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Abstract

In this note we present a bound of the optimal maximum probability for the multiplicative
odds theorem of optimal stopping theory. We deal with an optimal stopping problem that
maximizes the probability of stopping on any of the last m successes of a sequence of
independent Bernoulli trials of length N, where m and N are predetermined integers
satisfying 1 ≤ m < N . This problem is an extension of Bruss’ (2000) odds problem. In a
previous work, Tamaki (2010) derived an optimal stopping rule. We present a lower bound
of the optimal probability. Interestingly, our lower bound is attained using a variation of
the well-known secretary problem, which is a special case of the odds problem.
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1. Introduction

Let X1, X2, . . . , XN denote a sequence of independent Bernoulli random variables. The
outcome of each random variable is either a success or a failure. We let Xj = 1 if Xj is a
success, and Xj = 0 otherwise. These random variables can be regarded as indices for the
observation of an underlying discrete stochastic process. For example, we can assume they
constitute the record process. A decision maker sequentially observes X1, X2, . . . , XN with the
objective of correctly predicting, with the maximum probability, the occurrence of any of the
last m successes at its respective occurrence time. We call the above problem a multiplicative
odds problem of order m. We discuss the asymptotic lower bounds of the probability of ‘win’
(i.e. obtaining any of the last m successes).

When m = 1, the multiplicative odds problem is equivalent to the well-known Bruss odds
problem [1], which has an elegant and simple optimal stopping strategy known as the odds
theorem or sum-the-odds theorem. A typical lower bound for an asymptotic optimal value (the
probability of win), when N approaches ∞, has been shown to be e−1 by Bruss [2], which is
equal to that for the classical secretary problem. One of the reason why the odds problem is
popular in optimal stopping theory is that it includes the secretary problem as a special case.
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For a general case (m ≥ 2), Tamaki [4] demonstrated the sum-the-multiplicative-odds
theorem, which gives an optimal stopping rule obtained using a threshold strategy. Tamaki [4]
also discussed the secretary problem and derived an asymptotic optimal value.

In this note we derive an asymptotic lower bound of the probability of win for the multi-
plicative odds problem. Our lower bound is equivalent to the asymptotic optimal value for the
secretary problem obtained by Tamaki [4], which implies the tightness of our bound. A special
feature of our proof is the application of Maclaurin’s inequality [3] to obtain our bound.

2. Preliminaries

For any pair of positive integers k and N satisfying 1 ≤ k ≤ N, and a vector r ∈ R
N , ek(r)

denotes the kth elementary symmetric function of r = (r1, r2, . . . , rN ) defined by

ek(r) =
∑

1≤i1<i2<···<ik≤N

ri1ri2 · · · rik =
∑

B⊆{1,2,...,N}
and |B|=k

∏
i∈B

ri,

which is the sum of
(
N
k

)
terms. We also define e0(r) = 1. The kth elementary symmetric mean

of r is defined by

Sk(r) = ek(r)(
N
k

) .

We now describe Maclaurin’s inequalities, which play an important role in the next section.

Lemma 1. (Maclaurin’s [3] inequalities.) Every nonnegative vector r ∈ R
N+ satisfies the chain

of inequalities
S1(r) ≥ √

S2(r) ≥ 3
√

S3(r) ≥ · · · ≥ N
√

SN(r).

3. Lower bound

We deal with a sequence of independent 0/1 random variables X1, X2, . . . , XN , where N

is a given positive integer, with distribution P[Xk = 1] = pk, P[Xk = 0] = 1 − pk = qk, 0 ≤
pk < 1, for each k. We define rk = pk/qk for each k. The rk are called odds. A multiplicative
odds problem of order m provides a strategy to correctly predict, with the maximum probability,
the occurrence of any of the last m successes at its respective occurrence time.

We begin by briefly reviewing the sum-the-multiplicative-odds theorem shown by Tamaki
[4]. An optimal stopping rule for the multiplicative odds problem is obtained using a threshold
strategy, i.e. it stops at the first success for which the sum of the m-fold multiplicative odds of
success for future trials is less than or equal to 1. In particular, the optimal rule stops on the
first success Xi = 1 with

i ≥ i∗ := min{k ≥ 1 | em(rk+1, rk+2, . . . , rN ) ≤ 1}.
The corresponding probability of win is equal to

qi∗qi∗+1 · · · qN(em(̃r) + em−1(̃r) + · · · + e1(̃r))

= em(̃r) + em−1(̃r) + · · · + e1(̃r)

(1 + ri∗)(1 + ri∗+1) · · · (1 + rN)
,

where r̃ = (ri∗ , ri∗+1, . . . , rN ).
In the rest of this section, we discuss the probability of win for a multiplicative odds problem

under the above optimal stopping rule.
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Theorem 1. Let us consider the multiplicative odds problem of order m defined on X1, X2, . . . ,

XN, satisfying m ≤ N and em(r1, r2, . . . , rN ) ≥ 1. Under the optimal stopping rule, the
probability of win is greater than or equal to

exp(−(m!)1/m)

m∑
k=1

(m!)k/m

k! .

Proof. It is obvious that the truncation of the subsequence X1, X2, . . . , Xi∗−1 does not affect
the probability of win. Thus, we only need to consider the case where

em(r2, r3, . . . , rN ) ≤ 1 ≤ em(r1, r2, r3 . . . , rN ). (1)

Under assumption (1), the optimal stopping rule satisfies i∗ = 1 or 2. When we stop at the first
success, the corresponding probability of win, denoted by Vm,N , gives a lower bound of the
probability of win under the optimal stopping rule. It is clear that Vm,N is equal to

Vm,N = em(r) + em−1(r) + · · · + e1(r)

(1 + r1)(1 + r2) · · · (1 + rN)
.

Thus, the greatest lower bound of the probability of win under the optimal stopping rule is
greater than or equal to the optimal value of the optimization problem

(P1) minimise

Vm,N = em(r) + em−1(r) + · · · + e1(r)

(1 + r1)(1 + r2) · · · (1 + rN)

such that 0 ≤ rk for all k ∈ {1, 2, . . . , N}, em(r1, r2, r3 . . . , rN ) ≥ 1, em(r2, r3 . . . ,

rN ) ≤ 1.

In the rest of this paper, we denote (r2, r3, . . . , rN ) by r−1 for simplicity. The objective
function of (P1) becomes

Vm,N =
∑m

j=1 ej (r)

(1 + r1)(1 + r2) · · · (1 + rN)

=
∑m

j=1(ej (r−1) + r1ej−1(r−1))

(1 + r1)(1 + r2) · · · (1 + rN)

=
∑m

j=1(ej (r−1) − ej−1(r−1)) + (1 + r1)
∑m

j=1 ej−1(r−1)

(1 + r1)(1 + r2) · · · (1 + rN)

= (em(r−1) − 1)/(1 + r1) + ∑m−1
j=0 ej (r−1)

(1 + r2) · · · (1 + rN)
.

If we fix variables {r2, r3, . . . , rN } to the values of a feasible solution of (P1), the minimum
of Vm,N is attained by setting the remaining variable r1 to the value defined by min{r1 ≥
0 | em(r) ≥ 1}, since every feasible solution r satisfies em(r−1) − 1 ≤ 0. Thus, problem
(P1) has an optimal solution r∗ satisfying em(r∗) = 1, or, equivalently, m

√
S(r∗) = c∗, where

c∗ = (
N
m

)−1/m
. Applying this to Maclaurin’s inequalities in Lemma 1 with r replaced by r∗

yields
ek(r

∗) ≥ ak for all k, 1 ≤ k ≤ m,

ek(r
∗) ≤ ak for all k, m + 1 ≤ k ≤ N,
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where

ak =
(

N

k

)
ck∗ for all k, 1 ≤ k ≤ N.

Let V ∗
m,N denote the optimal value of (P1). From the above equality, we obtain an upper

bound of 1/V ∗
m,N as follows:

1

V ∗
m,N

= (1 + r∗
1 )(1 + r∗

2 ) · · · (1 + r∗
N)∑m

k=1 ek(r
∗)

=
∑N

k=0 ek(r
∗)∑m

k=1 ek(r
∗)

= 1 + 1 + ∑N
k=m+1 ek(r

∗)∑m
k=1 ek(r

∗)

≤ 1 + 1 + ∑N
k=m+1 ak∑m

k=1 ak

= 1 + ∑N
k=1 ak∑m

k=1 ak

= 1 + ∑N
k=1

(
N
k

)
ck∗∑m

k=1 ak

= (1 + c∗)N∑m
k=1 ak

.

This implies that V ∗
m,N ≥ ∑m

k=1 ak/(1 + c∗)N . It is easy to see that problem (P1) has an
optimal solution r1 = r2 = · · · = rN = c∗ whose corresponding objective value attains
the abovementioned lower bound, and, thus,

V ∗
m,N =

∑m
k=1 ak

(1 + c∗)N
.

Finally, we consider a lower bound that is independent of N . Obviously, we have

V ∗
m,N =

∑m
k=1 ak

(1 + c∗)N
≥ e−Nc∗

m∑
k=1

ak = exp

(
−

(
N

1

)
c∗

) m∑
k=1

ak = e−a1

m∑
k=1

ak.

The greatest lower bound of the probability of win (under the optimal stopping rule) is nonin-
creasing with respect to N . Thus, limN→∞ V ∗

m,N gives a general lower bound. Since

ak =
(

N

k

)
ck∗

=
(

N

k

)(
N

m

)−k/m

= N !
k! (N − k)!

(
(N − m)! m!

N !
)k/m

= (m!)k/m

k!
N !

(N − k)! Nk

(
(N − m)! Nm

N !
)k/m
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= (m!)k/m

k!
(

1 − 0

N

)(
1 − 1

N

)
· · ·

(
1 − k − 1

N

)(
1

(1 − 0/N) · · · (1 − (m − 1)/N)

)k/m

→ (m!)k/m

k! as N → ∞,

we obtain

lim
N→∞ V ∗

m,N ≥ lim
N→∞

(
e−a1

m∑
k=1

ak

)
= exp(−(m!)1/m)

m∑
k=1

(m!)k/m

k! .

This completes the proof.

The above theorem gives the very interesting result that our lower bound of the probability of
win for the multiplicative odds problem is attained using the lower bound for the corresponding
secretary problem (shown by Tamaki [4]), which is a special case of the multiplicative odds
problem.
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