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On Weak∗ Kadec–Klee Norms

Jan Rychtář and Jiřı́Spurný

Abstract. We present partial positive results supporting a conjecture that admitting an equivalent Lip-

schitz (or uniformly) weak∗ Kadec–Klee norm is a three space property.

1 Introduction

A norm ‖ · ‖ on a Banach space X is called Lipschitz weak∗ Kadec–Klee (LKK∗) if there

exists c ≥ 0 such that for every ε > 0, every f ∈ X∗ and every fn ∈ X∗ such that

‖ fn‖ ≤ 1, f = w∗- limn fn and ‖ f − fn‖ > ε, one has ‖ f ‖ ≤ 1 − cε. To emphasize

the role of c, we call a norm having the above property c-LKK∗.

A norm ‖ · ‖ on a Banach space X is called uniformly weak∗ Kadec–Klee(UKK∗) if

for every ε > 0 there exists δ > 0 such that for every f ∈ X∗ and every fn ∈ X∗

satisfying ‖ fn‖ ≤ 1, f = w∗- limn fn, and ‖ f − fn‖ > ε, one has ‖ f ‖ ≤ 1 − δ.

Lipschitz weak∗ Kadec–Klee norms are usefull tools when considering Lipschitz

isomorphisms of Banach spaces, see [2]. We refer to [5, 6] for more information on

UKK∗ norms.

In this note we try to answer the question whether admitting an equivalent LKK∗

norm is a three space property. A property P of a Banach space is called a three space

property if X has P whenever there exists a closed subspace Z of X such that both

Z and X/Z have P. We provide a positive answer in the case when Z = c0(Γ) and

the dual unit ball of X/Z is an angelic space in its weak∗ topology. The same result

is shown for UKK∗ norms. We also show that a Banach space X contains a copy of

c0(Γ) where |Γ| = w∗- dens X∗ provided X admits an equivalent LKK∗ norm and

w∗- dens X∗ ≥ ω1.

We note that a three space problem for either Lipschitz weak∗ or uniformly weak∗

Kadec–Klee norms is still an open problem.

Recall that a compact space K is called angelic if whenever x ∈ A for A ⊂ K, there

is a sequence xn ∈ A such that x = limn xn. Let us note that Corson compacts are

angelic and thus the dual unit ball of a weakly compactly generated space is angelic,

see [3, Corollary 11.13, Theorem 12.50 and Exercise 12.55].
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2 Three Space Problem for LKK∗ Norms

Theorem 2.1 Asume that X is a Banach space, c0(Γ) ⊂ X, X/c0(Γ) admits an equiv-

alent c-LKK∗ norm with c ∈ (0, 1), and that the dual unit ball of (X/c0(Γ))∗ is an

angelic space. Then X admits an equivalent c-LKK∗ norm.

Proof We will proceed along the lines of the proof of Example 1 in [4] and Theo-

rem 1 in [7]. Let Y stand for the space X/c0(Γ). First, we identify X∗
= ℓ1(Γ) ⊕ Y ∗,

with the duality given by

〈( f , g), x〉 = 〈l( f ), x〉 + 〈q∗(g), x〉, f ∈ ℓ1(Γ), g ∈ Y ∗,

where q∗ : Y ∗ 7→ X∗ is induced by the quotient map q : X 7→ Y = X/c0(Γ) and

l : ℓ1(Γ) 7→ X∗ is a so-called lifting map satisfying i∗(l( f )) = f , f ∈ ℓ1(Γ). (Here

i∗ : X∗ 7→ ℓ1(Γ) = c0(Γ)∗ is the dual map to the inclusion i : c0(Γ) 7→ X.)

In the sequel, we are going to use the following lemma, which follows from the

fact that Y ∗ can be identified with c0(Γ)⊥ = {x∗ ∈ X∗ : x∗(x) = 0 for all x ∈ c0(Γ)}.

Lemma 2.2 If w∗- limα( fα, gα) = ( f , g) in X∗, then w∗- limα fα = f in c0(Γ)∗.

Assume that Y admits an equivalent c-LKK∗ norm with c ∈ (0, 1), and let ‖ · ‖Y∗

be the dual norm on Y ∗. Let ‖ · ‖X∗ be a dual norm on X∗ that extends ‖ · ‖Y∗ , and

let ‖ · ‖ℓ1(Γ) be the standard norm on ℓ1(Γ). Let A0 ≥ 1 be such that

(2.1)
1√
A0

‖( f , g)‖X∗ ≤ ‖ f ‖ℓ1(Γ) + ‖g‖Y∗ ≤
√

A0‖( f , g)‖X∗ , ( f , g) ∈ X∗.

For all A > 0 we define

(2.2) |||( f , g)|||A = A‖ f ‖ℓ1(Γ) + ‖g‖Y∗ , ( f , g) ∈ X∗.

Lemma 2.3 For all A ≥ A0, the norm ||| · |||A defined by (2.2) is a dual norm on X∗.

Proof We will follow the proof published in [4]. We need to show that the unit ball

B = {( f , g) ∈ X∗ : |||( f , g)|||A ≤ 1} is weak∗ closed. Let {( fα, gα)}α∈I ⊂ B be

a net converging to ( f , g) in the weak∗ topology of X∗. For every α ∈ I we write

fα = f 1
α + f 2

α , where f 1
α , f 2

α ∈ ℓ1(Γ) have disjoint supports and

(2.3) lim
α∈I

‖ f 1
α − f ‖ℓ1(Γ) = 0.

To get this decomposition, enumerate the support of f by {γn} and find αn ∈ I,

n ∈ N, such that

| fα(γi) − f (γi)| < 2−n, if i = 1, . . . , n and α > αn.

Then set

f 1
α = fα↾{γ1,...,γn}, if α > αn and α 6> αn+1,

f 2
α = fα − f 1

α , α ∈ I.
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Since {( f 2
α , 0)} is a bounded net in X∗, we may assume without loss of generality

that {( f 2
α , 0)} converges to ( f ′, g ′) in the weak∗ topology of X∗. By Lemma 2.2 and

the construction above, f ′
= 0. Thus {(0, gα)} is weak∗ convergent to (0, g ′′) =

(0, g − g ′). Using weak∗ lower semicontinuity of the dual norms, by (2.3), (2.2) and

disjoint supports of f 1
n , f 2

n , we get

|||( f , g)|||A = A‖ f ‖ℓ1(Γ) + ‖g‖Y∗

≤ A lim inf
α∈I

‖ f 1
α‖ℓ1(Γ) + ‖g ′‖Y∗ + ‖g ′ ′‖Y∗

≤ A lim inf
α∈I

‖ f 1
α‖ℓ1(Γ) +

√

A0‖(0, g ′)‖X∗ + lim inf
α∈I

‖gα‖Y∗

≤ A lim inf
α∈I

‖ f 1
α‖ℓ1(Γ) +

√

A0 lim inf
α∈I

‖( f 2
α , 0)‖X∗ + lim inf

α∈I
‖gα‖Y∗

≤ A lim inf
α∈I

‖ f 1
α‖ℓ1(Γ) + A0 lim inf

α∈I
‖ f 2

α‖ℓ1(Γ) + lim inf
α∈I

‖gα‖Y∗

≤ lim inf
α∈I

|||( fα, gα)|||A ≤ 1.

This finishes the proof of Lemma 2.3.

In order to prove Theorem 2.1, we select a number A ≥ A0 such that A−A0

A+A0
> c.

We must show that for a given ε > 0 and a sequence ( fn, gn) ∈ X∗ satisfying

|||( fn, gn)|||A ≤ 1, w∗- limn( fn, gn) = ( f , g), and |||( fn, gn) − ( f , g)|||A > ε, one has

|||( f , g)|||A ≤ 1 − cε. Let ε > 0 and {( fn, gn)} be as above. Enumerate the support of

f by {γn} and for each n ∈ N set f 1
n = fn ↾{γ1,...,γn}, f 2

n = fn − f 1
n . It follows that

(2.4) lim
n→∞

‖ f 1
n − f ‖ℓ1(Γ) = 0.

Since {( f 2
n , 0)} is a bounded net in X∗, it has a weak∗ accumulation point ( f ′, g ′) ∈

X∗. By Lemma 2.2, f ′ is a weak∗ accumulation point of f 2
n in the weak∗ topology of

ℓ1(Γ). It follows that f ′
= 0, because

f 2
n (γ) =

{

0 if γ ∈ spt f and n is large enough,

fn(γ) if γ /∈ spt f .

Thus (0, g − g ′) is a weak∗ accumulation point of the sequence {(0, gn)}. Hence,

g ′ ′
= g − g ′ is a weak∗ accumulation point of gn in Y ∗. Since the dual unit ball of Y ∗

is angelic, there is a sequence {gnk
} weak∗ converging to g ′′.

After passing to a subsequence if necessary, we may summarize the properties of

{( fn, gn)}:

(i) |||( fn, gn) − ( f , g)|||A > ε for all n ∈ N,

(ii) fn = f 1
n + f 2

n and spt f 1
n ∩ spt f 2

n = ∅ for each n ∈ N,

(iii) limn ‖ fn − f 1
n ‖ℓ1(Γ) = 0,

(iv) w∗ − limn( f 2
n , 0) = (0, g ′) in X∗ and w∗ − limn gn = g ′′ in Y ∗,

(v) limn ‖ f 2
n ‖ℓ1(Γ) = lim infn ‖ f 2

n ‖ℓ1(Γ) and limn ‖gn‖Y∗ = lim infn ‖gn‖Y∗ .
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By (i) above and the triangle inequality we have

ε < |||( fn, gn) − ( f , g)|||A
≤ |||( f 1

n , 0) − ( f , 0)|||A + |||( f 2
n , 0) − (0, g ′)|||A + |||(0, gn) − (0, g ′ ′)|||A.

As limn ‖ fn − f 1‖ℓ1(Γ) = 0, we may assume by omitting finitely many n’s that

ε < |||( f 2
n , 0) − (0, g ′)|||A + |||(0, gn) − (0, g ′′)|||A

= |||( f 2
n , 0) − (0, g ′)|||A + ‖gn − g ′′‖Y∗

(2.5)

for all n ∈ N.

The next step of the proof is based on the following elementary lemma whose

proof is omitted.

Lemma 2.4 Let {an}, {bn} be bounded sequences of nonnegative real numbers such

that an + bn > ε for all n ∈ N. Then for every η > 0 there exist ε1, ε2 ≥ 0 and an

infinite set M ⊂ N such that ε1 + ε2 > ε − η and an > ε1, bn > ε2 for each n ∈ M.

Fix η > 0. By Lemma 2.4, there exist ε1, ε2 ≥ 0 and infinite set M of natural

numbers such that for n ∈ M,

ε1 < |||( f 2
n , 0) − (0, g ′)|||A,

ε2 < ‖gn − g ′ ′‖Y∗ ,

ε1 + ε2 > ε − η.

Again we will assume that the above is true for all n ∈ N. Because ‖ · ‖Y∗ is a dual

norm to a c-LKK∗ norm, one has

(2.6) ‖g ′ ′‖Y∗ ≤ lim sup
n→∞

‖gn‖Y∗ − cε2.

Since ε1 < |||( f 2
n , 0) − (0, g ′)|||A = A‖ f 2

n ‖ℓ1(Γ) + ‖g ′‖Y∗ , property (iv) and Lem-

ma 2.3 imply

ε1 ≤ A lim inf
n→∞

‖ f 2
n ‖ℓ1(Γ) + A0 lim inf

n→∞
‖ f 2

n ‖ℓ1(Γ)

=
A + A0

A
lim inf

n→∞
|||( f 2

n , 0)|||A.
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Using Lemma 2.3 again, we estimate

|||(0, g ′)|||A = ‖g ′‖Y∗ = |||(0, g ′)|||A0

≤ lim inf
n→∞

|||( f 2
n , 0)|||A0

= A0 lim inf
n→∞

‖ f 2
n ‖ℓ1(Γ)

=
A0

A
lim inf

n→∞
|||( f 2

n , 0)|||A

= lim inf
n→∞

(

1 − A − A0

A

)

|||( f 2
n , 0)|||A

≤ lim sup
n→∞

|||( f 2
n , 0)|||A − A − A0

A
lim inf

n→∞
|||( f 2

n , 0)|||A

≤ lim sup
n→∞

|||( f 2
n , 0)|||A − A − A0

A
ε1

A

A + A0

.

(2.7)

This estimate together with (2.6) and properties (ii), (iii) and (v) give

|||( f , g)|||A = A‖ f ‖ℓ1(Γ) + ‖g‖Y∗

≤ A lim sup
n→∞

‖ f 1
n ‖ℓ1(Γ) + ‖g ′‖Y∗ + ‖g ′′‖Y∗

≤ A lim sup
n→∞

‖ f 1
n ‖ℓ1(Γ) + lim sup

n→∞
|||( f 2

n , 0)|||A − A − A0

A + A0

ε1

+ lim sup
n→∞

‖gn‖Y∗ − cε2

≤ lim sup
n→∞

(

A
(

‖ f 1
n ‖ℓ1(Γ) + ‖ f 2

n ‖ℓ1(Γ)

)

+‖gn‖Y∗

)

−A − A0

A + A0
ε1 − cε2

≤ lim sup
n→∞

|||( fn, gn)|||A − c(ε − η) ≤ 1 − c(ε − η).

(2.8)

As η is arbitrary, |||( f , g)|||A ≤ 1 − cε, which concludes the proof.

3 Three-Space Problem for UKK∗ Norms

Theorem 3.1 Assume X is a Banach space, c0(Γ) ⊂ X, X/c0(Γ) admits an equivalent

UKK∗ norm, and the dual unit ball of (X/c0(Γ))∗ is an angelic space. Then X admits

an equivalent UKK∗ norm.

Proof We will modify the method used in the proof of Theorem 2.1. Roughly

speaking, in the proof of Theorem 2.1 we had to split and track down the decre-

ment of the norm in both parts f 2
n and gn to get exactly the same c as before. Here

the procedure can be simplified, namely it is enough to take care of just the part of

the decomposition that is further from its limit point.
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Exactly as in the proof of Theorem 2.1, we denote by Y the space X/c0(Γ) and

write X∗
= ℓ1(Γ) ⊕ Y ∗ when the norm on Y is UKK∗. We find A0 satisfying (2.1)

and define norms

|||( f , g)|||A = ‖ f ‖ℓ1(Γ) + ‖g‖Y∗ ( f , g) ∈ X∗,

on X∗ for all A > 0. By Lemma 2.3, ||| · |||A is a dual norm for each A ≥ A0. Select

A ≥ A0 such that A−A0

A+A0
> 2

3
.

Let ε > 0 be given. Since the norm on Y is UKK∗, we can choose δ > 0 from the

definition UKK∗ for ε/3. We will show that the final estimate for the norm ||| · |||A
in the definition is satisfied for min( εδ

6
, 2ε

9
). Suppose that {( fn, gn)} is a sequence in

(X∗, ||| · |||A) converging in the weak∗ topology to ( f , g) such that |||( fn, gn)|||A ≤ 1

and |||( f , g) − ( fn, gn)|||A > ε.

We follow word for word the proof of Theorem 2.1 up to Lemma 2.4. According

to that lemma and (2.5), we can find ε1, ε2 ≥ 0 such that ε1 + ε2 > 2ε
3

, and

ε1 < |||( f 2
n , 0) − (0, g ′)|||A,

ε2 < ‖gn − g ′ ′‖Y∗ ,

for infinitely many n’s. We will assume that these inequalities hold for every n ∈ N.

Then either ε1 or ε2 is greater than ε/3. Assume first that ε1 > ε/3. Then, as in

(2.7), we have

|||(0, g ′)|||A ≤ lim sup
n→∞

|||( f 2
n , 0)|||A − ε1

A − A0

A + A0

≤ lim sup
n→∞

|||( f 2
n , 0)|||A − 2ε

9
.

(3.1)

Using (3.1) we proceed as in (2.8) to get |||( f , g)|||A ≤ 1 − 2ε
9

.

Suppose now that ε2 > ε/3. Set s = lim supn ‖gn‖Y∗ . Then

‖(1/s)(gn − g ′ ′)‖Y∗ >
ε2

s
>

ε

3
.

Since ||| · |||A is UKK∗, ‖g ′′/s‖Y∗ ≤ 1 − δ, i.e.,

(3.2) ‖g ′ ′‖Y∗ ≤ s(1 − δ).

Since ε2 < ‖gn − g ′′‖Y∗ ≤ ‖gn‖Y∗ + ‖g ′ ′‖Y∗ ≤ 2 lim supn→∞ ‖gn‖Y∗ , we get

from (3.2)

‖g ′ ′‖Y∗ ≤ s − sδ ≤ lim sup
n→∞

‖gn‖Y∗ − ε2δ

2

≤ lim sup
n→∞

‖gn‖Y∗ − εδ

6
.

We again imitate estimates (2.8) to conclude that |||( f , g)|||A ≤ 1 − εδ
6

. This finishes

the proof.
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4 Containing c0(Γ)

Theorem 4.1 Let X admit a c-Lipschitz weak∗ Kadec–Klee norm and weak∗ density

of X∗ is κ, κ ≥ ω1. Then X contains an isomorphic copy of c0(κ).

Proof We will use the following lemma that is formulated and proved in [2, Lemma

4.3].

Lemma 4.2 Let ‖ · ‖ be a c-LKK∗ norm on X. Then for every x ∈ X there exists a

separable E ⊂ X∗ such that for every y ∈ E⊥ one has

(4.1) max

(

‖x‖, ‖y‖
2 − c

)

≤ ‖x + y‖ ≤ max

(

‖x‖, ‖y‖
c

)

.

We remark that dens X ≥ κ, as w∗- dens X∗ ≥ κ. For every α ∈ [0, κ), we will

construct by transfinite induction a point xα ∈ X, a subspace Yα ⊂ X, and a subspace

Eα ⊂ X∗ such that

(i) Yα = span{xβ : β ≤ α};

(ii) for every x ∈ Yα and y ∈ (Eα)⊥ holds (4.1);

(iii) Eβ ⊂ Eα if β ≤ α;

(iv) ‖xα‖ = 1;

(v) ‖y‖ = sup{| f (y)| : f ∈ Eα, ‖ f ‖ ≤ 1} for each y ∈ Yα;

(vi) if α < β, then xβ ∈ (Eα)⊥;

(vii) both densYα and w∗- dens Eα are smaller than κ.

To start the construction, pick an arbitrary x0 ∈ X with norm 1. Using Lemma 4.2

we find a separable space E0 ⊂ X∗ such that for x0 and each y ∈ (E0)⊥, condition

(4.1) holds true.

Assume that the objects have been constructed for every β < α, where α < κ. Set

Z1 = span{Yβ : β < α} and E1 = span{Eβ : β < α} .

We find a point xα ∈ (E1)⊥ of norm 1 (this is possible due to weak∗ density of X∗

and condition (vii)). Let C be a dense subset of Z1 of cardinality less than κ. For

every p, q ∈ Q and z ∈ C we apply Lemma 4.2 on pz + qxα and get the appropriate

separable subspace Ep,q,z. Set

E2 = E1 ∪ span{Ep,q,c : p, q ∈ Q, z ∈ C} and Yα = span{xβ : β ≤ α} .

As densYα < κ, we can enlarge E2 to get a space Eα such that w∗- dens Eα < κ and

Eα is norming for Yα, i.e., Eα satisfies (v).

It follows that given x ∈ Yα and y ∈ (Eα)⊥, the inequalities (4.1) hold for them as

well as the other properties listed above. This finishes the inductive construction.

Set Y = span{xα : α < κ}. Notice that xα 6= xβ whenever α < β < κ, because of

conditions (iv), (v), (vi). We claim that Y is isomorphic to c0(κ).

https://doi.org/10.4153/CMB-2007-060-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-060-6


On Weak∗ Kadec–Klee Norms 617

Let x =
∑n

i=1 cixαi
where α1 < · · · < αn. Inductive use of condition (vi) and

(4.1) gives

∥

∥

∥

∥

n
∑

i=1

cixαi

∥

∥

∥

∥

≤ max

(∥

∥

∥

∥

n−1
∑

i=1

cixαi

∥

∥

∥

∥

,
‖cnxαn

‖
c

)

≤ max

(

max

(
∥

∥

∥

∥

n−2
∑

i=1

cixαi

∥

∥

∥

∥

,
‖cn−1xαn−1

‖
c

)

,
‖cnxαn

‖
c

)

≤ · · · ≤ 1

c
max(‖c1xα1

‖, . . . , ‖cnxαn
‖)

=
1

c
max(|c1|, . . . , |cn|) .

Similarly we obtain the inequality

∥

∥

∥

∥

n
∑

i=1

cixαi

∥

∥

∥

∥

≥ 1

2 − c
max(|c1|, . . . , |cn|) .

Thus by defining

T : span{xα : α < κ} → c0(κ) ,

n
∑

i=1

cixαi
7→

n
∑

i=1

cieαi
,

we obtain a linear map from span{xα : α < κ} into c0(κ) such that

(4.2)
1

2 − c
‖Tx‖∞ ≤ ‖x‖ ≤ 1

c
‖Tx‖∞

for every x ∈ span{xα : α < κ}.

Now let x be in Y . Then x = limn xn where xn ∈ span{xα : α < κ}. According to

(4.2), {Txn} is a Cauchy sequence in c0(κ). Thus we can define Tx = limn Txn. Then

T is a isomorphism between Y and c0(κ).
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