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§ 1. Introduction.
Professor Hemraj1 has given a proof of a part of a theorem of

Gauss without using the theory of quadratic residues. Proceeding on
similar lines, I have obtained a complete proof which is rather simpler
and certainly more concise.

In what follows G (n, r) denotes2 the sum of the products of the
first n natural numbers taken r at a time; {n, m} denotes as usual the
greatest common factor of the two non-zero positive integers n and
m; p stands for an odd prime unless stated otherwise; and a, b, m, n,
i, j , k, ix, r, etc., stand for positive integers or zero.

I write a < .n when {a, n} = 1 and a < n; and denote by II (a < . n)
the product of all a's less than n and prime to it.

If n = 0 (mod p»), but =|= 0 (mod p»+1), p^2, then I say that n is
/x-potent in p, or that the p-potency of n is /n. We have /u, = 0 when
n ^ 0 (mody).

In my proof of Gauss' Theorem, viz.
II (a < . m) = — 1 (mod m) when m = 22, p^, 2p>*,

= 1 (mod m) otherwise,
I make use of the lemmas of § 2.

§2. LEMMA 1. If a be the p-potency of r, then the p-potency of

is fj, — a, where 1 5S r ^ pu and p~2.2.

r! (p* — r)!'

Therefore the p-potency of

where XK = 0 or 1 according as r = 0 or ^ 0 (mod pK). Since
r = 0 (mod pa) but sfs 0 (mod pa+1), it follows that the p-potency of

(T) i s * -a-
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LEMMA 2. The p-potency of Q{p* — 1, r) is greater than or equal to
\L — j8, where 1 ̂  r ^ p* — 1, p? ^ 2r < p/s+1, # is an odd prime or 2,

jS S> 0.

We have3

| { ( j ; r ) } d-8)
where the / 's are positive integers. The result stated follows
immediately from Lemma 1.

LEMMA 3. / / {m, n) = 1, then

II (a < .mn) = {11(6 <.»)}*<»»> (modra),

where <f> (m) denotes as usual the number of integers less than and prime
to m.

If b < . n, then in the series of m terms

b, b + n, b + 2n, b + 3ra, . . . . , b + (m — 1) n,

there are cf> (TO) integers less than and prime to mn. Each of these
integers = b (mod n), so that their product = {Z>}*<m) (mod n). Giving
to 6 all values < . n, we get the result stated.

§ 3. Proof of Gauss' Theorem.

(i) We first consider the case when m = 2"-, /x Ss 1. We have

II (a < . 2 ) = ± 1 (mod 2),

n (a < . 22) = - 1 (mod 22),

I I ( a < . 2 3 ) s 1 .3 .5 .7 = 1 (mod 23),

n (a < . 24)= 1.3.5 15=1 (mod 24).

Suppose that II (a < . 2") = 1 (mod 2") when 3 ̂  /x ̂  i — 1. Then

II (a < .2*) = 1 . 3 . 5 . 7 ( 2 i - 1 - l ) . ( 2 i - l ) ( 2 i - 3 ) {2f— (2'-1—1)}.

= {n(a<.2 i - 1 )} 2 (mod2i)

= 1 (mod 2*), since 2i — 2 > i.

Hence by induction for fj. ^ 3,

II (a < . 2") = 1 (mod 2").

(ii) Now consider the case when m = 2"*, /A ^ 1. Let a be any
number < . p, and let p = p*~x — 1. Then

A (a + Kp) = aP+1 + £
«=0 r = l
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Since the ^-potency of G(p>l~1 — 1, r) .pr is greater than or equal to
ft + r — /? — 1, where pp ^ 2r <pP+1, that is, greater than or equal
to /A, we have

p
II (a + Kp) = ap+1 (mod p»).

*=o
Hence II (a < . p") = {II (a < . p)¥+1 = {(p — 1) ! } ' + 1 (mod p")

= {JP — lY+1 ( m od p"-)

since3 (p — 1)! = — 1 (mod p). So by Lemma 1
II (a < .#") = — 1 (mod p").

(iii) When m = 2p*, we have from Lemma 3,
II (a < . 2^ ) = {II (o < . 23̂ )}* (2> (mod p")

= — 1 (mod #").

Also II (a < . 22)") = {II (a < . 2)}*fo*> (mod 2).

= 1 = - 1 (mod 2).

Hence U (a < . 2p») = — 1 (mod 2p").

(iv) When m is of any form other than those already considered,
Gauss' Theorem follows immediately from Lemma 3.

Let m — p^n, where /x 2^ 1, p ^ 2, {n, ^} = 1, and n > 2. Then

II (a < . TO) = {II (a < . p*)f <»> (mod p")

= 1 (mod p1),

since ^ (n) is even. Considering in this manner all the different
primes present in m, we obtain

II (a < . m) = 1 (mod TO), m=)= 22, ^ , 2 ^ , where ^ 3 ^ 3 .

This proves Gauss' Theorem completely.
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NOTE ADDED IN PROOF. For completion of the proof discussed in reference 1
above, see Hemraj, Mathematics Student, 2 (1934), 140-148.
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