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Averaging and integral manifolds (il)

K. J. Palmer

In the first part of this paper (written jointly with W.A. Coppel)
the existence and properties of an integral manifold were

established for the system

z' -f(ta x, y)

y

Alt)y + g(¢, =, y)

where f and g are "integrally small". In this second part of
the paper the stability properties of the integral manifold are
investigated. Solutions are found which are bounded on the
positive half of the real line and it is shown that these
solutions approach the manifold exponentially and, moreover, that

they are asymptotic to particular solutions on the manifold.

1.

This paper is a continuation of Coppel and Palmer [1]. We consider

once more the system of differential equations

x! =f(t: Xy y)
(1)

y' =A(t)y+g(t’ X, y) >
where x € H" s, Y € R , ' =4d/dt , and where the linear equation
(2) y' = Aty

has a fundamental matrix Y(¢) such that
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I.Y(t)P.Y—l(S)I —20t(t—s)

1A

Ke for t2zs ,

(3) -20(s-t)

1A

|7(£)(1-P)Y L(e) | = ke for s =t ,

where the matrix P is a projection and KX, o are positive constants.
However, instead of supposing this system to be defined on the whole real

line we now suppose it to be defined on a half-line [T, ©) . This enables
us to impose & 'partial' initial condition on y . Given a vector £ € Rm

and a vector n € R' we look for a solution (%) = x(t, £, n, T) »

y(t) = y(t, €, n, 1) of (1) such that y(f) is bounded and

z(t) =&, P(tly(t) = P(1)n ,

where P(T) denotes the projection Y(T)PY_l(T) . For each fixed T, §

the set of all points y(T, £, N, T) defines a submanifold of 1‘?7Z , of
dimension equal to the rank of P , such that only solutions starting from
this submanifold remain bounded. The argument of [!] carries over to the
present problem with some complication but without essential change, so
much of the detail will be omitted. However the treatment of [I1] is
improved in that no use is made of the roughness property of exponential

dichotomies (Lemma 2 of [1]). This means that everything carries over to

the case where Em and Rn are replaced by arbitrary Banach spaces. In
§3 the present results are used to discuss the stability of the integral
manifold considered in the previous paper. The concluding section contains
a discussion of related work by other authors and some remarks on the

smoothness of the integral manifold.

We again set
-B(t-1)
i1 = swe B jren1}
=1
The following two lemmas correspond to Lemmas 4 and 5 of [1] and are

proved in a similar way.

LEMMA 1. Let A(t) be a continuous matrix function such that the
linear equation (2) has a fundamental matriz Y(t) satisfying (3). If
F(t) is a continuous vector function such that ||fll < » , where

|B8| < 20 , then the inhomogeneous equation
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(%) y' = A(t)y + £(¢)

has a unique solution y(t) such that P(t)y(t) =0 and |yl < = .
Moreover

lyll < {(2a+s)‘l R (2a-s>‘l}Kufn :

Thus if |B| = a then

MEETE P

The solution y(t) is given explicitly by

t
y(t) = [ y(t)Py'l(s)f(s)ds - j: Y(t)(ILP)Y-l(s)f(s)ds .
T

If we add Y(t)PY_l(T)n to the right side we obtain the unique solution
y(t) of (L) with P(t)y(t) = P(t)n and |y <.

LEMMA 2. Let A(t) be a continuous matriz function such that
|A(t)| =& for t =1, where N =1, and suppose the linear equation (2)
has a fundamental matrixz Y(t) satisfying (3). If f(t) is a continuous
vector function such that

B(t-T)

= re

t+h
\J f(s)ds
t

for 0<h=<1 and t =1, where |B| < 20 , then the inhomogeneous
equation (4) has a unique solution y(t) such that P(1)y(t) =0 aud

flyll < = . Moreover

- 1 1 N N
lyll = {1—e'(2“+8) + l_e_(2d:éj—+ 5a+p * 2a_8}KP .

Thus if [B| <a then

(2y + %- i) er

YWNKyr

llzl

A

1A

where Yy = (l—e-a)

We impose the same conditions on the system (1) as in the previous
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paper, except that the functions involved need only be defined for ¢t =T .
That is, we assume f and g are continuous vector functions with

continuous partial derivatives in & and y such that

[f(t,x, y)ISN’ Ig(t’ x’y)ISN’
(£ (e, =, y)] =0,

Ifx('b, Ty, Y1) - fx(t, 23, ¥2)| = Llxy-2] + |y1-421]

where N Z 1 , and the same inequalities with fx replaced by fy s Gy s

gy . Furthermore we assume

t2
” gz, =, 0)dt| <q for all =z if |[t,-t,| <1,
t)

and the same inequality with g replaced by f:c s g.. s gy . Finally we

x
suppose that A(f) is a continuous matrix function, with |A(t)| =¥ ,
such that the linear equation (2) has a fundamental metrix Y(¢)

satisfying (3). Under these assumptions we will prove

THEOREM 1. For any B(0 <B < %ot} there exists a positive constant

U= uo(IV, K, L, a, B) such that if u = u, and if

o
=q (N, K, L, a, B, u) then for any vector n with |n| < u/LX the
q =4,

system of differential equations

x f(t’ X, y)

(1)

y' = ARy + g(t, =, y)

has a unique solution xz(t) = x(t, &, n, 1), y(t) =y(t, &, n, 1) for

which
(5) z(t) =€, P(O)y(t) =P(t)n, |y(t)| =u for t=1.

Moreover the partial derivatives T s X oos Yoo Yy exist and satisfy
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log (£, €, n, 1] = 280577 |z (t, €, n, ) = ocxePET) |

A

C-leB(t-T) 2KeB(t~T) i

ly (¢, &, n, 1)

1A

2 R |yn(t, g, n, 1) =

|x€(t, El’ N1, T)'xg(t: 52: N2, T)l = CDDE}—gzI+CK|n1"n2|]eEB(t_T) )

Iyg(t, €15 N1, T)-yg(t, 2, Mz, T)| = D[|£1—Ez|+CK|n1—n2|]e26(t'T) R
lmn(t: 1> 1, 1)z (£, €25 N2, )| = cZDK[]gl_gz|+CK|n1_n2|]223(t-T) ,
lyn(t’ &> M T)’yn(t’ €2, N2, T)| = CDK[|€1-52|+CK|n1—n2|]eZB(t_T) s

where ¢ = WW(1-e P} and D = 8r(we20 k) .

Set

ve (87, R=lmkale® , y= (1971,

and choose uo > 0 so that
6huoLNC(R+Y) <1.
Next for any u (O <u= uo) we choose Po > 0 so that
6up NC(R+v) =1, 2bp (1+u)YN2K = .
Then we take
3, = % pZmin] i)Y, (o n2) ]

Let x(t) and y(¢t) bve continuously differentiable functions such
that

(6) ' (&) =/, |y(&)] =u, |yp' )] = (1+u)¥ for t=1 .

Put
. t
xz(t) = & + J fle, =(s), y(s)]ds
T

and let y(£) denote the bounded solution of the equation
g' = Alt)y + g[t, =(¢), y(¢)]

such that P(1)y(1) = P(1)n . Such a solution exists and is unique, by
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Lemma 1 with B = 0 . If we write

£t @, y) = f(¢, 2, 0) + f (£, =, O)y + F(¢, =, y)

(1)

g(t, =, y) = g{t, =, 0) + gy(t, z, 0y + G(¢, =, y)
then
IF(ts X, y)l < %‘Llylz s lG(t, X, y)l = %’Llylz s

and if |yi| =u, |yo| =u

|F(t, =1, y1) - F(t, 22, y2)| = 2uL[|x~=2| + |y1-y2]] »
|G(t, 1, y1) - G(t, x5, yo)| = 2uL[]ay-x,| + |y1—yzl] .

Thus
l6[t, =(t), y(&)]] 5%112[, i

For |ty~t;| <1 we have, by Lemma 3 of [1],

1]
U gt, =(¢), o]ds

<<
sp
t, °

and, by Lemma 7 of [/] with B =0 ,

= plu + (1+)} .

t2
” g [t, =(¢), oJy(t)dt
t, Y

Therefore, since ¥ =1 ,
ts '
Htl {g[t, x(t), 0] + gy[t, z(t), O]y(t)}dt‘ < (1+u)amp,

It follows from the present Lemmas 1 and 2, with B = 0 , and from the

superposition principle that

1A

l7(¢)] |Y(t)PY—l(T)n| + % n2r.0" K + (l+u)2Npo.(zy+Na_l]K

IA

K|n| + 2 u2yKL + 6(14u)yW%Kp
1
= D,l + ‘:ll:p + ‘i“u = HLI .

(1+u)F , and it is obvious that |z'(¢)]| < ¥ .

1A

Hence |y'(¢)]
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For a fixed B such that 0 < B =0o 1let B denote the set of all
pairs (x, y) , where x = x(t) and y = y(t) are continuously
differentiable functions for ¢ = Tt with || + Jje'll + Jlyll + lly'll < = .

The set B becomes a Banach space if we define

(x1+w2, y1ty2) = (21, y1) + (%2, ¥2)
Mz, y) = O, Ay)
[, )| = Dl + vl + cllyll + vyl

where Vv, ¢ are the positive constants defined above. The set S of all

pairs (x, y) in B satisfying (6) is a closed subset of B and, by what
we have just proved, the transformation T : (x, y) > (%, y) maps S

into itself. We show next that T 1is a contractionon S .

Let (x;, y1) and (a3, yo) be any two points in S , and let

(él, g1) and (x,, 42) be their images under T . We set
(z, w) = (1, y1) - (@25 y2) » (2, ©) = (X1, y1) - (%2, ¥2) -

Then

t
z2(t) = f {f[s, z1(8), y1(s)] - fs, zals), yz(S)]}ds .
T
By exactly the same argument as in the previous paper it follows that

2

A
2"l

IA

H{suLU|z||+nwn] + Wl + pofuzn+nz'nj} ,
wllzl + at]

IA

vhere H = (l—e-B)_l . The difference w(t) = y1(£) - y,(t) is a bounded

solution, with P(T)@(T) = 0 , of the equation
2' = Alt)w + o(t) + W(E) ,

where

o(t) = g[t, =1 (), 0] - g[t, x2(t), O] + gy[t, xy (), OJuw(t) ,
W(e) = e[, z1(t), y1(8)] - G[t, xa(t), ya(t)]

+ {gy[t, xy(¢), 0] - gy[t, xp(t), OJ}yz(t)
It follows at once that

()| = 3ucfla(e)| + Jw(e)]] .
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Also, using Lemma 7 of []] we obtain for 0 =h =1

t+h
J o (s)ds

= PoB'l(eB_l)[Hz”+“zv”+”w”+”w»”]eﬁ(t-r) .
t

By Lemmas 1 and 2 and the superposition principle it follows that

1]

1A

oo -
2 o7k 3un [Nzl +loll] + bkyp 87 (P-1) [Hall+la’ l+lholl+1ho 1]

1A

-1
hamurk [Nzl +wll] + poR[HzIMIz’II+IIwII+Ilw'H] .
Also
o'l = mlwll + w{lzl+hl]
Combining these estimates and using the inequalities imposed on M and po

we get
|2, 5)] = 3]z, 0]

Thus the mapping T 1is a contraction. Its fixed point is the required

solution x=(t, &, n, 1) , y(t, &, n, 1) .

If (xy, y,) and (xy, yo) are the fixed points corresponding to the
initial values (&1, n;) and (£y, np) respectively we obtain in the same

way
|[(z, w)| = |&1-E2| + cKk|n1-nal + %I(z, w) |,

and hence

(8) [(z, w)| = 2]|g1-&,| + 2¢K|ny-n,| .
Thus
lz(t, €15 M1y T) - z(t, &2, Ny, T)| = 2[|E1-E2] + CKlnl_nzljeB(t—T) ’

1A

|y(t’ E;19 N T) - y(t3 EZa N2, T)l 2[0-1|£1'£2| + Klnl_n2|}es(t-T) .

Similarly let ({z,, y1) and (x,, y¥2) be the fixed points
corresponding to the initial values £, n at times T and T+h
respectively, where h > 0 . If ve again set (z, w) = (x1, y1) - (x2, y2)
then
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T+h
a(t) = I fles xals), yals)]ds

T

¢ .
+ J {f[s, x1(s), yi(s)] - fls, xy(s), yz(s)J}dS
T

and
-1 -1 T+h -1
w(t) = Y(t)P[Y (1)-¥ (T+h)jln + J ¥(t)PY " (8)g[s, x2(8), ya(s)]de
T
¢ 1 ® 1
+ I Y(£)PY ~(s)g(s)ds - J Y(¢)(I-P)Y " (s)t(s)ds ,
T t
where
g(t) = g[t, @1(¢), y1(2)] = g, @2(£), yale)] .
We have

A

T+h
J fle, za2(s), ya(s)]ds K,

T

T+h
‘Y(t)P[Y'l(T)—Y_l(ﬁh)] ‘ J y(t)Py'l(s)A(s)ds
. T

1A

T+h
J KeN(s_T)Nds
T

= KNeNhh ,

and similarly

< KNeNhh .

T+h 1
J Y(t)PY (s)g[s, x2(s), ya(s)])ds
T

It follows that

hy,

(9) [(z, w)| = 2wn + uerne’
Thus

B(¢-1)

A

|z(t, €, n, T+h) - x(t, &€, n, T)| = 2N(1+20Kelvh)he

ly(t, €, n, T+h) - y(¢, &, n, T)] = %(1—e'6) (l+2CKeNh)heB(t_T) .
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This shows, a posteriori, that if 0 < h =< ho , the solutions

x(t, &€, n, 1+h) , y(¢, £, n, T+h) can be continued over the interval

[t, T+h] without leaving the region |y| < u .

2.

To prove the existence and Lipschitzian nature of the partial

derivatives we consider first a linear system of differential equations

x' = Fy(e)e + Fp(t)y + x(¢)

(10)

y' = Gi(t)x + @(t) + Gz(t)]y +r(t) ,
on [T, ®) , where the matrix functions Fk’ Gk (k =1, 2) are

continuous and bounded by N , and the vector functions X, T are

continuous with ||x|| < © , J|g]] < . We assume also that for
lto-t1] =1

to ty t2
(11) H Fl(t)'it‘, J Gl(t)dt‘, U Gy(t)dt| < v .

3 t) t)
We wish to show that if » is so small that
(12) 32NC(R+v)r =1 ,

then the system (10) has a unique solution z(¢) , y(t) in B such that
z(1) = & and P(1)y(t) = P(1)n .

For any (x, y) in B set
A t
HOPER' j Py (s)z(s) + Fpls)y(s) + x(s)}ds
T

and let y(£) denote the unique solution with P(1)7(T) = P(t)n and

”g” < o of the equation
7' = A(t)y + Gy (B)a(r) + Go(£)y(E) + g(t)

Using Lemma 2 and proceeding as in [1] we obtain, with the same notation

as above,
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121t < erzli+liz"1] + w8~ ,

Izl = wfllzli+l] ,

ol < wwryes™ (ef-1) [itzli+liz" f+wll+ o' 1]
= rr[llzll+tz I+wii+lw' 1]

o'l < a[IBN+Nz0+ll]) ,

and hence
|, 5)] = 3|(z, )]

Therefore the mapping (x, y) = (z, g) is a contraction, and the result

follows. Moreover the solution x(t) , y(t) satisfies the inequality
~ -1
(13) [z, )| = 2]g] + 2ckin| + ¥ Lol + 2(2a” cx+v) Nzl .
If

Pi(t) = £, [¢, =(¢, €, n, 1), ylt, &, 0, T]

Fﬂt)=fyﬁ,x(h E, M 1), ylt, &, m, 1))
G1(t) =g [t, =(t, €, n, 1), ylt, &, 0, D))
Gy(t) = gy[t, z(t, £, n, 1), ylt, £, n, T)] ,

then we can take r = Pyt uoL and the inequality (12) is satisfied. Let

X1(t) , Yi1(t) denote the corresponding solution in B of the matrix

system

X' = Fi(e)x + Fo(t)y

(1k)

Y= G (t)x + [4(t) + Go(¥)]y

with X,(1) = I, P(1)¥;(1) = 0 . Then by (13),

(15) lx1ll + clinyll =2 .

As in [1] we can show that the partial derivatives mg(t, £, n, T) ,

yg(t, £, n, T) exist and equal X;(t) , Y;(¢#) respectively. Similarly,

if Xp(t) , Y(t) is the solution in B of (1h) with X,(t) =0,
P(1)Y5(7) = P(1) then

(16) X0l + Cliyall = 2ck
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and we can show that the partial derivatives xn(t, Esm, T) ,
yn(t, &, n, T) exist and equal X,(¢t) , Y,(t) respectively.
It remains to show that the partial derivatives satisfy Lipschitz
conditions. If we set
(e =a (¢, & n, 1), N(E) =y (¢, &, 1)

then (2, W) = (X, ¥;) - (%1, il) is the solution in B of a system
(10) with

[FL(£)-F ()] () + [Fa(£)-Fp(£)]7,(8)
[61(£)-C, (£)]x1(2) + [G2(£)-Go(£)]F1(2)

x(¢)
g(t)

By (8) and (15)

Ix(&)]» lee)| = Llla(e) [+|w(e) ] [1X () |+]F1(£) ]
< LL[|e-E| + ck|n-n|]e2B(T)
Put
i#1l2 = sup {22 r0 )
t=1

Since Z(1) = 0 and P(T)W(T) =0 it follows from (13) that

zliz + caliwll, =< 202(1V—l+20l-11<]-hL[IE-g|+CK|n-T~1|] .

Therefore, since Cj = hN(l-e—2B)-l =Cc,

28(t-1)

IA

cn[|e-E|+ck|n-n|]e
o[|&-E [+ck|n-n]]2B(E-T)

|x£(ts E, n, T) - xg(ts gs n, T)I

A

Iyg(t, E, T‘l, T) - yg(ts gs n’ T)I
The Lipschitz conditions for xn , yn are proved similarly, and thus the

proof of Theorem 1 is complete.

In the same way, for any A (0 <h = ho) the functions

z(t)

xi(t’ ga N, T) - xg(ts g, N, T+h)

w(t)

n

yg(ts ga N, T) = yg(ts E, N, T+h)

are the solutions of a system (10), where by (9) and (15)
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Ixli2s ligls = hLN(1+2CKeNh)h .
Since the coefficients of (1k4) are bounded by- N the scalar function
Me) = |[X1(t)] + 2]|¥,(¢)]
satisfies the integral inequality
T+h
A(£) < A(T+h) + 30 Jt As)ds -

Moreover A(T+h) =2 by (15}, and so by Gronwall's inequality

2e3N(T+h-t)

A(e) = for T =<t < T+h .
Since
. ™+h . .
z2(t) = I - X(1) = J (F1X1+F,Y )dt
T
it follows that
T+h
(17) lz(t)| = m J 230 (T+h=t) 30 < oy 3Why
T

Similarly we obtain

3Nh

|¥) (t+h)-F, (1) | < 20> .
We have
P(T)W(T) = - P(1)¥1(1)
= P(1) [F1 (140)=F1 (1)) - [P(1)-P(1+)] ¥, (1+h)
and

P(1) - P(1+h) = [I_y(nh)y_l(r):lP(T) - P(T+h)[I—.Y(T+h)Y-l(T)]

Since |P(1)] s X and

T+h 1
J A(E)Y ()Y (T)dti

}y(r+h)y‘1(r)-1|
T

<

T+h
J NeN(t-T)dt

T

= Nelvhh >
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it follows that

[P(r)w()| = 2nke3 ™ + 2wke™n| 7, (vh) |

But by (15), |¥,(t+h)| = 2c7t < % . Hence

(18) [P(T)w(t)| = 3wke3n
It now follows from (13) that for 0 <% =< ho (=1) .
H2ll2 + Coliwlia = O(R)

where the constant involved in the O-notation depends only on
N, XK, L,a, 8. Thus, for 0 =h = ho ,

|2 (£, €, n, TR) = z(5, €, n, O] = 0w

(19)
|yg(t, g, N, T+h) - yg(t, £, n, T)l = O(h)e26(t—’r) .

Similarly'we obtain

lxn(ts g: n, T+h) - xn(t’ g’ n, T)l = O(h)ees(t—'f)

H

(20) 28(¢-1)

ly, (¢, €, n, T#h) ¥, (¢, & n, 1) = 0(h)e

Now let us look at the function
¥(t, &, n) = y(t, &, n, T)
We have
[w(t, &, n)| =u,

the partial derivatives wg’ wn exist and

b (r, €, m)| sec™, u (x, & )] s ek,
|¢€(T, £15 m) - ¥ (1, &y, n2)| = D[l&1-€,|+ck]ny-n, ]

lwn(Ta €1, Ny) - ¢n(T, £, n2)| = CKD[[E1-&2|+CK|ny-n,|] .

IA

We now show that the partial derivatives xT(t, £, n, T) and
yT(t, £, n, 1) exist. Let x3(t) , y3(¢t) denote the solution in B of

the vector system (1b), with
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- f[T: g’ W(T, E,:, n)] 3
- P(r){A(T)n +g[t, &, ¥, &, n)]} .

xz3(1)

P(t)ys(T)

By the superposition principle and the initial conditions for the partial

derivatives xg, yg, xn, yn we have
x3(t) = = xg(ta g, T], T)f[T, gs ‘P(T, Ey n)]

-z (¢, & n, T){A(T).n +gft, & ¥, &, n)]}

(21)
y3(t) = -y, (¢, €, n, T)f[t, &, v(t, &, )]
- yn(t, &, n, T){A(T)n +g[r, &, wit, &, n)]} .
Put
z(t) = x(¢, £, n, T+h) - =(¢, &, n, T)
w(t) = y(t, €, n, Th) - y(¢, &, n, 1),
and set
o(t) = a(t) - hx3(t) , (&) = w(t) - hys(t) .
Then
o' (t) = Fi(t)e(e) + Fo(e)p(e) + x(¥) ,
V() = G (t)e(t) + [A(E)+G,(2)]u(e) + t(e) ,
where

Ix(e)], fe@)| = Llz(e) |+]w(2)[]2 .
Therefore, by (9),

Ixll2, llgllz = o(k%) for h =0 .

We have
o(t) = z(t, £, n, k) - £ + fl1, &, (1, &€, M)A
P()(r) = P(x)y(t, €, n, T+h) = P(T)n + P(T){A(T)n+9[T, £, vix, £, n>J}h.

Now, by (9),
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T+h
fls, z(s, £, n, t+h), y(s, £, n, 1+h)]ds

z(1, £, n, T+h) - &
T

~

T+

f[s, £, ¥(t, €, n)]ds + 0(k2)

T

[t, & v(t, &, n)]h + o(h) .

T+
J fls, =(s, €, n, 1), y(s, &, n, 1)]ds + 0(h?)
-7

Also
y(t, £, n, 1+h) = ¥(£)PY L (1+h)n

J Y(t)Py” (8)9[3 x(s, &, n, w+h), y(s, £, n, T+h)]ds

J Y(t)(I-P)Y l(s)g[s, x(s, £, n, T+), y(s, &, n, T+h)]ds

and hence
P(t)y(t, &, n, T+h) = P(T)¥(1)¥  (t+h)n

T+h
- J 0Py Hs)gls, =ls, £, n, T+h), y(s, &, n, T+h))ds .
T

Since

()Y L(t+h) = I - A(T)R + o(h)
it follows that
P(t)y(t, &, n, t+h) = P(1) [ZI-A(T)k]n - P(T)g[r, &, ¥(t, &, n)]h + o(h) .

Thus ¢(T1) = olh) , P(t)P(t) = o(h) . Applying the inequality (13) we

obtain

llelliz + Callvll = oln) .

By the definition of ¢ and ¢ this shows that the partial derivatives
x (t, & n, 1), y (¢, &, n, 1) exist and equal =3(¢) , y3(¢)

respectively.

It follows that wT(T, £, n) exists and, by (21), is equal to
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A(y(t, &, n, 1) + g[t, =(T, &, n, 1), y(1, & n, 1)]
-y (1, &, Of[x, &, ¥(t, &€, n)]

-y, (1, & m, T){A(T)mg[n £, vit, &, n)]} .

Hence ¢(t, £, n) is a solution of the partial differential equation
(22) y + b flr, £, ) + ¢ {A(Tntg (T, &, 9)} = A(T)Y + glT, £, ¥) .
We can now conclude that

lp_(t, &, n)|
IwT(T’ El’ nl) - wT(T’ €2a n2)|

o(1) ,

o[l&1-€2[+[m-n,|] -

Also
¢€(T+h, g, n) - wE(T’ Ea n) = yE(T+ha g, n, T+h) - yE(T, £, n, T+h)
+ yE(T’ Es N, T+h) - yg(T, E, N, T) .

From the differential equation satisfied by yg and from (19) and (15)

we obtain for 0 =< h < ho

IyE(T+h, £, n, T+h) yg(T’ £, n, T+h)|

1A

T+h
IVJ [lxe(s, £, n, T+h)|+2|y€(e, £, n, T+h)|]ds
T

T+h
n J [ng(s, £, n, T)|+2|y€(s, £, n, 1)|]ds + 0(n)
T

o(n) .

Therefore, by (19) again,

o, (1+h, £, n) - ¢ (1, &, n)| = o(n) .
£ 3

This inequality has been established for 0 < h = ho but then extends,
with the same constant, to arbitrary % > 0 . Similarly we have

lo, (t+h, £, ) -9 (1, &, )| = o(h) .

The four Lipschitz conditions show that wg’ wn are continuous functions

of (t, &€, n) , and hence ¥ is also by the partial differential
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equation (22).
Altogether we have proved

THEOREM 2. Under the hypotheses of Theorem 1 there exists a bounded
continuous function Y(t, x, y) defined for t =z 1, |z| <=,

ly| < w/bk with bounded continuous partial derivatives such that by
satisfies a Lipschitz condition in (x, y) and Voo ¢y satisfy Lipschitz
conditions in (t, x, y) . This function has the property that if «(t) ,
y(t) <Zs a solution of the system

x' = f(t, X, y)
(1)

y Alt)y + g(t, x, y)

for which x(1) =&, |y(1)| < wbk then |y(t)| su for t =1 if and
only if y(t) = Y(1, &, n) for some n such that |n| < w/4K .

For each fixed pair (1, £) the set M(t, £) of all points

¢(t, €, n) with |n| < w/bK is a Cl-submanifold of R’ with dimension
equal to the rank of P . In fact, since y(t, £, n;) = ¥(1, £, np) if
P(t)n; = P(1)n, we can restrict attention to n such that P(t)n =n .
Then the mapping n + Y(T, £, n) is continuously differentiable and,
since P(t)Y(T, €, n) = n , it has a continuously differentiable inverse.
Thus M(T, £) is the diffeomorphic image of the intersection of the ball
[n| < w/bK with the subspace of n satisfying Pn =n .

3.

We suppose now that the system (1) is defined and satisfies our
assumptions over the whole real line. Then, as shown in []], the system
(1) has an integral manifold y = v(¢, x) , where v is a bounded
continuous function with bounded continuous partial derivatives. We will
first derive more precise estimates for the function v and its partial

derivative v, than were given in [1].

The function y(t) = y(¢t, £, 1) is the unique bounded sclution of

the equation
y' = Aty + o(E) + ¥(E) ,

where
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o(t) = g[t, =(t, &, 1), 0] + gy[t, z(t, &, 1), Oy(t, &, T) ,
W(t) =6, =(t, &, 1), y(t, £, 1)] .
For any f‘unctior; F(t) write
71 = o Ei€3]

Then

1
lvl = 5uclyl -

Also, by Lemma 7 of [1] with B =0 ,

tth
J ¢{s)ds
t

=py + pollyl + [y')

for |h| <=1 and either t=2T1T,h>0 or T2 ¢%t, h<0 . So, by Lemmas
4 and 5 of [1] with B = 0 , and by the superposition principle,

-1 1
lyl = o™ k.5 wly| + smryp (1+[y|+ly']) -

Since |y'| = W(|y|+1) it follows that

[yl S%u—luLKIyl + 802Kyp (1+]y|)
< %Jyl + 8V%KYp, -
Therefore
(23) ly(t, &, T)] = 16YN2Kp for all t, &, T .

Similarly, if we set
z2(t) = x2(t, €1, 1) - 2(¢, &, 1) , w(t) =y(t, &1, 1) - y(t, &, 1)
then w(t) is the unique bounded solution of an equation

w' = A(th + o(t) + ¥(t) ,

wvhere, by (23),

=y
<+
A

< wevw2kap [la() |+[w()[] ,

and
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t+h
IJ ¢(s)ds

‘ < pOB'l (eB_l) [”z||+”3' 1+l + " ”]es(t—'f)

for |h| =1 end either ¢ 21T,k >0 or T2¢, h<O0 . Hence, by
Lemmas 4 and 5 of [1],

loll = 6p R2L[N=l+Iwl] + p R [lzl+lz" I+lwll+ko" ] .

But by (15) of (7]
lizll + [l = 2[€1-E5] «
Since
Ha'll = wlllzl+ol] 5 o'l = 2w [lizl+ll]
it follows that

lwll = hpoR(3RL+21v)|gl_52| )
Hence
(2 ly (¢, & O] = hpoR(3RL+21V)eBIt"T| )

From (23) and (24) we obtain in particular

(25) lv(T, &)] = 16ylV2Kpo ,

(26) IUE(T, g)| = LR(3RL+2N)p,

It will now be proved that the solutions considered in Theorem 2 of
the previous section all converge exponentially to the integral manifold
y =v(t, x) as t+o, Let x(t) , y(t) be a solution of (1) such
that |y(t)| =y for ¢t =T . By the partial differential equation which
v satisfies, (29) of [13,

dv[t, =(¢)]/dt v [t 2(6)] + v [t, 2(8)]e' (2)

alt)w[t, =(t)] + g{t, z(t), v[¢, x(t)]}
- vx[t, x(t)]f{t, z(t), v[t, x(t)]}
. vx[t, x(t)]f‘{t, z(t), y(t)} .

Therefore, if we put
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z(t) = v[t, =(t)] - y(e) ,
we will have
z'(t) = A(t)a(t) + g[t, x(2), y(t)+a(t)] - gt, =(¢), y(¢)]
- v [¢, x(t)]{f[t, x(t), y(t)+a(t)] - Flt, =(¢), y(t)]} .

Thus z(t) is a solution of the equation

z' = A(t)z + w(t, z) ,
where
n(t, z) = g[t, =(t), y(t)+2] - gt, «(¢), y(£)]

- vx[t, x(t)]{f[t, x(t), y(t)+z] - f[t, =(¢), y(t)]} .
The function A 1is continuous, vanishes when 2 vanishes, and has a
continuous partial derivative hz . Moreover, the properties of v
established in [!] imply that
ln,(t, 2)| =an,

lhz(t, z) - hz(t, 35)| = 2Lla;-2;| »

while by (26) above
7]
\f h_(t, 0)dt} = 0(1)p. + O(1)u_ for Itz-t1| <1.
£ 2 0 0
If we set
hit, z) = hz(t, 0)z + H(t, z)

then |H(t, z)| = L|z|2 . It follows from the Lemma proved below that

with a suitable choice of ¥y and 9
|z(£)]| = hKe—a(t-s)Iz(s)I for t2s27T,
that is,

(27)  |y(e)-v[t, z(£)]] = hKe-‘a(t-s)|y(s)—v[s, z(s)]| for tzsz=r1.

LEMMA 3. Let A(t) and B(t) be continuous matrix functions with
la(e)| =wv, |B(t)| =N for t =1 and suppose the linear equation (2)
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has a fundamental matrixz Y(t) satisfying (3). Suppose also that

ta
“ B(t)dt| srv for |t,-t,| =1,

t)

and let f(t, y) be a continuous vector function such that

£, y)] = 8lyl -

If the positive constants r, § are so small that r =<1 and
o 2a 1
6 =a K[d + r(3W+6+e ]] =3,
then any bounded solution y(t) of the nonlinear equation
(28) y' = [A@)+B(£)]y + F(t, y)
sattgfies
ly(e)| = h]{e_a(t_s)]y(sﬂ for t=s.

In fact any bounded solution y(t) of (28) satisfies

t
(29) y(2) = ¥(£)PY X(s)y(s) + j Y(t)Py‘1<u){a<u>y<u)+f[u, y(u)]}du

s

- J Y(t)(I—P)Y—l(u){B(u)y(u)+f[u, y(u)]}du .
t

u(t) = sup |y(u)| .
uzt

By integrating by parts in the accustomed way we obtain
* 1 1_-1
” Y(£) (I-P)Y " (u)B(u)y(u)du =5 ra K(3N+8+1)u(t) .
t

Similarly, if s+m < t < gtm+l then

t m .
j Y(t)PY_l(u)B(u)y(u)du =rK } e‘2a(t_8_‘7)|y(s+j)|

8 Jj=o

t
+ rK(30+8) J e'za(t_u)ly(u)ldu .
8
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But if J = 1 then

. 5+
PP fy(oug) | = 2 [T P
s+j-1

Hence

t
J Y(t)PY-l(u)B(u)y(u)du = rKe-za(t_s)|y(s)|
s

t
+ rk(3n+6+e°%) J e 221y ay
s

Estimating the other terms in (29) in the crudest way we cbtain

t
(30) |y(e)]| = (1+r)Ke_2a(t_s)|y(S)| + 6o J e-2a(t—u)u(u)du + %-eu(t) .
s

Choose h > 0 so large that 8Ke_2ah =1 . Then, since U 1is a

non~increasing function, for ¢ = s+h

A

ly(e)] = £ uls) + 5 8uls) + % euls)

< %-u(s) .

Hence W(s+h) < % u(s) , which shows that |y(£)| ~0 as t » .
Therefore for any ¢ there exists t' > ¢ such that
u(t) = uls) = |y(¢')| for t=s=<t'
By (30), with t' 1in place of ¢t ,
-2a(t'-s) t oa(t'-u)
u(t) < 2Ke ly(s)]| + 6a J e wlu)du + 6u(e) .
s

20“‘;u(t) satisfies

Thus o¢(t) = e
20, t

o(2) = 4k |y(s)| + a J o(u)du .
8

Therefore by Gronwall's inequality,

o) = &Kegasly(s)lea(t_s) .
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Hence

ly(£)] = bke™(E8) |y (6)]

Finally it will be shown that the solutions of Theorem 2 are
asymptotic not only to the integral manifold but also to particular

solutions on the manifold. As in [1] let

k(t, z) = f[t, =, v(t, )]
The function k& is continuous and has a continuous partial derivative kx
such that lkxl =2N . Let x(t) , y(£) be a solution of (1) such that
ly(¢)| =pu for ¢t = 1 , and put

Ag) = |yle) - v[t, z(e)]] .
By (27) we have

~a(t-1)

A(t) < bke AM1) for t=T .

Let xn(t) be the solution of the equation

x' = k(t, x)

such that xn(T+n) = x(t+n) . Since

x'(¢) = k[t, z(£)] + &(¢) ,

where

L) = £, z(t), y(&)] - f[t, x(t), v[¢, x(t)]] ,

the difference zn(t) = z(¢t) - x_ . (¢t) has the representation

n-1

{k[s, z(s)] - k[s, xn_l(s)] + Z(s)}ds .

z(t)=f
n T+n-1

Therefore, since |&(%)]| = NA(Z) ,
t

|zn(s)|ds + N J X(s)ds .
T+n-1

t
Izn(t)l = 2N J

T+n=-1

Thus for T+n-1 <t = T+n
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z
|2, ()] < 2 f |z, () |ds + Y IR (1)e™ ™
™*n-1

and so, by Gronwall's inequality,

-1, 2N

(31) |x(t)-xn_l(t)| = Izn(t)] < Yy Re A (1)e™™ .

In particular, for ¢ = 1+n ,

|z, (t+n) - 2, ()| = yIRe@\ (1) |

Therefore, by (15) of [1], for T <t =< T+n

-(a=-B)n )

A

(32) lz,(2) - = (8)] = oy "Be®A(1)e

This shows that the sequence {xn(t)} converges uniformly on any bounded

subinterval of [t1, ®} . Let =z _(t) denote its limit. Summing (32) for

nzm weget for T =¢ = 1+m

A

e, ()2, (£)] = 2y Re@A(x) (1-e™/B) L (0B

hRegNA(T)e_(a'B)m .

1A

Taking »n =m in (31) we deduce that for T+m-1 < t < T+m

l(¢) - x_(£)] = 5Re2M) (1)o~(eB)m
Thus for all t = T

(33) le(t) - = (£)] = sre2 (1) (0-B) (¢-T)

If ve set y_(t) = v[t, xm(t)] then

ly(e)-v[t, ()] + |wlt, z(£)]-v[t, = (£)]]
-(a-8)(2-1)

{A

ly(e)-y (¢)]

o(1)x(1)e
by (27) and (33). Altogether we have proved

THEOREM 3'. Let the hypotheses of Theorems 1 ard 2 hold for
—w <t <w gnd let y =v(t, x) be the integral manifold whose existence
was established in [1]. If =x=(t) , y(t) is a solution of the system (1)
such that |y(t)| =uw for t =1 then
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ly e)-v[t, =(¢)]] =< hKe_a(t_s)ly(s)—v[s, z(8)]| for t=zs=1.

Moreover there exists a solution z _(t), y (t) = v[t, xw(t)] of (1) such
that for t =1

l2(8)-,(8) |+]y(£)-y,(8)] = 01 |y(v)-v[x, =(x)]|e” @B ET)

4,

My first work on this subject was contained in a joint paper with
W.A. Coppel, communicated to the Journal of Mathematical Analysis and
Applications in September 1968. In April 1969 the Editor of the Journal
wrote that they had no record of having received the article. Since the
earlier treatment has now been superseded by [!], it has not been
resubmitted for publication. However, its introduction contained some
motivation for the study of the problem and comparison with related work

which it seems worthwhile to include here, in a slightly extended form.

The method of averaging, for non-conservative systems, was first
applied to some special second order equations by Krylov and Bogolyubov in
1934. Their results were considerably generalized by Bogolyubov in 1945
and given a finished form in Bogolyubov and Mitropolskii [2]. An account
of their methods, with numerous applications, was given by Hale [3] and
[4]. There are three main results. The first says that solutions of the
original eguation and solutions of the averaged equation with the same
initial point remain close over a large, but finite, interval of time. The
second says that if the averaged equation has a constant solution then the
original equation has in its neighbourhood a unique bounded solution, with
the same stability properties. The third, and most remarkable, says that
if the averaged equation has a periodic solution then the original equation
has in its neighbourhood a unique integral manifold, with the same
stability properties. The introduction of moving orthonormal coordinates
near the given periodic orbit reduces the problem to the study of a system
(1). The proofs of these results were rather indirect and depended on

changes of variables combined with smoothing operations.

It was shown by Gihman [5] in 1952, and by others after him, that the

first result is a simple consequence of a theorem about the continuous
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dependence of solutions on a parameter when the variation is not small in
the usual sense but is 'integrally small'. A version of his result will

be presented here, using Lemma 3 of [1].

THEOREM 4. Let f(t, x) and g(t, x) be continuous functions such
that

lf(ta xl)‘f(ts 1‘2)' + |g(t3 xl)_g(ts xZ)I = lel‘xZI )
lg(t, z)| =W,

t
H ’ {Ff(t, z)g(t, z)}dt| = q for |t,-t;]| =1 .
3!

If x(t) and y(t) are solutions of the differential equations
' = flt, x) , y' =g(¢t, y)

for 0=t =17, with x(0) = y(0) , then

lc(t)-y(t)] = pe[’t + p(eLt—l)/L for 0st=T,

)7L

provided gq < %pz(pwlv

If we set h(t, x) = f(¢, =) - g(t, £) then, by Lemma 3 of [7],

=p for Itz—t]| =1.

‘J:z h[é, y(s)]ds

1

Therefore

= p(t+l) .

t
J s, y(s))ds
o
The difference z(t) = x(t) - y(t) has the representation
t t
2(t) = J {f[s, x(s)])-f[e, y(s)]}ds + J hls, y(s)]ds .
(o] [o]

Hence
¢
12(¢)] =<z j |2(s)|ds + p(¢+1) ,
[s]

and the result follows by the extended Gronwall lemma.

https://doi.org/10.1017/50004972700042064 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042064

396 K.J. Palmer

It was shown by Coppel [6] that the second result of the method of
averaging could also be treated, more generally and more directly, as an
integrally small perturbation problem. His use of the roughness of
exponential dichotomies can be avoided, as in the present paper, and the

result thus extended to arbitrary Banach spaces.

The third result, on integral manifolds, has been treated by
different methods by a number of‘authors, e.g. Levinson [7], Diliberto and
Hufford [§1, Diliberto [9] and [10], Sacker [11] and [12], and Kurzwei!
[73]1, [14], [15]. 1In many cases, however, the problems treated are less
general or stronger assumptions are imposed than in the work of Bogo!yubov
and Mitropolskii. Only Kurzweil has treated the problem as one of
integrally small perturbations. The generality of his approach has
perhaps obscured some of his contributions. In particular he showed that
a solution asymptotic to the integral manifold was also asymptotic to a
particular solution on the manifold, which Bogolyubov and Mitropolskii
proved only in a special case. Our proof of this property was modelled on
his. Otherwise this work has been essentially independent of that of
Kurzweil. A detailed comparison of the differences in hypotheses,

conclusions and methods will not be attempted here.

Sacker's main contribution is connected with higher order smoothness
of the manifold. This can also be treated by the present methods. It can
be shown that ¢f f and g have »r continuous partial derivatives with

respect to x and y , the r-th derivatives being Lipschitzian in =z
and y , then for q sufficiently small, 3%v/3x° and 9% /3t3x°"t exist
for 1 =sg=r, Brv/axr 18 Lipschitzian in t and x and Spv/ataxr-l
i8 Lipschitzian in x and contimuous in t . Also, for 1 <s =r ,
|8%v/02%| = 0(1)q27° .

In order to obteain the latter estimates we need the integral
smallness of the higher derivatives. However, it is not necessary to
impose this as an additional hypothesis since it follows from the
assumptions already made. For let us suppose that h(t, x) has a

continuous partial derivative hx(t’ x) such that

lhx(t, xl)—hx(t, x,)| = L|xy-z5| and
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ty
lj h(t, x)dt| < q if |t-t,| <1 .

t)

Then if

R = h(t, x+k) - h(t, z) - hx(t, x)k ,

|R| = L|k|? . 1If we assume ¢ < q%/BL and take k to be any vector
with |k| = q;/2L then for |t,-t,| =1

ty
‘J h_(t, x)dtk’ <29 + L|k]|2
£y z

A

q3/ML + g2/hL = ¢3/2L0 .

Hence

t2
‘J hx(t, x)dt = qi for ltz—tll =1.

t)

This was suggested by Kurzweil [13], Lemma 1.1. It also shows that in [1]

the assumption that 9, is integrally small is redundant.

Finally as a by-product, the present methods yield a generalization
of Bogolyubov's and Mitropolskii's theorem. They assumed that the
averaged equation

z' = EXo(x)

has a solution &£(€t) with period 27m/e such that the variational

equation
a' = x [E(t)]

has (n-1) characteristic exponents with nonzero real parts. This can be
replaced by the assumption that the averaged equation has a bounded
solution £&(et) such that the variational equation has a fundemental

matrix 2(t) satisfying

|2(£)P, 2" (6)| = Me~0(t-8)

1A

if s=¢t,

12(£)P,27 2 (s) | = me~0(6~2)

1A

if szt ,

where M, O are positive constants and P,, P, are mutually orthogonal
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projections such that Py + P, has rank =n - 1 .

Under these assumptions the existence of the integral manifold can be

established and almost periodic properties of &(¢) induce similar

properties in the manifold.
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