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Abstract

A hermitian algebra is a unital associative C-algebra endowed with an involution such that the spectra of
self-adjoint elements are contained in R. In the case of an algebra A endowed with a Mackey-complete,
locally convex topology such that the set of invertible elements is open and the inversion mapping is
continuous, we construct the smooth structures on the appropriate versions of flag manifolds. Then
we prove that if such a locally convex algebra A is endowed with a continuous involution, then it is a
hermitian algebra if and only if the natural action of all unitary groups Un(A) on each flag manifold is
transitive.
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1. Introduction

There exists a deep relationship between the locally convex topological algebras with
continuous inversion and Lie theory. This fundamental knowledge originated in the
paper [Gl02] and has been crucial for many of the subsequent advances in the theory
of infinite-dimensional Lie groups modeled on locally convex spaces; see for instance
the survey [Ne06] and the forthcoming monograph [GlN09].

On the other hand, a large part of the earlier research in this area focused on Banach
manifolds and their symmetry groups. This was naturally related to the spectral
theory of Hilbert space operators and has led to many deep results. A good source
of information about this connection is the monograph [Up85].

It is one of the aims of the present paper to relate the themes mentioned above,
by pointing out that the spectral properties in involutive topological algebras are
intimately connected with differential geometric properties of certain Lie groups and
homogeneous spaces associated with the algebras under consideration. Specifically,
we prove that a Mackey-complete algebra A with continuous inversion is hermitian
(that is, the spectrum of every self-adjoint element is contained in R) if and only if the
unitary group of the matrix algebra M2(A) acts transitively on the corresponding flag
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manifolds (Corollary 4.7 below). This result seems to be new even in the special case
when A is a Banach algebra. However, the Banach setting is not wide enough to cover
some of the most important situations, particularly those coming from the theory of
loop groups and gauge theory; see Example 2.7 for further details.

The aforementioned flag manifolds are well-known generalizations of the projective
spaces and were traditionally studied in complex and algebraic geometry. There exist a
number of infinite-dimensional versions of these compact complex manifolds, which
are homogeneous Banach manifolds and play an interesting role in operator theory
(see, for instance, [Up85] or [Bl06]) or in the theory of loop groups and certain areas
of mathematical physics [PS90]. We recall that the construction of smooth structures
on homogeneous spaces of infinite-dimensional Lie groups is often a difficult issue
since it usually relies on the inverse mapping theorem, which fails beyond the setting
of Banach spaces; even in this setting, one additionally needs to find complements for
subspaces in Banach spaces, which is often a rather difficult task. From this point of
view, a by-product of the present research turns out to be particularly important: we
show that by just using an appropriate Gauß decomposition for matrices with entries in
a topological algebra, it is possible to construct adequate smooth structures on the flag
manifolds associated with the continuous inverse algebras (Theorem 4.3). The core
of our method is a very general lemma that is interesting on its own, which we have
recorded in Appendix A.

The methods used in this paper are similar to those used in [BrN05] in a very general
context to obtain manifold structures on homogeneous spaces associated to 3-graded
Lie algebras, which leads in particular to natural manifold structures on the generalized
Graßmannians, obtained as orbits of projections. We plan to use the results of the
present paper, such as Corollary 3.7, to study representations in spaces of sections of a
holomorphic vector over these manifolds (see [MNS09] for some results in the Banach
context).

2. Definitions and examples

NOTATION 2.1. For an arbitrary unital complex associative algebra A we use the
following notation:
• A× = {a ∈A | (∃a−1

∈A) aa−1
= a−1a = 1};

• the spectrum of any a ∈A is σA(a)= σ(a)= {λ ∈ C | λ1− a 6∈A×}.
In addition, if A is endowed with an involution a 7→ a∗, the we use the notation:
• the unitary group U(A)= {u ∈A× | u∗u = 1};
• the set of nonnegative elements A+ = {a ∈A | a = a∗ and σA(a)⊆ [0,∞)};
• the set of positive elements A×+ =A× ∩A+.
Moreover, for any complex vector space X we denote by L(X ) the set of all linear
maps from X into itself.

DEFINITION 2.2. Let A be an associative unital complex algebra endowed with an
involution a 7→ a∗. We say that A is a hermitian algebra if σA(a)⊆ R whenever
a = a∗ ∈A.
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For use later we record the following sufficient condition for an involutive algebra
to be hermitian.

REMARK 2.3. If A is an associative unital complex algebra endowed with an
involution and for every a = a∗ ∈A we have −1 6∈ σA(a2), then A is a hermitian
algebra.

In order to prove this assertion, let us first note that for every a ∈A we have
σA(a2)⊇ {λ2

| λ ∈ σA(a)}. In fact, if λ ∈ C and λ2
∈ C\σA(a2), then there exists

b ∈A with b(λ21− a2)= (λ21− a2)b = 1. Then λ1− a has both a left inverse and
a right inverse, hence it belongs to A×, and then λ ∈ C\σA(a).

Now let a = a∗ ∈A and assume that σA(a) 6⊆ R, so there exists λ ∈ σA(a)\R.
Then λ= x + iy with x, y ∈ R and y 6= 0, whence i ∈ σ((1/y)(a − x1)). Thence
−1= i2 ∈ σ(((1/y)(a − x1))2) by the above remark, and this contradicts the
assumption on A since (1/y)(a − x1) is a self-adjoint element in A.

DEFINITION 2.4. A continuous inverse algebra (CIA) is a Hausdorff locally convex
unital algebra A whose unit group A× is open and for which the inversion map
A×→A, a 7→ a−1 is continuous.

If, in addition, A is complete, then the same arguments as for Banach algebras lead
to a holomorphic functional calculus [Gl02, Wa67]. Since completeness is in general
not inherited by quotients [Ko69, Section 31.6], it is natural to consider for CIAs the
weaker condition that they are FC-complete in the sense that they are closed under
holomorphic functional calculus (see [BlN08]). This means that for a ∈ A, any open
neighborhood U of σ(a), each holomorphic function f ∈O(U ) and any contour 0
around σ(a) in U , the integral

f (a) :=
1

2π i

∮
0

f (ζ )(a − ζ1)−1 dζ,

which defines an element of the completion of A, actually exists in A.

REMARK 2.5. A discussion of hermitian algebras with continuous inversion
including various equivalent characterizations in the case of Mackey complete algebras
can be found in [Bi09, Section 7].

It is well known that the C∗-algebras are hermitian algebras. Here are two important
examples that go beyond the traditional setting of operator algebras.

EXAMPLE 2.6 (Group algebras). Let G be any finite-dimensional connected nilpotent
Lie group. Then the unitization of the group algebra L1(G) is always a hermitian
Banach algebra; see [Po77]. See [FGL06, Le76, Ku79] for a discussion of more
general versions of group algebras that give rise to hermitian Banach algebras.

EXAMPLE 2.7 (Loop algebras). Let T denote the one-dimensional torus and A :=
C∞(T, Mn(C)) for some n ≥ 1. Then A endowed with the pointwise defined
operations has a natural structure of a hermitian (non-Banach) algebra with continuous
inversion, which plays a central role in the theory of loop groups, in as much as A×
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is precisely the loop group associated with the general linear group GLn(C) (see, for
instance, [PS90]).

More generally, one can prove that if A is a hermitian algebra with continuous
inversion and M is a compact topological space, then the algebra C(M, A) of
continuous A-valued functions on M with the pointwise defined operations is in
turn a hermitian algebra with continuous inversion. A similar assertion holds for the
algebra C∞(M, A) of smooth A-valued functions on M provided that M is a compact
manifold; see [Gl02] and [Ne06, Examples VIII.3].

DEFINITION 2.8. For any unital involutive complex algebra A we denote P(A)=
{p ∈A | p = p∗ = p2

}. For p, q ∈A the notation p ≤ q means that qp = p. If, in
addition, p 6= q , then we write p < q .

Now assume that δ: 0= p0 < p1 < · · ·< pn = 1 is a finite, totally ordered family
of elements in PA. We define the mapping of diagonal truncation

8δ : A→A, x 7→
n∑

k=1

(pk − pk−1)x(pk − pk−1)

and the unital associative subalgebra of A,

1(δ) := {x ∈A | xpk = pk xpk for k = 0, 1, . . . , n}

= {x ∈A | xpk A⊆ pk A for k = 0, 1, . . . , n},

which is the stabilizer of the flag (p0A, . . . , pn A) of right ideals. Note that the
restriction of 8δ to the algebra 1(δ) is multiplicative. Also, 8δ is an idempotent
mapping and its range is a unital ∗-subalgebra of A which can be described as

D(δ) := Ran(8δ)= {x ∈A | xpk = pk x for k = 0, 1, . . . , n}.

We also denote N (δ) :=1(δ) ∩ (8δ)−1(1), which is a group of invertible elements
in 1(δ).

EXAMPLE 2.9. Let B be a unital involutive complex algebra and n ≥ 1 arbitrary.
Then the matrix algebra A := Mn(B) := Mn(C)⊗ B has a natural structure of unital
involutive complex algebra and if we define p1, p2, . . . , pn ∈A by

p1 =


1 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
...
...
...
. . .
...

0 0 0 ... 0

 , p2 =


1 0 0 ... 0
0 1 0 ... 0
0 0 0 ... 0
...
...
...
. . .
...

0 0 0 ... 0

 , . . . , pn =


1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
...
...
...
. . .
...

0 0 0 ... 1

 ,
then we obtain a totally ordered family δ: 0= p0 < p1 < · · ·< pn = 1. The
corresponding mapping 8δ : A→A is defined by replacing the off-diagonal entries
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by zeros, 
b11 b12 b13 . . . b1n
b21 b22 b23 . . . b2n
b31 b32 b33 . . . b3n
...

...
...

. . .
...

bn1 bn2 0 . . . bnn

 7−→


b11 0 0 . . . 0
0 b22 0 . . . 0
0 0 b33 . . . 0
...

...
...

. . .
...

0 0 0 . . . bnn


while 1(δ) is the algebra of upper triangular matrices in A= Mn(B).

3. Factorizations

In this section we provide an extension of [Pi88, Proposition 3.1] from the setting
of von Neumann algebras to that of hermitian algebras with continuous inversion; see
Proposition 3.6 below. This will be a key tool in our geometric characterization of
hermitian algebras in terms of flag manifolds (Theorem 4.5 and Corollary 4.7).

LEMMA 3.1. Let A be a unital associative algebra and p ∈ P(A). Consider the
unital algebra A p := pA p with the unit p, and define ι0 : A p ↪→A (the inclusion
map) and ι1 : A p→A, x 7→ x + (1− p), which is an inclusion of multiplicative
monoids. If p 6= 1, then for every x ∈A p we have σA(ι0(x))= σA p (x) ∪ {0} and
σA(ι1(x))= σA p (x) ∪ {1}.

PROOF. The first of these equalities is equivalent to C×\σA p (x)= C\σA(ι0(x)).
To prove the inclusion ⊆, let λ ∈ C×\σA p (x) be arbitrary. Then there
exists b ∈A p such that (λp − x)b = b(λp − x)= p. Since bp = pb, it then
follows that (λ1− x)(b + λ−1(1− p))= ((λp − x)+ λ(1− p))(b + λ−1(1− p))=
p + (1− p)= 1, and similarly (b + λ−1(1− p))(λ1− x)= 1. Thus, λ1− x has the
inverse b + λ−1(1− p) ∈A. Since ι0(x)= x , in particular we get λ ∈ C\σA(ι0(x)).
Conversely, assume the latter condition. Then there exists c ∈A such that (λ1− x)
c = c(λ1− x)= 1. As px = xp, it follows at once that pc = cp ∈A p, and then
(λp − x)pc = p(λ1− x)c = p and pc(λp − x)= c(λ1− x)p = p. Thus, λp − x has
the inverse pc ∈A p, and in particular λ ∈ C\σA p (x). If λ= 0, then xc = cx =−1
hence x is invertible in A; on the other hand, since x ∈A p, we have x(1− p)= 0, and
then the fact that x is invertible implies 1− p = 0, which contradicts our hypothesis.
Thus, λ 6= 0, and then λ ∈ C×\σA p (x) as required.

The proof of the second of the asserted equalities relies on a similar method. We
actually check that (C\{1})\σA p (x)= C\σA p (ι1(x)). If λ is an arbitrary element
in the left-hand side of this equation and b ∈A p is the inverse of λp − x , then
b + (λ− 1)−1(1− p) turns out to be the inverse of λ1− ι1(x). Conversely, if
λ ∈ C\σA p (ι1(x)) and d is the inverse of λ1− ι1(x) in A, then pd = dp ∈A p and
this element is the inverse of λp − x in A p. 2

The first part of the following statement was also noted in [DG01, Remark 7.1];
see [Ne08, Lemma 1.2].
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PROPOSITION 3.2. Let A be a unital algebra with continuous inversion and p ∈
P(A). Then the unital algebra A p := pA p with the unit p and endowed with the
relative topology is in turn an algebra with continuous inversion. In addition, if A
is a hermitian algebra with continuous inversion and p = p∗, then A p is in turn a
hermitian algebra with respect to the involution induced from A and

(A p)
×
= ι−1

1 (A×),

where ι1 : A p→A, x 7→ x + 1− p.

PROOF. It is clear that the continuous map ι1 : A p→A, is multiplicative, satisfies
(A p)

×
= ι−1(A×), and intertwines the inversion mappings on (A p)

× and A×. This
shows that (A p)

× is an open subset of A p and the inversion mapping is continuous on
(A p)

×.
Now assume that A p is a hermitian algebra and let x = x∗ ∈A p be arbitrary. It then

follows by Lemma 3.1 that σA p (x)⊆ σA(x)⊆ R, which concludes the proof. 2

In the special case when A is a Banach algebra, the conclusion of the following
proposition is well known; see, for instance, [Le76, Assertion (4)]. In order to obtain
this result in the general situation, we rely on a purely algebraic result established
in [Wi76].

PROPOSITION 3.3. Let A be a CIA endowed with a continuous involution a 7→ a∗. If
A is Mackey complete, then for every n ≥ 1 the following assertions are equivalent:

(1) the algebra A is hermitian;
(2) the matrix algebra Mn(A) is hermitian.

PROOF. First recall that the matrix algebra Mn(A) is in turn a CIA (see [Sw77,
Corollary 1.2]). The implication (2) implies (1) follows by applying Proposition 3.2
for the self-adjoint idempotent element p = p1 of Example 2.9.

Conversely, assume that A is a hermitian algebra. Then, according to the Shirali–
Ford theorem for algebras with continuous inversion, A has the property that every
element of the form a∗1a1 + · · · + a∗k ak has the spectrum contained in [0,∞), for
arbitrary k ≥ 1 and a1, . . . , ak ∈A (see [Bi09, Proposition 6.8 and Corollary 7.7]).
Then the theorem proved in [Wi76] shows that the matrix algebra Mn(A) has a similar
property. In particular, for every matrix a ∈ Mn(A), the spectrum of a∗a ∈ Mn(A)
is contained in [0,∞). Then it follows by the above Remark 2.3 that Mn(A) is a
hermitian algebra. 2

PROPOSITION 3.4. Let A be a Mackey-complete, hermitian CIA, p = p∗ ∈ P(A),
and A p = pA p. Then for every a ∈A× we have pa∗ap ∈ (A p)

×.

PROOF. It follows by Proposition 3.2 that A p is a hermitian CIA. On the other hand,
A p is clearly Mackey-complete because A is. Now for B =A or B =A p define the
function

τB : B→ [0,∞), τB(a)= (rB(a
∗a))1/2.
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As a consequence of Lemma 3.1, the functions τA p and τA agree, in the sense that
τA p = τA|A p . It then follows by the condition ‘(i) if and only if (iii)’ in [Bi09,
Theorem 7.3] that the enveloping C∗-algebra C∗(A p) is a C∗-subalgebra of C∗(A)
and the diagram

A
ηA // C∗(A)

A p
ηA p //

OO

C∗(A p)

OO

(3.1)

is commutative, where the vertical arrows are inclusion maps and ηB : B→ C∗(B)
stands for the canonical ∗-morphism for B =A or B =A p (see [Bi09, Definition 3.7]).

Note that C∗(A p) may not contain the unit element 1= ηA(1) ∈ C∗(A), however
it is a unital C∗-algebra in its own right, with the unit element ηA(p) (= ηA p (p)). We
are going to check that actually

C∗(A p)= C∗(A)ηA(p) := ηA(p) · C
∗(A) · ηA(p). (3.2)

In fact, since p = p∗ = p2 it follows that ηA(p)= ηA(p)∗ = ηA(p)2, whence

C∗(A)ηA(p) = {b ∈ C∗(A) | bηA(p)= ηA(p)b}.

Since p is the unit element of A p, it follows that ηA p (A p)⊆ C∗(A)ηA(p), so
C∗(A p)⊆ C∗(A)ηA(p), since the range of ηA p is dense in C∗(A p). Conversely,
let b ∈ C∗(A)ηA(p) arbitrary. In particular, b ∈ C∗(A) hence there exists a net
{a j } j∈J such that b = lim j∈J ηA(a j ). On the other hand, since b ∈ C∗(A)ηA(p)
we obtain b = ηA(p)bηA(p)= ηA(p) lim j∈J ηA(a j )ηA(p)= lim j∈J ηA(pa j p) ∈
C∗(A p), and (3.2) is proved.

We now come back to the proof of the assertion. For a ∈A× it follows
by [Bi09, Proposition 7.5] that ηA(a) ∈ C∗(A)×, whence ηA(p)ηA(a)∗ηA(a)ηA(p) ∈
(C∗(A)ηA(p))

×. (The latter fact follows for instance by considering a faithful
representation of C∗(A) on some Hilbert space and using the fact that a positive
operator on a Hilbert space is invertible if and only if it is bounded from below by
some positive scalar multiple of the identity.) Then by (3.2) and (3.1) we obtain
ηA p (pa∗ap) ∈ C∗(A p)

×, and now by [Bi09, Proposition 7.5] again it follows that
pa∗ap ∈ (A p)

×. 2

COROLLARY 3.5. Let A be a Mackey-complete, hermitian algebra with continuous
inversion. Assume that p = p∗ ∈ P(A) and denote A p = pA p. Then for every
a ∈A× there exists b ∈ (A p)

× such that pa∗ap = b∗b. In addition, the invertible
element b can be chosen such that b = b∗ and σA(b)⊆ (0,∞).

PROOF. It follows by Proposition 3.2 that A p is a hermitian algebra with con-
tinuous inversion, and then by [Bi09, Proposition 7.5] we obtain σA p (pa∗ap)=
σC∗(A p)(ηA p (pa∗ap))⊆ [0,∞). On the other hand pa∗ap ∈ (A p)

× by Proposi-
tion 3.4, hence actually σA p (pa∗ap)⊆ (0,∞).
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Now [Bi09, Corollary 4.7] shows that there exists a unique element b = b∗ ∈A p
such that b2

= pa∗ap and σA p (b)⊆ [0,∞)+ iR. Since b2
= pa∗ap, it follows (for

instance by [Bi09, Remark 4.3]) that {z2
| z ∈ σA p (b)} = σA p (pa∗ap)⊆ (0,∞). Now

the property σA p (b)⊆ [0,∞)+ iR implies that σA p (b)⊆ (0,∞). Thus, b = b∗ ∈
(A p)

× and pa∗ap = b2, as claimed. 2

To obtain the following statement we extend the method of proof of Proposition 3.1
in [Pi88].

PROPOSITION 3.6. Let A be a Mackey-complete, hermitian algebra with continuous
inversion and assume that δ: 0= p0 < p1 < · · ·< pn = 1 is a finite, totally ordered
family of self-adjoint elements in P(A). Then for every s ∈A× there exist uniquely
determined elements d, b ∈A× such that:
• s∗s = b∗db;
• 8δ(d)= d = d∗ and σ(d)⊆ (0,∞);
• 8δ(b)= 1 and b ∈1(δ)×.

PROOF. The case n = 1 is clear: just take b = 1 and d = s∗s. Now assume that the
conclusion holds for all families of at most n self-adjoint idempotents in any Mackey-
complete, hermitian algebra with continuous inversion. Let δ be as in the statement
and denote by δn−1 the family 0= p0 < p1 < · · ·< pn−1 in PA pn−1

. Then A pn−1 is
a Mackey-complete, hermitian algebra with continuous inversion by Proposition 3.2,
hence we can use Corollary 3.5 to obtain y ∈ (A pn−1)

× such that pn−1s∗spn−1 = y∗y.
Then the induction hypothesis implies that there exist uniquely determined elements
bn−1, dn−1 ∈ (A pn−1)

× such that:
• pn−1s∗spn−1 = b∗n−1dn−1bn−1;
• 8δn−1(dn−1)= dn−1 = d∗n−1 and σA pn−1

(dn−1)⊆ (0,∞);

• 8δn−1(bn−1)= pn−1 and bn−1, b−1
n−1 ∈1(δn−1).

From now on we denote the elements in A as 2× 2 matrices according to the
decomposition 1= pn−1 + (1− pn−1). For instance

s∗s =

(
pn−1s∗spn−1 pn−1s∗s(1− pn−1)

(1− pn−1)s∗spn−1 (1− pn−1)s∗s(1− pn−1)

)
.

What we have to do is to find the still unknown entries in the matrices

d =

(
dn−1 0

0 dn

)
and b =

(
bn−1 tn

0 1− pn

)
such that s∗s = b∗db. By multiplying the corresponding matrices we see that the latter
matrix equation is equivalent to the relations:
• pn−1s∗spn−1 = b∗n−1dn−1bn−1;
• pn−1s∗s(1− pn−1)= b∗n−1dn−1tn; and
• (1− pn−1)s∗s(1− pn−1)= t∗n dn−1tn + (1− pn−1)dn(1− pn−1).
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We already know that the first of these equations is satisfied. Since bn−1 and dn−1 are
invertible in A pn−1 we can solve the second equation for tn to obtain

tn = d−1
n−1(b

∗

n−1)
−1 pn−1s∗s(1− pn−1).

Then the third of the above equations can be solved for dn and by using the above
formula for tn we obtain

dn = (1− pn−1)s
∗s(1− pn−1)− t∗n dn−1tn

= (1− pn−1)s
∗s(1− pn−1)− ((1− pn−1)s

∗spn−1b−1
n−1d−1

n−1)dn−1

× (d−1
n−1(b

∗

n−1)
−1 pn−1s∗s(1− pn−1))︸ ︷︷ ︸

=tn

= (1− pn−1)(s
∗s − s∗spn−1b−1

n−1d−1
n−1(b

∗

n−1)
−1 pn−1s∗s)(1− pn−1).

Since pn−1s∗spn−1 = b∗n−1dn−1bn−1, we obtain the following formula for dn in terms
of s∗s and pn−1 only:

dn = (1− pn−1)(s
∗s − s∗spn−1(pn−1s∗spn−1)

−1 pn−1s∗s)(1− pn−1).

The induction step is complete. Note that the property σ(d)⊆ (0,∞) follows by
the theorem of Shirali–Ford type for Mackey-complete, hermitian algebras with
continuous inversion [Bi09, Corollary 7.7] since b is clearly invertible and d =
(b∗)−1s∗sb−1. The uniqueness assertion is straightforward. See [Pi88, Proof of
Proposition 3.1] for further details which carry over in a direct manner to the present
setting. 2

COROLLARY 3.7. Let A be a Mackey-complete, hermitian algebra with continuous
inversion and assume that δ: 0= p0 < p1 < · · ·< pn = 1 is a finite, totally ordered
family of self-adjoint elements in P(A). Then, for every s ∈A×, there exist uniquely
determined elements u ∈ U(A), a ∈ D(δ)×+ and b ∈1(δ)× such that 8δ(b)= 1 and
s = uab.

PROOF. It follows by Proposition 3.6 that s∗s = b∗db, where d and b are uniquely
determined by the conditions d ∈ D(δ)×+, b ∈1(δ)×, and 8δ(b)= 1. Define a =
d1/2
∈ Ran(8δ)

×

+ by Corollary 4.7 along with [Bi09, Proposition 7.10], since D(δ)
(= Ran(8δ)) is a closed unital ∗-subalgebra of A. Then s∗s = (ab)∗(ab), whence
(s(ab)−1)∗(s(ab)−1)= 1. Thus, u := s(ab)−1

∈ U(A) and s = uab.
For the uniqueness assertion assume that s = u′a′b′ is another decomposition with

similar properties. Then b′∗a′2b′ = s∗s = b∗a2b, whence b = b′ and a = a′ according
to the uniqueness property from the above Proposition 3.6 along with the uniqueness
of nonnegative square roots. 2

REMARK 3.8. It follows by the explicit construction performed in the proofs of
Corollary 3.7 and Proposition 3.6 that there actually exist real analytic mappings
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u(·), a(·), b(·) : A×→A such that u(·) takes values in U(A), a(·) takes values in
D(δ)×+, and b(·) takes values in N (δ), and

(∀s ∈A×) s = u(s)a(s)b(s).

Therefore, by using an appropriate real analytic structure on U(A) constructed
by means of the Cayley transform (see [BrN05, Section 8]), it follows that the
multiplication mapping

U(A)× D(δ)×+ × N (δ)→A×, (u, a, b) 7→ uab

is a real analytic diffeomorphism.

4. Flag manifolds

We are now ready to obtain the main results of the present paper: the construction
of appropriate smooth structures on the flag manifolds associated with algebras with
continuous inversion (Theorem 4.3) and the characterization of the hermitian algebras
in terms of transitivity of unitary group actions on flag manifolds (Theorem 4.5 and
Corollary 4.7).

DEFINITION 4.1. Let A be a complex associative unital algebra. For p, q ∈ P(A) we
use the notation p ∼ q if and only if pq = q and qp = p, which is easily seen to be
equivalent to pA= q A. This is an equivalence relation and we denote the equivalence
class of p ∈ P(A) by [p].

Clearly, each pA is a complemented right ideal of A and, conversely, if R⊆A
is a complemented right ideal, then any A-right module projection A→R is given
by a left multiplication with an idempotent p, satisfying R= pA. Therefore, the
Graßmannian Gr(A)= P(A)/∼ of A can be identified with the set of complemented
right ideals of A (see [BrN04, Section 8.6]).

If p1, p2 ∈ P(A), recall that we write p1 ≤ p2 whenever p2 p1 = p1, that is,
p1A⊆ p2A. In addition, let us recall from [BlG09, Lemma 2.2] that the natural action
α : A× × P(A)→ P(A), (g, p) 7→ αg(p) := gpg−1, induces an action β(g, R) :=
gR of A× on the set Gr(A) of complemented right ideals. Clearly, this action
preserves the inclusion order on Gr(A) and hence on P(A).

For every n ≥ 1, we define the set of n-flags in a similar manner as above. For this
purpose, first denote

Pn(A)= {(p1, . . . , pn) ∈ P(A)× · · · × P(A) | p1 ≤ · · · ≤ pn}

and define an equivalence relation ∼ on Pn(A) by (p1, . . . , pn)∼ (q1, . . . , qn) if
and only if [p j ] = [q j ] for j = 1, . . . , n; the equivalence class of (p1, . . . , pn) will
be denoted by [(p1, . . . , pn)]. Now the set of n-flags is FlA(n)= Pn(A)/∼. There
exists a natural injective map

FlA(n) ↪→ Gr(A)n, [(p1, . . . , pn)] 7→ (p1A, . . . , pn A) (4.1)
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whose image consists of all n-tuples (R1, . . . , Rn) of complemented right ideals
satisfying R1 ≤ · · · ≤ Rn . This subset is invariant under the natural action
by left multiplication β(n) : A× × FlA(n)→ FlA(n). For every X ∈ FlA(n), the
corresponding flag manifold FlA(X) is defined as the A×-orbit of X .

Smooth structure on the flag manifolds If A is a CIA, the manifold structure
on the corresponding Graßmannian was pointed out in [BrN05, Theorem 5.3]; see
also [DG01, Remark 7.1] for the Banach case. In the case of the flag manifolds
associated with a CIA, to construct the smooth structure one can proceed as follows.

REMARK 4.2. Let A be a CIA. If δ: 0= p0 < p1 < · · ·< pn = 1 is a finite, totally
ordered family of elements in P(A), then one proceeds by induction on n to show that
g ∈A× has the property that p j gp j ∈ (p j A p j )

× for j = 1, . . . , n if and only if there
exists a (uniquely determined) Gauß decomposition

g = xdy, where d ∈ D(δ)×, x ∈ N (1− δ) and y ∈ N (δ), (4.2)

where we denote by 1− δ the sequence 0= 1− pn < 1− pn−1 < · · ·< 1− p0 = 1.
For instance, let us denote the elements of A as 2× 2 matrices according to the
decomposition 1= pn−1 + (1− pn−1) as in the proof of Proposition 3.6. For every
g ∈A× such that pn−1gpn−1 ∈ (pn−1A pn−1)

× we have

g =

(
pn−1gpn−1 pn−1g(1− pn−1)

(1− pn−1)gpn−1 (1− pn−1)g(1− pn−1)

)
=

(
pn−1 0
xn−1 1− pn−1

) (
pn−1gpn−1 0

0 (1− pn−1)g(1− pn−1)

)
×

(
pn−1 y1

0 1− pn−1

)
,

where, if we denote by (pn−1gpn−1)
−1 the inverse of pn−1gpn−1 in the algebra

pn−1A pn−1, then

xn−1 = (1− pn−1)gpn−1(pn−1gpn−1)
−1

and

y1 = (pn−1gpn−1)
−1 pn−1g(1− pn−1).

Similar computations performed in the algebras pn−1A pn−1, . . . , p2A p2 eventually
lead to the decomposition (4.2) under the corresponding assumption on the
element g ∈A×. Denote

�δ = {g ∈A× | p j gp j ∈ (p j A p j )
× for j = 1, . . . , n}

and define
σ : �δ→A, g 7→ x

by means of the decomposition (4.2). It is clear from the construction that σ is a real
analytic mapping on the neighborhood �δ of 1 ∈A×.
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THEOREM 4.3. If A is a CIA and [δ] := [(p1, . . . , pn)] ∈ FlA(n), then the
corresponding manifold FlA([δ]) has a structure of smooth manifold modeled on a
locally convex space such that the transitive action

β(n)|A××FlA([δ]) : A× × FlA([δ])→ FlA([δ])

is smooth, and the corresponding orbit mapping A×→ FlA([δ]), g 7→ β(n)(g, [δ])
is smooth and open. Moreover, the injective map FlA(n) ↪→ Gr(A)n (see (4.1)) is
continuous.

PROOF. By definition, the flag manifold FlA([δ]) is transitively acted on by the
group A×, and the stabilizer of [δ] = (p1A, . . . , pn A) is

B := {g ∈A× | g, g−1
∈1(δ)} =1(δ)×,

which is a closed subgroup of A×. We thus obtain a bijection

FlA([δ])'A×/1(δ)×.

Moreover, it is clear that1(δ)× = D(δ)×N (δ) and it easily follows by the method that
the Gauß decomposition was constructed in Remark 4.2 above that the multiplication
mapping N (1− δ)×1(δ)×→�δ is a homeomorphism. Since A× is a locally
convex Lie group (see [Gl02]), it then follows that a natural smooth structure on the
flag manifold FlA([δ]) can be constructed by using Lemma A.1 in Appendix A.

Note that Lemma A.1 also implies that this smooth structure depends only on the
point [δ] ∈ FlA(n) and not on the choice of (p1, . . . , pn) ∈ [δ], since for any other
δ′ = (p′1, . . . , p′n) ∈ [δ], the subgroup N (1− δ′) leads to the same smooth structure.

Finally, we recall that the set P(A) is endowed with the topology induced from A,
and then the Graßmannian Gr(A)= P(A)/∼ is endowed with the corresponding
quotient topology. By using the special case n = 1 of the construction above, one
can see that the quotient mapping P(A)→ Gr(A) is open. Now it is easy to see
that the natural mapping (4.1) from FlA([δ])→ Gr(A)n is continuous with respect
to the above-described manifold structure on FlA([δ]) and the product topology on
Gr(A)n . 2

Unitary groups acting on the flag manifolds The second assertion in the following
lemma was recorded with the same idea of proof in [MS97, Lemma 1.3] for C∗-
algebras. We include here the full details of the proof in order to show that the
corresponding statement is actually purely algebraic.

LEMMA 4.4. If A is a complex associative unital algebra, then the following
assertions hold.

(1) If p, q ∈ P(A) and p ∼ q, then s := pq + (1− p)(1− q) satisfies s ∈A× and
sqs−1

= p.
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(2) If A is additionally endowed with an involution that makes it into a hermitian
algebra, then for every e ∈ P(A), there exists a unique p ∈ P(A) such that
p = p∗ and p ∼ e, namely p = e(1− (e∗ − e))−1.

PROOF. (1) To see that s is invertible, recall that p ∼ q means pq = q and qp = p,
which easily yields (q − p)2 = 0 and s = 1+ (q − p), and then s ∈A× with s−1

=

1− (q − p). The relation sqs−1
= p follows immediately from sq = pq = ps.

(2) First note that the element p ∈A in the statement is well defined since
(e∗ − e)∗ =−(e∗ − e), hence the hypothesis that A is a hermitian algebra ensures
that the number 1 ∈ C does not belong to the spectrum of e∗ − e ∈A. Next, in order
to prove the existence assertion, we have to check that the element p ∈A has the
required properties

ep = p, pe = e, and p = p∗ = p2.

The first of these equations follows at once since e2
= e. The latter equality

also implies (e∗)2 = e∗, whence e∗(1− (e∗ − e))= e∗e = (1+ (e∗ − e))e. Then
we get (1+ (e∗ − e))−1e∗ = e(1− (e∗ − e))−1, that is, p∗ = p. Moreover, since
p(1− (e∗ − e))= e, we obtain pe − e = pe∗ − p, hence pe − e = (ep∗ − p∗)∗ = 0,
since we have just seen that p∗ = p and ep = p. Thus, pe = e, and then
pe(1− (e∗ − e))−1

= e(1− (e∗ − e))−1, that is, p2
= p. Consequently, p = p∗ ∈

P(A) and p ∼ e.
For the uniqueness assertion, assume that q = q∗ ∈ P(A) and q ∼ e. In particular,

eq = q , whence q∗e∗ = q∗, so qe∗ = q . Since also qe = e, by subtracting these
equalities from each other we obtain q(e∗ − e)= q − e. Thence q(1− (e∗ − e))= e,
and then q = e(1− (e∗ − e))−1

= p. This completes the proof. 2

THEOREM 4.5. If A is a Mackey-complete, hermitian CIA, then the corresponding
flag manifolds are transitively acted on by the unitary group of A.

PROOF. Let (p1, . . . , pn) ∈ Pn(A). We prove that the unitary group of A acts
transitively on the flag manifold FlA([(p1, . . . , pn)]). By Lemma 4.4(2), we may
assume that p j = p∗j for j = 1, . . . , n. Then δ: 0= p0 < p1 < · · ·< pn < pn+1 = 1
will be a finite, totally ordered family of self-adjoint elements in PA. Now let g ∈A×
be arbitrary. We have to prove that there exists a u ∈ U(A) such that for j = 1, . . . , n
we have gp j A= up j A. For this purpose we may use the element u ∈ U(A) provided
by Corollary 3.7, since the factors in the corresponding decomposition g = uab satisfy
abp j A= p j A, hence gp j A= up j A, and this completes the proof. 2

REMARK 4.6. The above Theorem 4.5 is a wide extension of [BlR07, Proposi-
tion 2.7], whose method of proof is specific for finite W ∗-algebras.

COROLLARY 4.7. Let A be a Mackey-complete CIA. Then A is hermitian if and only
if the matrix algebra M2(A) has the property that each of the corresponding flag
manifolds is acted transitively on by the unitary group U2(A).
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PROOF. If A is hermitian, then the Mackey-complete CIA M2(A) is hermitian by
Proposition 3.3, hence Theorem 4.5 shows that the unitary group U2(A) of M2(A)
acts transitively on every flag manifold of M2(A).

Conversely, if that transitivity condition is satisfied, then A has to be a hermitian
algebra. Indeed, if A is not hermitian, then Remark 2.3 shows that there exists a
hermitian element a = a∗ ∈A with i ∈ σ(a), so that a2

+ 1 is not invertible. Now let
δ: 0= p0 < p1 < p2 = 1 in M2(A), where

p1 =

(
1 0
0 0

)
and note that the matrix

g =

(
1 0
a 1

)
∈ GL2(A)

is not contained in the subset U2(A)1(δ)× because the entry (g∗g)11 = 1+ a2 is not
invertible. It thus follows that the element β(2)(g, [δ]) ∈ FlA([δ]) is different from
β(2)(u, [δ]) for every u ∈ U2(A), and this contradicts the assumption that U2(A) acts
transitively on every flag manifold of M2(A). 2

REMARK 4.8. We also note that the matrix

g =

(
a + i a

a a − i

)
∈ GL2(A)

satisfies g Jg∗ J = 1 for

J :=

(
1 0
0 −1

)
,

so that
g ∈ U1,1(A) := {g ∈ GL2(A) | g

−1
= Jg∗ J }.

Since (a + i)(a − i)= a2
+ 1 implies that the entry g11 = a + i is not invertible, it

follows that g is not contained in the open subset

N (1− δ)1(δ)×.

If, conversely, (A, ∗) is hermitian, then

g =

(
a b
c d

)
∈ U1,1(A)

implies that aa∗ = 1+ bb∗ is invertible, so that a ∈A×, which implies that

U1,1(A)⊆ N (1− δ)1(δ)×

(see [Bi09]).
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Appendix A. A lemma on manifold structures on homogeneous spaces

The following statement is a more precise version, in the present setting, of [DG00,
Corollary 5.3]. It equally applies to C∞ and to real analytic manifolds modeled on
locally convex spaces.

LEMMA A.1. Let G be a locally convex Lie group and assume that B is a closed
subgroup of G for which there exists a subset N ⊆ G such that the following conditions
are satisfied:

(1) 1 ∈ N;
(2) N is homeomorphic to an open set in some locally convex space, and that

homeomorphism makes N into a manifold such that the inclusion N ↪→ G is
a smooth mapping;

(3) there exists an open neighborhood � of 1 ∈ G such that the multiplication
mapping

N × B→�, (n, b)→ nb

is a homeomorphism and the corresponding projection mapping σ : �→ N ,
nb 7→ n is smooth.

Then the homogeneous space G/B endowed with the quotient topology has a structure
of manifold (with the same model space as N) such that the natural projection
π : G→ G/B is smooth and open, and the natural action

G × G/B→ G/B, (g, nB) 7→ Lg(nB) := gnB (A1)

is smooth.
Moreover, if N ′ ⊆ G is another subset satisfying (1)–(3), then it defines the same

smooth structure on G/B.

PROOF. Let us define

ψ1 := π |N : N → G/B and V1 := ψ1(N )⊆ G/B.

Note that ψ1 is injective as if ψ1(n1)= ψ1(n2), then n1 ∈ n2 B, hence n1 = n2 because
of the hypothesis that the multiplication mapping N × B→� bijective. Next, for
g ∈ G, define

ψg := Lg ◦ π |N : N → G/B and Vg := ψg(N )⊆ G/B.
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It is clear that G/N =
⋃

g∈G Vg so, in order for the family of bijections
{ψg : N → Vg}g∈G to define a structure of smooth manifold on G/B, we still have
to prove that for every g ∈ G the set ψ−1

g (Vg ∩ V1) is open in N and the coordinate

change ψ−1
1 ◦ ψg|ψ−1

g (Vg∩V1)
: ψ−1

g (Vg ∩ V1)→ ψ−1
1 (Vg ∩ V1) is smooth. In fact, for

x ∈ ψ−1
g (Vg ∩ V1)⊆ N and x ′ ∈ ψ−1

1 (Vg ∩ V1)⊆ N we have

(ψ−1
1 ◦ ψg)(x)= x ′ ⇐⇒ ψg(x)= ψ1(x

′) ⇐⇒ gx B = x ′B

⇐⇒ gx ∈ x ′B ⇐⇒ gx ∈�

and

x ′ = σ(gx)

and therefore ψ−1
g (Vg ∩ V1)= (g−1�) ∩ N is open in N and

ψ−1
1 ◦ ψg : (g

−1�) ∩ N → N , x 7→ σ(gx)

is smooth because of the hypothesis on N .
Thus, we obtain a manifold structure on G/B such that the translation mapping

Lg : G/B→ G/B is smooth for every g ∈ G. Since ψ1 : V1→ N ↪→ G is
a continuous cross section of π : G→ G/B over the open subset V1 of the
manifold G/B, it follows that the projection π is an open mapping. Moreover, since
the multiplication mapping N × B→� is a bijection, we obtain π(�)= π(N )=
V1 ⊆ G/B, and then it easily follows that π : G→ G/B is continuous. Since π is
also open, the topology underlying the manifold structure of G/B coincides with the
quotient topology. As B is a closed subgroup of G, the corresponding topology of
G/B is Hausdorff.

It is clear from the above construction that (A1) is an action of G by smooth
transforms on G/B. Therefore, for proving that (A1) is actually a smooth mapping,
it is enough to check that it is smooth on some neighborhood of the point (1, 1B) ∈
G × G/B. To this end, let U be an open neighborhood of 1 ∈ G and V ′1 an open
neighborhood of 1B ∈ B/B such that Lg(x) ∈ V1 for all g ∈U and x ∈ V ′1. Then we
have a commutative diagram

U × π−1(V ′1)
// π−1(V1)

π

��
U × V ′1 //

idU×(ψ1)
−1
|V ′1

OO

V1

whose upper horizontal arrow is given by the multiplication in G, while the lower
horizontal arrow is the appropriate restriction of the mapping (A1). Thus, the latter
restriction of the group action (A1) factorizes as a composition of smooth mappings,
and it is therefore smooth on the neighborhood U × V ′1 of the point (1, 1B) ∈ G ×
G/B.
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Finally, suppose that N ′ ⊆ G is another subset satisfying (1)–(3). If N ′ is an open
subset of N , we clearly obtain the same manifold structure on G/B because G acts by
diffeomorphisms, so that it is determined by the smooth structure in a neighborhood
of π(1). In the general case, the subset Ñ ′ := N ′ ∩� is open in N ′, and (3) implies
that N ′′B is open in G, so that Ñ := N ∩ Ñ ′B is open in N . Passing from N to Ñ
and from N ′ to Ñ ′, we may therefore assume that N B = N ′B. Now (3) implies
that the map N ′→ N , n′ 7→ σ(n′) is a diffeomorphism whose inverse is given by
N → N ′, n 7→ σ ′(n). From that we conclude that the map ψ ′1 ◦ ψ1 : N B→ N ′B is a
diffeomorphism, which in turn implies that N and N ′ define the same smooth structure
on G/B. 2
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