On a Theorem of Gauss
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§1. Introduction.

Professor Hemraj! has given a proof of a part of a theorem of
Gauss without using the theory of quadratic residues. Proceeding on
gimilar lines, I have obtained a complete proof which is rather simpler
and certainly more concise.

In what follows G (n,r) denotes? the sum of the products of the
first » natural numbers taken r at a time; {n, m} denotes as usual the
greatest common factor of the two non-zero positive integers n and
m; p stands for an odd prime unless stated otherwise; and a, b, m, n
i, J, k, p, r, ete., stand for positive integers or zero.

I write ¢ < .n when {a,n} =1 and a < n; and denote by Il (& <. n)
the product of all a’s less than n and prime to it.

If n=0 (mod p*), but =0 (mod p*+1), p =2, then I say that nis
p-potent in p, or that the p-potency of n is up. We have u = 0 when
n == 0 (mod p).

In my proof of Gauss’ Theorem, viz.

3

II(a<.m)= —1 (modm) when m = 22, p*, 2p~,
= 1 (mod m) otherwise,

I make use of the lemmas of § 2.
§2. Lemma 1. If a be the p-potency of r, then the p-potency of
< F>7}s;:,—a, where 1 = r < p* and p = 2.

T
We have r* =——£L—.
r ri(pt —r)!

Therefore the p-potency of <Z; “>

(302 - 5
=1 (LP P p =1
where A, =0 or 1 according as r=0 or =0 (mod p*). Since
r=0 (mod p*) but =0 (mod p*+!), it follows that the p-potency of

"-
18 p — a.
(7)ion—e
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LEMMA 2. The p-potency of G (p*— 1, r) is greater than or equal to
w—PB, where 1 < r < pt — 1, pP = 2r < pBFY, p is an odd prime or 2,
and B = 0.

We have?

et (. P .
o —1n= 3180 (,, 7, )] 13)

where the f’s are positive integers. The result stated follows
immediately from Lemma 1.

Lemma 3. If {m,n} =1, then
Ma<.mun)={Il(b<.n)pP™ (modn),

where ¢ (m) denotes as usual the number of integers less than and prime
to m.

If b < .n, then in the series of m terms
b,b4+n,b4+2n,b4+3n, ....,04+(m— 1)n,

there are ¢ (m) integers less than and prime to mn. Each of these
integers =b (mod =), so that their product = {b}*™ (mod n). Giving
to b all values < .n, we get the result stated.

§3. Proof of Gauss’ Theorem.
(i) We first consider the case when m = 2*, u = 1. We have
Ma<.2)=41 (mod 2),
M{a<.22)=—1 (mod 2?),
M(e<.28)=1.3.5.7=1 (mod 28),
Ha<.24)=1.3.5....15=1 (mod 2%).
Suppose that II(ea<.2¢)=1 (mod 2*) when 3 <u=<4—1. Then
Ma<.2)=1.3.5.7....(2"1—=1). (2i—1)(2i— 3)....{2— (2-1—1)}.
={I(a <.2-1 (mod 2%
=1 (mod 2%, since 2¢ — 2 > 1.
Hence by induction for.p = 3,
{ea<.2*)=1 (mod 2~).

(ii) Now consider the case when m =p#*, = 1. Leta be any
number < .p, and let p = p*~1— 1. Then

1 (a+p) = o+ E (G~ — 1, 1) prarr+i),
x=0 r=1
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Since the p-potency of G (p*—! — 1, ). p" is greater than or equal to
u+r—pB—1, where pf =< 2r < pf+1, that is, greater than or equal
to u, we have

1 (a + kp) =a+! (mod p*).
k=0
Hence D@a<.pr)={Il(a<.p)ppt={(p — 1)}t (mod p*)
={jp — 1¥*' (mod p*)

since? (p — 1)!= —1 (mod p). So by Lemma 1
MMa<.p*)=—1 (mod p+).

(iii) When m = 2p*, we have from Lemma 3,
IMa<.2pt)={Il(a<.p")}*® (mod p*)

=—1 (mod p#).

Also II(e<.2p*)={Il(a<.2)}*#) (mod 2).
=l=—-1 (mod 2).

Hence M{e<.2p*)=—1 (mod 2p+).

(iv) When m is of any form other than those already considered,
Gauss’ Theorem follows immediately from Lemma 3.

Let m = p*n, where p =1, p =2, {n, p} =1, and n > 2. Then
IHe<.m)={II(a<.p*)}*™ (mod p*)
=1 (mod p+),
since ¢ (n) is even. Considering in this manner all the different
primes present in m, we obtain
M@<.m)=1 (mod m), m==22% pt 2p*, where p = 3.

This proves Gauss’ Theorem completely.
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Notre ADDED IN PROOF. For completion of the proof discussed in reference 1
above, see Hemraj, Mathematics Student, 2 (1934), 140-148.
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