε ≤ 1, it follows that

∞∑
i=1

1
pε

i
= ∞. (3.1)

For i ≥ 1, let πi = pq−1+i. Then pq−1 < π1 < π2 < · · ·. Since q is a fixed number, it
follows from (3.1) that

∞∑
i=1

1
πε

i
= ∞. (3.2)

Now let r ≥ 2 be an arbitrary integer and let

Pq := {1, p1, . . . , pq−1}, Tr := {1, π1, . . . , πr−1}.
Consider the tensor product set Pq 	 Tr. Note that the entries in the set Pq 	 Tr are
not arranged in increasing order, but the eigenvalues of the corresponding power GCD
matrix do not depend on rearranging those entries. By Lemma 3.1

((Pq 	 Tr)ε) = ((Pq)ε) ⊗ ((Tr)ε).
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Let µ
(1)
q ≤ · · · ≤ µ

(q)
q and λ̃

(1)
r ≤ · · · ≤ λ̃

(r)
r be the eigenvalues of the power GCD

matrix ((Pq)ε) defined on the set Pq and the power GCD matrix ((Tr)ε) defined on the
set Tr respectively. Then it is known (see [16]) that the eigenvalues of the tensor product
matrix ((Pq)ε) ⊗ ((Tr)ε) are given by the set

{
µ(i)

q · λ̃
(j)
r

}1≤i≤q
1≤j≤r .

Notice that

µ(1)
q · λ̃

(1)
r ≤ · · · ≤ µ(q)

q · λ̃
(1)
r . (3.3)

Since for any i1, i2 ∈ Z,

(1 + bi1)(1 + bi2) = 1 + bi1 + bi2 + b2i1i2 ≡ 1 (mod b),

the arithmetic progression {1 + bi}∞i=0 is closed under the usual multiplication. So the
tensor product set Pq 	 Tr ⊂ {1 + bi}∞i=0. For any integer r ≥ 2, define an integer nr by

nr := pq−1 · πr−1 − 1
b

+ 1.

Then Pq 	 Tr ⊆ {1 + bi}nr−1
i=0 . Thus the power GCD matrix ((Pq 	 Tr)ε) defined on

Pq 	 Tr is a principal submatrix of the nr × nr power GCD matrix ((1 + bi, 1 + bj)ε)
defined on the set {1, 1 + b, . . . , 1 + b(nr − 1)}. Let λ̄

(1)
qr ≤ · · · ≤ λ̄

(qr)
qr be the eigenvalues

of ((Pq 	 Tr)ε). Then by Cauchy’s interlacing inequalities we have

λ(q)
nr

≤ λ̄
(q)
qr . (3.4)

But by (3.3)

λ̄
(q)
qr ≤ µ(q)

q · λ̃
(1)
r . (3.5)

So it follows from (3.4) and (3.5) that

λ(q)
nr

≤ µ(q)
q · λ̃

(1)
r . (3.6)

On the other hand, in Theorem 2.5, if we choose x = x1 = 1 and xi = πi−1 for
i ≥ 2, then by (3.2) the two conditions of Theorem 2.5 are satisfied. It then follows
immediately from Theorem 2.5 that

lim
r→∞ λ̃

(1)
r = 0. (3.7)

It follows from Proposition 1.1 that the subsequence {λ(q)
nr }∞r=1 of the sequence {λ(q)

n }∞n=1
converges and

lim
r→∞ λ(q)

nr
≥ 0. (3.8)

Hence by (3.6)–(3.8), limr→∞λ
(q)
nr = 0. Finally, again by Proposition 1.1, the desired

result limn→∞λ
(q)
n = 0 follows immediately. �

We are now in a position to give the main result of this section.
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THEOREM 3.3. Let a, b ≥ 1 and e ≥ 0 be integers and 0 < ε ≤ 1. Let λ
(1)
n ≤ · · · ≤ λ

(n)
n

be the eigenvalues of the n × n power GCD matrix ((a + bi, a + bj)ε) defined on the set
{a + be, a + b(e + 1), . . . , a + b(e + n − 1)}. Then for any given integer q ≥ 1

lim
n→∞ λ(q)

n = 0.

Proof. For the arithmetic progression {a + bi}∞i=e, consider its subsequence

{a + b(e + (a + be)i)}∞i=0 = {(a + be)(1 + bi)}∞i=0.

For any integer m ≥ 1, let µ
(1)
m ≤ · · · ≤ µ

(m)
m be the eigenvalues of the m × m power

GCD matrix ((Wm)ε) defined on the set

Wm := {a + be, (a + be)(1 + b), . . . , (a + be)(1 + b(m − 1))}

and let µ̃(1)
m ≤ · · · ≤ µ̃(m)

m be the eigenvalues of the m × m power GCD matrix ((W̃ m)ε)
defined on the set

W̃ m := {1, 1 + b, . . . , 1 + b(m − 1)}.

Thus for 1 ≤ i ≤ m, µ
(i)
m = (a + be)ε · µ̃(i)

m . In particular,

µ(q)
m = (a + be)εµ̃(q)

m . (3.9)

Now let

mn := 1 +
⌊

n − 1
a + be

⌋
,

where �x� denotes the largest integer ≤ x. Choose n so that mn ≥ q.
By Cauchy’s interlacing inequalities

λ(q)
n ≤ µ(q)

mn
, (3.10)

and by (3.9) and (3.10),

λ(q)
n ≤ (a + be)εµ̃(q)

mn
. (3.11)

By Lemma 3.2

lim
m→∞ µ̃(q)

m = 0,

so

lim
n→∞ µ̃(q)

mn
= 0.

By Proposition 1.1 and (3.11) we get

lim
n→∞ λ(q)

n = 0. �
Furthermore, applying again Cauchy’s interlacing inequalities, it follows from

Proposition 1.1 and Theorem 3.3 that the following result holds.
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THEOREM 3.4. Let a, b ≥ 1 and e ≥ 0 be integers and 0 < ε ≤ 1. Let {xi}∞i=1 be any
given strictly increasing infinite sequence of positive integers which contains the arithmetic
progression {a + bi}∞i=e as its subsequence. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the eigenvalues of the

n × n power GCD matrix ((xi, xj)ε) defined on the set Sn = {x1, . . . , xn}. Then for any
given integer q ≥ 1

lim
n→∞ λ(q)

n = 0.

Finally we give the following immediate consequence as the conclusion of this
section.

COROLLARY 3.5. Let 0 < ε ≤ 1. Let λ
(1)
n ≤ · · · ≤ λ

(n)
n be the eigenvalues of the n × n

power GCD matrix ((i, j)ε) defined on the set Sn = {1, . . . , n}. Then for any given integer
q ≥ 1

lim
n→∞ λ(q)

n = 0.

4. Lower bound for the smallest eigenvalue and limit behavior of the q-th largest
eigenvalue. In this section, we assume always that 1 ≤ x1 < · · · < xn < · · · is an
arbitrary given infinite sequence of positive integers. Let ε > 0 be any given real
number. Let Sn = {x1, . . . , xn}. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the eigenvalues of the n × n

power GCD matrix ((Sn)ε) defined on the set Sn. By Bourque and Ligh’s result [4] the
matrix ((Sn)ε) is positive definite and so λ

(i)
n > 0 for all 1 ≤ i ≤ n. We will improve this

result by giving a lower bound for the smallest eigenvalue λ
(1)
n . We need the following

structure theorem.

LEMMA 4.1. Let ε > 0. Let S̄ = {d1, . . . , dm} be a factor closed set (i.e. S̄ contains
every positive divisor of d for all d ∈ S̄) containing Sn and let A = (aij)n×m be the n × m
matrix defined by:

aij =
{√

Jε(dj), if dj|xi

0, otherwise,

where Jε := ξε ∗ µ is the generalized Jordan’s totient function and ξε is defined by ξε(x) =
xε for any x ∈ Z. Then

((Sn)ε) = A · At.

Proof. It follows immediately from [10, Lemma 2]. �
REMARK. If ε is a positive integer, then Jε becomes the Jordan’s totient function

(see, for example, [1], [20] or [23]). In particular, J1 is just Euler’s totient function ϕ.

Now let Kn be the set of all n × n lower triangular matrices that satisfy: Every main
diagonal entry is 1, and every off-diagonal entry is 0 or 1. Obviously Kn is a finite set of
nonsingular matrices and so the set Ln := {Y · Y t : Y ∈ Kn} is also a finite set of n × n
positive definite matrices. Then we can define a positive constant cn depending only on
n as follows.

cn := minZ∈Ln

{
µ(1)

n (Z) : µ(1)
n (Z) is the smallest eigenvalue of Z

}
. (4.1)
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We can now give a lower bound for the smallest eigenvalue in terms of the constant
cn defined in (4.1) and the generalized Jordan’s totient function.

THEOREM 4.2. Let ε > 0 and {xi}∞i=1 be an arbitrary given strictly increasing infinite
sequence of positive integers. Let λ

(1)
n be the smallest eigenvalue of the n × n power GCD

matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}. Then

λ(1)
n ≥ cn · min

1≤i≤n
{Jε(xi)}.

Proof. Let A be the n × m matrix defined in Lemma 4.1. Let Sn = {x1, . . . , xn}.
Then Lemma 4.1 gives

((Sn)ε) = A · At. (4.2)

Note that given any m × m permutation matrix P we have

((Sn)ε) = A · At = A · PPt · At = (AP) · (AP)t.

Thus we can permute the columns of A. So we can assume without loss of any generality
that

dl = xl, l = 1, . . . , n.

We now partition A as follows:

A = (

n︷︸︸︷
B |

m−n︷︸︸︷
C ).

Therefore

A · At = (B | C) ·
(

Bt

Ct

)
= B · Bt + C · Ct.

(4.3)

We introduce the following notation:

NOTATION. For real symmetric matrices G1, G2 of the same order, we write G1 �
G2 ⇐⇒ G1 − G2 is positive semi-definite.

Therefore it follows from (4.2) and (4.3) that

((Sn)ε) � B · Bt.

Let δ
(1)
n ≤ · · · ≤ δ

(n)
n be the eigenvalues of B · Bt. Then it is known (see [15]) that

λ
(i)
n ≥ δ

(i)
n for 1 ≤ i ≤ n.

Consider now the n × n matrix B = (bij). We have

bij =
{√

Jε(xj), if xj|xi

0, otherwise.
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In particular, B is lower triangular, and the main diagonal entries are
√

Jε(xi), i =
1, . . . , n. We can factor now

B = B̃ · D,

where D = diag(
√

Jε(x1), . . . ,
√

Jε(xn)) and B̃ = (b̃ij) is defined by

b̃ij =
{

1, if xj|xi

0, otherwise.

Therefore B̃ ∈ Kn. So we have

B · Bt = B̃D · DB̃t = B̃ · D2 · B̃t

and

G := (B · Bt)−1 = (B̃t)−1 · D−2 · B̃−1.

We now use the spectral norm which is denoted by ‖·‖, and is well known to be
the largest singular value of the matrix (see [15]). Let ρ(·) denote the spectral radius.
Since G is positive definite, we have

ρ(G) = ‖G‖ = ‖(B̃t)−1 · D−2 · B̃−1‖ ≤α · ‖(B̃t)−1‖ · ‖B̃−1‖,
where

α := ‖D−2‖= max
1≤i≤n

{
1

Jε(xi)

}
= 1

min1≤i≤n{Jε(xi)} .

It is also known that for any matrix T ,

‖T · Tt‖ = ‖T‖ · ‖Tt‖ = ‖T‖2.

So we have

ρ(G) = ‖G‖ ≤ α · ‖((B̃t)−1B̃−1)‖ = α · ‖(B̃ · B̃t)−1‖. (4.4)

Since B̃ · B̃t is positive definite, we have

‖(B̃ · B̃t)−1‖ = ρ((B̃ · B̃t)−1) = 1

µ
(1)
n (B̃ · B̃t)

,

where µ
(1)
n (B̃ · B̃t) denotes the smallest eigenvalue of B̃ · B̃t. Therefore it follows from

(4.4) that

ρ(G) ≤ α

µ
(1)
n (B̃ · B̃t)

≤ α

cn
= 1

cn · min1≤i≤n{Jε(xi)} .

Since ρ(G) = 1
δ

(1)
n

and λ
(1)
n ≥ δ

(1)
n , we conclude that

λ(1)
n ≥ 1

ρ(G)
≥ cn · min1≤i≤n{Jε(xi)}

as required. �
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COROLLARY 4.3. Let {xi}∞i=1 be an arbitrary given strictly increasing infinite sequence
of positive integers. Let λ

(1)
n be the smallest eigenvalue of the n × n GCD matrix (Sn)

defined on the set Sn = {x1, . . . , xn}. Then

λ(1)
n ≥ cn · min

1≤i≤n
{ϕ(xi)}.

Proof. Since J1(x) = ϕ(x) for any positive integer x, the result follows immediately
from Theorem 4.2. �

REMARK. Note that Bourque and Ligh’s theorem [4] just states that λ
(1)
n > 0, so

Theorem 4.2 gives a better lower bound for λ
(1)
n . Note also that Bourque and Ligh’s

theorem generalizes a result due to Beslin and Ligh [3] which deals with the special
case ε = 1.

COROLLARY 4.4. Let {xi}∞i=1 be an arbitrary given strictly increasing infinite sequence
of positive integers so that x1 = 1. Let λ

(1)
n be the smallest eigenvalue of the n × n power

GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}. Then for ε > 0 we have

λ(1)
n ≥ cn.

Proof. Since Jε(1) = 1 and Jε(x) ≥ 1 for any integer x ≥ 2, the result follows
immediately from Theorem 4.2. �

LEMMA 4.5. Let x > 1 be a positive integer.
(i) If ε > 1, then

Jε(x) ≥ xε

ζ (ε)
.

(ii) For ε = 1, we have

J1(x) ≥ x · e−γ

logx

(
1 − C

logx

)
,

where C > 0 is a constant and γ is Euler’s constant.
(iii) For 0 < ε < 1, we have

Jε(x) = xε(1−δ) · g(x),

where 0 < δ < 1 is a constant and g(x) is a function depending only on ε and δ satisfying
that g(x) → ∞ as x → ∞.

(iv) If ε > 0, then limx→∞Jε(x) = ∞.

Proof. First for any real number ε, Jε is multiplicative. For a prime p and a positive
integer l,

Jε( pl) = (ξε ∗ µ)( pl) = plε
(

1 − 1
pε

)
.

So we have

Jε(x) = xε
∏
p|x

(
1 − 1

pε

)
. (4.5)
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It follows immediately that for ε > 0

Jε(x) ≥ xε
∏
p∈I

(
1 − 1

pε

)
, (4.6)

where I denotes the set of all positive prime numbers.
If ε > 1, then Euler’s formula (see, for example, [1] or [17]) says that

ζ (ε) =
∏
p∈I

(
1 − 1

pε

)−1

,

where ζ means the usual Riemann’s zeta function. So we have

∏
p∈I

(
1 − 1

pε

)
= 1

ζ (ε)
. (4.7)

Therefore (i) follows from (4.6) and (4.7).
If ε = 1, by (4.5) we have

J1(x) ≥ x
∏
p≤x

(
1 − 1

p

)
. (4.8)

But a theorem of Mertens (see [1], or [23], or [24]) gives

∏
p≤x

(
1 − 1

p

)
= e−γ

logx

(
1 + O

(
1

logx

))
,

where γ is Euler’s constant. So there exists a constant C > 0 such that

∏
p≤x

(
1 − 1

p

)
≥ e−γ

logx

(
1 − C

logx

)
. (4.9)

Now (ii) follows immediately from (4.8) and (4.9).
Let now 0 < ε < 1. Write

f (x) = xε(1−δ)

Jε(x)
.

Then f (x) is multiplicative. We claim that f (x) → 0 when x → ∞. By Theorem 316 of
[7], it is sufficient to prove that f (pm) → 0 when pm → ∞. But

1
f (pm)

= pmεδ

(
1 − 1

pε

)
→ ∞

as pm → ∞. Therefore the claim is proved. Now let g = 1
f . Then g(x) → ∞ when

x → ∞ and Jε(x) = xε(1−δ) · g(x) as desired. Thus (iii) is proved.
The statement of (iv) follows immediately from (i)–(iii). �
COROLLARY 4.6. Let {xi}∞i=1 be an arbitrary given strictly increasing infinite sequence

of positive integers so that x1 > 1. Let λ
(1)
n be the smallest eigenvalue of the n × n power
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GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}. Then for ε > 1 we have

λ(1)
n ≥ cn · xε

1

ζ (ε)
.

For ε = 1, we have

λ(1)
n ≥ cn · min

1≤i≤n

{
xi · e−γ

logxi

(
1 − C

logxi

)}
, (4.10)

where C > 0 is a constant and γ is Euler’s constant;
For 0 < ε < 1, we have

λ(1)
n ≥ cn · min

1≤i≤n

{
xε(1−δ)

n−i · g(xn−i)
}
,

where 0 < δ < 1 is a constant and g(x) is the function defined in Lemma 4.5.

Proof. It follows from Theorem 4.2 and Lemma 4.5. �
REMARK. If x is sufficiently large, then x

logx (1 − C
logx ) is strictly increasing we deduce

that if x1 is sufficiently large, then (4.10) becomes

λ(1)
n ≥ cn · x1 · e−γ

logx1

(
1 − C

logx1

)
.

THEOREM 4.7. Let q ≥ 1 be an arbitrary given integer and {xi}∞i=1 an arbitrary given
strictly increasing infinite sequence of positive integers. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the eigen-

values of the n × n power GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}. Then, if
n > q, the following four statements hold.

(i) For ε > 1,

λ(n−q+1)
n ≥ cq · xε

n−q+1

ζ (ε)
.

(ii) For ε = 1,

λ(n−q+1)
n ≥ cq · min

0≤i≤q−1

{
xn−i · e−γ

logxn−i

(
1 − C

logxn−i

)}
, (4.11)

where C > 0 is a constant and γ is Euler’s constant.
(iii) For 0 < ε < 1,

λ(n−q+1)
n ≥ cq · min

0≤i≤q−1

{
xε(1−δ)

i · g(xi)
}
,

where 0 < δ < 1 is a constant and g(x) is the function defined in Lemma 4.5.
(iv) For ε > 0, limn→∞λ

(n−q+1)
n = ∞.

Proof. Let Rq = ((xn−i, xn−j)ε) be the q × q power GCD matrix defined on the set
{xn−q+1, . . . , xn}. Let µ

(1)
q ≤ · · · ≤ µ

(q)
q be the eigenvalues of Rq. Then Theorem 4.2

applied to Rq gives

µ(1)
q ≥ cq · min

0≤i≤q−1
{Jε(xn−i)},
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where cq is a constant depending only on q and is defined by (4.1). By Cauchy’s
interlacing inequalities we have

λ(n−q+1)
n ≥ µ(1)

q .

So we have

λ(n−q+1)
n ≥ cq · min

0≤i≤q−1
{Jε(xn−i)}. (4.12)

By Lemma 4.5 applied to Jε(xn−i) for 0 ≤ i ≤ q − 1, the statements of (i)–(iii) follow
immediately from (4.12).

The statement of (iv) follows immediately from the lower bounds of (i)–(iii). �
REMARKS.
1. If ε = 1 and n is sufficiently large, then (4.11) becomes

λ(n−q+1)
n ≥ cq · xn−q+1 · e−γ

logxn−q+1

(
1 − C

logxn−q+1

)
.

2. Mertens’ theorem gives an asymptotic formula for the following product

∏
p≤x

(
1 − 1

pε

)
(4.13)

if ε = 1. We believe that there exists a similar but more complicated asymptotic formula
for the product (4.13) for the case 0 < ε < 1. Such asymptotic formula should give a
more explicit lower bound for Jε(x) and hence for λ

(1)
n and for λ

(n−q+1)
n if 0 < ε < 1.

5. Concluding remarks and questions. Let {xi}∞i=1 be an arbitrary strictly
increasing infinite sequence of positive integers. For an integer n ≥ 1, let Sn =
{x1, . . . , xn}. Let 0 < ε ≤ 1 and q ≥ 1 a given integer. Let λ

(1)
n ≤ · · · ≤ λ

(n)
n be the

eigenvalues of the power GCD matrix ((xi, xj)ε) defined on the set Sn. It follows
from Theorem 2.5 that if for every i �= j, (xi, xj) = x1 and

∑∞
i=1

1
xi

= ∞, then
limn→∞λ

(1)
n = 0. Then by Cauchy’s interlacing inequalities and Proposition 1.1 we

have that for any given strictly increasing infinite sequence {xi}∞i=1 of positive integers
which contains a subsequence {x′

i}∞i=1 satisfying that for every i �= j, (x′
i, x′

j) = x′
1

and
∑∞

i=1
1
x′

i
= ∞, limn→∞λ

(1)
n = 0. On the other hand, by Theorem 3.4 we know that

for any given strictly increasing infinite sequence {xi}∞i=1 of positive integers contain-
ing the arithmetic progression {a + bi}∞i=e as its subsequence, limn→∞λ

(q)
n = 0. First we

would like to understand for what sequences {xi}∞i=1, limn→∞λ
(1)
n = 0. Namely, we have

the following question:

QUESTION 5.1. Characterize all strictly increasing infinite sequences {xi}∞i=1 of
positive integers so that limn→∞λ

(1)
n = 0, where λ

(1)
n is the smallest eigenvalue of the

power GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn} and ε is a positive real
number.

Consequently we propose a further problem.

QUESTION 5.2. Given any integer q ≥ 1, characterize all strictly increasing infinite
sequences {xi}∞i=1 of positive integers so that limn→∞λ

(q)
n = 0, where λ

(q)
n is the q-th
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smallest eigenvalue of the power GCD matrix ((xi, xj)ε) defined on the set {x1, . . . , xn}
and ε is a positive real number.

Finally, we suggest a conjecture as the conclusion of this paper.

Conjecture 5.3. Let ε > 1 and {xi}∞i=1 be an arbitrary given strictly increasing infinite
sequence of positive integers. Let λ

(1)
n be the smallest eigenvalue of the n × n power GCD

matrix ((xi, xj)ε) defined on the set Sn = {x1, . . . , xn}. Then limn→∞λ
(1)
n > 0.
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