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Averaging and integral manifolds (II)

K. J. Palmer

In the first part of this paper (written jointly with W.A. Coppel)

the existence and properties of an integral manifold were

established for the system

as' = / ( * , x, y)

y' = A{t)y + git, x, y)

where f and g are "integrally small". In this second part of

the paper the stability properties of the integral manifold are

investigated. Solutions are found which are bounded on the

positive half of the real line and it is shown that these

solutions approach the manifold exponentially and, moreover, that

they are asymptotic to particular solutions on the manifold.

1.

This paper is a continuation of Coppel and Palmer [?]• We consider

once more the system of differential equations

x' = fit, x, y)
(1)

y' = A{t)y + git, x, y) ,

where x (. if , y (. if1 , ' = d/dt , and where the linear equation

(2) y' = Ait)y

has a fundamental matrix Y(t) such that
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370 K.J. Palmer

I U J ^ ) ! 5 fe-2a(t"s) for t > s

I C H ) " 1 ^ ) ! "201^"*5 for 8 >

where the matrix P is a projection and X, a are positive constants.

However, instead of supposing this system to be defined on the whole real

line we now suppose it to be defined on a half-line [x, °°) . This enables

us to impose a 'partial' initial condition on y . Given a vector £ € if

and a vector I) E S we look for a solution x{t) = x{t, £, T\, x) ,

y(t) = y{t, £,, n, x) of (l) such that y(t) is bounded and

a:(x) = ? , P(T)J/(T) = P(i)n ,

where P ( T ) denotes the projection J(x)P/~ (x) . For each fixed x, £

the set of all points y{t, £, ri, x) defines a submanifold of E , of

dimension equal to the rank of P , such that only solutions starting from

this submanifold remain bounded. The argument of [/] carries over to the

present problem with some complication but without essential change, so

much of the detail will be omitted. However the treatment of [/] is

improved in that no use is made of the roughness property of exponential

dichotomies (Lemma 2 of [7]). This means that everything carries over to

the case where if and R are replaced by arbitrary Banach spaces. In

§3 the present results are used to discuss the stability of the integral

manifold considered in the previous paper. The concluding section contains

a discussion of related work by other authors and some remarks on the

smoothness of the integral manifold.

We again set

\\fI! = sup \e

The following two lemmas correspond to Lemmas k and 5 of [7] and are

proved in a similar way.

LEMMA 1. Let A{t) be a continuous matrix function such that the

linear equation (2) has a fundamental matrix Y(t) satisfying (3). If

f(t) is a continuous vector function such that \\f\\ < °° , where

131 < 2a , then the inhomogeneous equation
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Averaging and in tegra l manifolds 371

CO y' = A{t)y + fit)

has a unique solution y{t) such that P(T)Z/(T) = 0 and \\y\\ < °° .

Moreover

\\y\\ 2

Thus i f |B| 2 a then

\\y || < | oTlK\\f\\ .

The solution y{t) is given explicitly by

y(t) = f Y(t)PY-1{s)ns)ds - f
JT 't

y{t)(I-P)Y-1{s)f{s)ds .

If we add Y(t)PY~ (f)n to the right side we obtain the unique solution

y(t) of (U) with P(T)J/(T) = P(r)n and \\y\\ < °° .

LEMMA 2. Let A(t) be a continuous matrix function such that

\A(t)\ £ N for t 2 T j where N 2 1 ., cmd suppose the linear equation (2)

fazs a fundamental matrix Y{t) satisfying (3). 1/ /(£) is a continuous

vector function such that

tt+h
f(s)ds

t

for 0 5 J i < l and t 2 T , where |B| < 2 a , then the irihomogeneous

equation (h) has a unique solution y(t) such that P ( T ) J / ( T ) = 0 and

\\y\\ < °° • Moreover

Thus if |B| £ a then

\\y\\ < [2y + - (fh)

where y = (l-e )

We impose the same conditions on the system ( l ) as in the previous
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paper, except that the functions involved need only be defined for t > T .

That is, we assume / and g are continuous vector functions with

continuous partial derivatives in x and y such that

[fit, x, y)\ < N , \git, x, y)\ £ N ,

\fx(t, ^i, y\) - f it, x2, j/2)| - ^Cki-^l
 + Î/1 ~i/2G '

where N — 1 , and the same inequalities with / replaced by f , g ,
a; y x

g . Furthermore we assume

t2

git, x, O)dt <q for a l l x if |*2-*ll -

and the same inequality with g replaced by / , g , g Finally we
x x y

suppose that <4(£) i s a continuous matrix function, with | .d(t) | £ N ,

such that the l inear equation (2) has a fundamental matrix Y(t)

satisfying (3)- Under these assumptions we wil l prove

THEOREM 1. For any 0 (0 < g £ -̂ a) there exists a positive constant

\i = u (iV, K, L, a, B) such that if U £ V and if

q £ q (N, K, L, a, B, y) then for any vector n with \r\\ < \i/kK the

system of differential equations

x' = fit, x, y)
(1)

y' = A{t)y + g{t, x, y)

has a unique solution xit) = x(t, ?, n, x) j y(t) = j/(t, £, n, T ) /or

( 5 ) X ( T ) = C , P ( T ) I / ( T ) = P ( t ) n , | i / ( t ) | < v i f o r t > x .

Moreover the partial derivatives x , x } y. , y exist and satisfy
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C n, x) | « 2em~x) , | x n ( t , 5, n, T ) | 3 ( * " T )

£, n, T ) | 5 2 C " V ( t - T ) , |5/n(t, 5, n, T ) |

Hi, T)-ar e ( t , 5 2 . n 2 . t ) | < CD[|?1-?2 |+OT|ni

n i , T ) -» e ( t , C2» n 2 , T ) | < D [ | C i - C 2 | + ^ | n i -

•t € i > 1 i > T ) - 2 / ( £ , C2> n 2 , T ) | :

C = Uiv(l-e )~ and D = 8L(ff~1+2a~ x) .

Set

v = (oilO"1 , R = UfflftTV , Y =

and choose MQ > 0 so that

6k\iQLNC(R+y) £ 1 .

Next for any U (o < \i £ y ) we choose p > 0 so that

< 1 , 2kpQ(l+v)yN2K 5 p .

T h e n w e t a k e

Let a;(t) and y(t) be continuously differentiable functions such

that

(6) \ x ' ( . t ) \ s N , \ y { t ) \ < \ i , \ y ' ( t ) \ £ ( l + p ) i V f o r * > x .

P u t

rt
2/(8)

and let j/(t) denote the bounded solution of the equation

y' = A(t)y + g\t, x(t), j/(t)]

such that P(T)J/(T) = P(T)TI . Such a solution exists and is unique, by
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374 K.J. Palmer

Lemma 1 w i t h 3 = 0 . I f we w r i t e

f(t, x, y) = f(t, x, 0) + f (t, x, 0)y + F(t, x, y)
y(T)

t h e n

and i f

Thus

g{t, x, y) = g(t, x, 0) + g (t, x, 0)y + G(t, x, y)

\F(t, x, y)\ < |

< \i , | j / 2 | - M

, x, y)\ s |

x 2 ,

- G(t, x2,

12/1 —2/2 I

\G\t, x(t), y(t)]\ 5 \

F o r | ^2—*i | £ 1 we h a v e , b y Lemma 3 of [ / ] ,

g\t, x(t), 6]dt

a n d , b y L e m m a 7 o f [ 7 ] w i t h 3 = 0 ,

f * 2 -

g \t, x(t), 0]y(t)dt
is

Therefore, since N > 1 ,

5 pQ{y +

( 1
\g[t, x(t), 0] + g [t, x(t), 6]y(t)\dt
I. it )

< (l+v)2Np .

It follows from the present Lemmas 1 and 2, with 3 = 0 , and from the

superposition principle that

lv(*)| s

Hence £ (l+y)iV , and i t is obvious t h a t | x ' ( t ) | < N .
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For a fixed B such that 0 < B 5 a let 8 denote the set of all

pairs (x, y) , where x = x(t) and y = y(t) are continuously

differentiable functions for t > T with ||x|| + ||ar' || + \\y\\ + \\y'\\ < °° .

The set 8 becomes a Banach space if we define

( x i + x 2 , Vl+Vz) = (*l> hi) + ( z 2 , yz)

M x , y) = (Ax, Xy)

| ( x , iy)| = ||x|| + vlk11| + C\\y\\ + v||z/'|l ,

where V, C are the positive constants defined above. The set S of all

pairs (a;, y) in 8 satisfying (6) is a closed subset of 8 and, by what

we have just proved, the transformation T : (x, y) -*• (x, y) maps S

into itself. We show next that T is a contraction on S .

Let (xi, i/i) and (X2, yz) be any two points in 5 , and let

\xl> y\) an<i (X2, yz) ^ e their images under T . We set

(z, w) = (xl5 i/i) - (x2, 2/2) > (a, u) = (xls yt) - (x2, yz) •

Then

[»(*) = [ {/[s> *i(s), 1/1 (s)] - /[s, x2(s), i/2(s)]U .

By exactly the same argument as in the previous paper it follows that

where H = (l-e )~ . The difference w{t) = y\(t) - yz(t) i s a bounded

solution, with P(T)U(T) = 0 , of the equation

w' = A(t)w

where

, 0] - g{t, x 2 ( t ) , 0]

i/i(t)] - G[t, x2(t),

+ | ^ [ t , x j ( t ) , 0] - ffy[t, x 2 ( t ) , 0]Jiy2U) .

I t follows at once that
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Also , u s ing Lemma 7 of [ 7 ] we obtain for 0 5 h 5 1

rt+h

't

By Lemmas 1 and 2 and the superposition principle i t follows that

Also

Hw'll 5 N\\w\\ +

Combining these estimates and using the inequali t ies imposed on M and p

we get

| ( 2 , w)\ < i | u , u ) | .

Thus the mapping T is a contraction. Its fixed point is the required

solution x(t, £,, n, T ) , y(t, C, r\, T ) .

If (#1 , j/j) and (X2, ui) are the fixed points corresponding to the

initial values (Ci , Hi) and (£2» I2) respectively we obtain in the same

way

and hence

(8)

Thus

\x(t, E,i, i

\y(t, c l t 7

11. T ) -

11, T) -

|(3,

xit,

y(t,

w)\

€2.

52.

12

n2

, w)\ 5 IC1-C2I |

- C 2 I + 2cx|ni-n2| •

Similarly let (x\, 1/1) and (2:2, J/2) t e "tne fixed points

corresponding to the initial values £, r) at times T and T+7J

respectively, where ft > 0 . If we again set (3, u) = (a?i, j/i) - (x2, J/2)

then
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(•T+rt

z(t) = f[s, x2(s), y2(s)~\d

+ f - f[s, x2(s),

and

w(t) = ~ 1 ( T ) - y " 1 ( T + ^ ) j n + f x(t)PY~1{s)g[?, x 2 ( s ) ,

+ y(t)py 1(s)c(s)ds -

where

We have

t.(t) = ?[t,

/[s, x2(s),
IJT

- git, x2(t), y2(tj] .

T+h

T

T+h

y(t)py~1(s)A[s)ds

^ ...-, Nh-,5 KNe h ,

and similarly

T+h

T

s)g[s, xz(s), yz{s)']de

It follows that

(9)

Thus

\x(t, C, n,

\y(t, 5, n,

Nh,
\(z, w)\ 5 2Nh + hCKNe h

- x(t, C, n,

- y(t, £, n,
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This shows, a posteriori, that if 0 5 h 5 h , the solutions

x{t, £,, n, x+h) , y(t, £, 1, T+h) can be continued over the interval

[T, T+h] without leaving the region \y\ < \i .

2.

To prove the existence and Lipschitzian nature of the partial

derivatives we consider first a linear system of differential equations

x' = F1(.t)x + F2(t)y + x(t)
(10)

y' = G1(t)x + [A(t) + Gz{t)]y + C.(t) ,

on [ T , <*>) , where the mat r ix functions F,,G, (k = 1 , 2) a re

cont inuous and bounded by N , and t h e vec to r funct ions x» ? a r e

cont inuous with ]|x|| < °° , | |5| | < °° . We assume a l so t h a t for

\t2-tl| 5 1

(11) i(*H*
*2

We wish to show that if r is so small that

(12) 32NC(R+v)r 5 1 ,

then the system (10) has a unique solution x(t) , y(t) in 8 such that

X(T) = C and P(T)!/(T) = P(x)n .

For any (a;, y) in 8 set

ft
x(t) = C

ft

Jx
F2(s)y(s)

and l e t y{t) denote the unique solution with P{x)y{i) = P(x)r) and

\\y\\ < °° of the equation

y' = A(t)y + G j U M t ) + G2{t)y(t) + C(t) .

Using Lemma 2 and proceeding as in [7] we obtain, with the same notation

as above,
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and hence

| ( S , w ) \ < | | ( a , w ) \ .

Therefore the mapping (x, y) -»• (x, i/) is a contraction, and the result

follows. Moreover the solution x{t) , y{t) satisfies the inequality

(13) |(x, y)\ 5 2|C| + 2«|n| + N~XC\\x\\ 1

If

C . C n, T),

F2{t) = f [t, x(t, c , n , T ) , y ( t , c , n,
<3

= ^ [ t , K ( * , e , n , T ) , j / ( t , 5 , n , T ) ] ,

= g \t, x(t, c , n , T ) , y{t, K, n , T ) ] ,

then we can take v = p + y £ and the inequality (12) is satisfied. Let

X\{t) , ¥\{t) denote the corresponding solution in B of the matrix

system

X' = Fiit)X + F2(t)Y
(Ik)

\A{t) +

with X1(T) = J , P(T)yj(T) = 0 . Then fey (13 ) ,

(15) H*!|| + CUJJII 5 2 .

As in [J] we can show that the partial derivatives x At, £ > ri, T ) ,

j/-(t, £» n, T ) exist and equal X\[t) , X\(t) respectively. Similarly,

if X2(t) , Y2(t) is the solution in 8 of (lM with * 2 ( T ) = 0 ,

P(T)JT2(T) = P ( T ) then

(16) ||jr2|| + C||Y2|| < 2CK ,
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and we can show that the partial derivatives x (t, 5^ H» f) >

y (*» £» 1, t) exist and equal X2(t) , r2(£) respectively.

It remains to show that the partial derivatives satisfy Lipschitz

conditions. If we set

*i(t) = * 5 ( * . I, n, T) , ?x(t) = j/c(*. I, n, T)

then (Z, V) = (Xi, Y1) - (Xly ^ ) is the solution in 8 of a system

(10) with

[ G ^ t J - G ^ t ) ] ^ ^ * ) + [G2(t)-G2(t)]?1( t) .

By (8) and (15)

Put

Since Z(T) = 0 and P{T)W(T) = 0 i t follows from (13) that

IIZII2 + C2IMI2 S 2C2{N-1+2oT1K).kL[\Z-l\+CK\r\-v\] .

Therefore, since C2 = Utf(l-e~ )~ < C ,

| * e ( t , 5 , n, T) - x^t, I, n, T ) | <

| y e ( t , 5, n, x) - j / 5 ( t , I , n, T ) | «

The Lipschitz conditions for x , y are proved similarly, and thus the

proof of Theorem 1 is complete.

In the same way, for any h (0 S h 2 h } the functions

Z(i) = x^t, ?, n, T) - *5(t, 5, n,

w(t) = j/?(t, 5, n, T) - y^it, c» n,

are the solutions of a system (10), where by (9) and (15)
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Since the coefficients of (l^) are bounded "by- N the scalar function

satisfies the integral inequality

rT+h
X(t) 5 X(x+fc) + 3tf XCs)ds .

>t

Moreover X(T + & ) 2 2 by (15), and so by Gronwall's inequality

X(t) 5 g e 3 * ^ * ^ * 5 for T « t < z+h .

Since

Z(T) = J -

it follows that

(17)

Similarly we obtain

We have

= - P(T)]TI(T)

and

P ( T ) - P(T+7Z) =

Since |P ( T ) | S K and

t+h

5 \'+h ff/t*-T)
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it follows that

5 2NKe3Nhh + 2NKelhh\Yl(t+h)\ .

But by (15), |5i(x+^)| < 2C"1 < | . Hence

(18) | P ( T M T ) | < 3NKe3Nhh .

It now follows from (13) that for 0 S h < h (s l) .

IIZlIz + CZ\\W\\2 = 0(h)

where the constant involved in the O-notation depends only on

N, K, L, a, g . Thus, for 0 5 h £ fcQ ,

- £j.(t, C, n,

(19)
\y?(t, C, n, T+h) - yAt, £, n,

Similarly we obtain

\ x {t, £ , n , T+h) - x (t, C , n , T ) | = O ( h ) e

(20)
\yAt, C, n, T+h) - y^{t, $, n,

Now let us look at the function

IKT, C, n) = y{T, C, n, x) .

We have

|IKT, C, n)| s y ,

the partial derivatives \br, ip exist and

We now show that the partial derivatives x {t, E,, n, T) and

y (*, 5, H, T) exist. Let x^(t) , y^{t) denote the solution in 8 of
T

the vector system (lU), with
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= - / 0 . 5. <HT' C, n)] ,

= - P(x){ii(T)n + ?[T, 5, *(T, 5, n)]J •

By the superposition principle and the initial conditions for the partial

derivatives x , y , x , y we have

x3(t) = - *c(t, 5, n, T)/[T, C, *(T, C, n)]

(21)
;, £, H, T)/[T, E,, IMX, C, n)]

- y^t, £, n, x)ji4(x)Ti + g\j, ?,

Put

and set

Then

where

z(t) = x(t, C, n,

w(t) = j/(t, 5, n,
, C, n, x)
, c, n, x) ,

<p(t) = s(t) - hx3{t) ,

<p'(t)

- hy3(t)

+ X(*) »

, C, n)]}

Therefore, by (9),

llxllz. II5II2 = 0(h2) f o r ft - 0 .

We have

cp(x) = a(x, 5, n, x+^) - C + / [ T , C, I|>(X, C, n)]?«

P(X)I()(X) = P(X)I/(X, e, n, x+fe) - p(x)n + p(x)|i4(x)n+s[x, 5, *(x, C, n)

Now, ty (9),
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rT+h
X(T, £, n, T+h) - £ = - I / [ s , x ( s , C, n, T+h), y(s, £, n, T+h)~\ds

rT+h
f\a, x(s, £ , n , T ) , y(s, ? , n , r)]ds + Q{h2)

'T

rT+h
fT+n

fls. 5, * (T , e, n:

= - f [ T , 5 , I)^(T, c , n ) ] h +

Also

+ y ( t ) p y 1(s)g[s, x{a, ? , n , T+?I ) , j / ( s , e , n ,

- f Y(t)(I-P)y-1(s)g[s, x(e, C, n, T+h), y(s, C, n, T+h)]ds
i +.

and hence

:» C , n ,

Y(T)PJ~ (s)g[s, x(s, £,, r\, T+h), y(s, £, n, T+h)"]ds

Since

= J -

it follows that

P(T)J/(T, C, n,

Thus <p(x) = o{h) , P(T)I^(T) = o{h) . Applying the inequality (13) we

obtain

IMI2 + C2||*|| = o(h) .

By the definition of ip and IJJ this shows that the partial derivatives
x^(t, C, n, T) , yT(t , £,, n, T) exist and equal x3(t) , t/3 (*)

respectively.

It follows that i() (T, C> n) exists and, by (21), is equal to
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A{x)y{x, £,, r\, T) + g\x, X{T, E,, n, x), y(x, E,, n, T ) ]

- J/?(T, £,, n, T)/[T, £, IMT, C, n)]

Hence I K T , E,, r|) is a solution of the partial differential equation

(22) ^ + ^ / ( T , ? , if)) + ^

We can now conclude that

| * T ( T , 5 ,

I * T ( T , 5 I , n i ) - I ^ T ( T , C 2 , n 2 ) | = o [ | C i - S 2 l + | n i - n 2 | ]

Also

ty (i+h, c , n ) - ^ ( T , C , n ) = yAx^h, E., n , T + ? 0 - J / , ( T , C, n ,

+ 2 / ? ( T , C. n, T+70 - J / 5 ( T , C, n, T) .

From the differential equation satisfied by y and from (19) and (15)

we obtain for 0 5 h £ h

\y (i+h, E., n , T+h) - yAi, C, n» T+?i) |

5 yv I l\x^e, C, n, T+h)|+2|j/e(8, C, n,

j e
= 0(h) .

Therefore, by (19) again,

|*C(T+», 5, n) - *?(T, C, n)|

This inequality has been established for 0 £ h £ h but then extends,

with the same constant, to arbitrary h > 0 . Similarly we have

The four Lipschitz conditions show that t(j , \p are continuous functions

of (T, E,, T]) , and hence iji is also by the partial differential
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equation (22).

Altogether we have proved

THEOREM 2. Under the hypotheses of Theorem 1 there exists a bounded
continuous function ty{t, x, y) defined for t 2 T 3 \x\ < °° ,
\y\ < v/^K with bounded continuous partial derivatives such that iji

satisfies a Lipschitz condition in (x, y) and \j> , \p satisfy Lipschitz
x y

conditions in {t, x, y) . This function has the property that if x(t) ,

y{t) is a solution of the system

x' = /(*, *, y)
(i)

y' = A(t)y + git, x, y)

for which x{i) = £ , |I/(T)| < \i/hK then \y(t)\ < p for t > T if and

only if i/(x) = \p(.T, E,, r\) for some n such that |n| < y A # .

For each fixed pair (T, £) the set M{x, £) of all points

IJJ(T, 5, T\) with |n| < V/^K is a C^sutmanifold of if1 with dimension

equal to the rank of P . In fact, since IJ/(T, 5» Hi) = ^(f, C> I2) i f

?(t)ni = -P(T)ri2 w e c a n restrict attention to n such that P(x)n = 1 .

Then the mapping r\ -*• ij>(T> 5> i) is continuously differentiable and,

since P(T)IJJ(T , £, r\) = n » it has a continuously differentiable inverse.

Thus M(T, £) is the diffeomorphic image of the intersection of the ball

|n| < yA-K with the subspace of n satisfying Pn = n •

3.

We suppose now that the system (l) is defined and satisfies our

assumptions over the whole real line. Then, as shown in [I], the system

(l) has an integral manifold y = u(t, x) , where v is a bounded

continuous function with bounded continuous partial derivatives. We will

first derive more precise estimates for the function V and its partial

derivative V than were given in [?].

The function y(t) = y(t, £,, x) is the unique bounded solution of

the equation

y' = A(t)y + <p(t)

where
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<p(t) = g[t, x(t, £, T ) , 0] + gy[t, x(t, £, x), 6}y(t, E,, ?) ,

ij)(£) = G\t, x(i, £, x ) , y{t, E,, x)] .

For any function /(t) write

|/| = sup

Then

1*1 =J
Also, by Lemma 7 of [J] with B = 0 ,

ip(s)ds £ p

for |ft| 5 1 and either t 2 x, h > 0 or T i i, 7i < 0 . So, by Lemmas

U and 5 of [7] with {3 = 0 , and by the superposition principle,

\y.\ s a'h.^ vL\y\ •

Since \y' \ 5 W(|i/|+l) it follows that

Therefore

(23) \y(t, C, T ) | S l6yN2KpQ for all t, C, T .

Similarly, if we set

2(t) = x(t, Ci, T ) - «(*, C2» T ) , w(t) = y{t, Ci, T ) - j/(t, £2» x)

then u(t) is the unique bounded solution of an equation

w' = A{t)w + cp(£)

where, by (23),

and
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*(s)ds

for \h\ 5 1 and either i i T, h > 0 or n > t, h < 0 . Hence, by

Lemmas k and 5 of ['],

Hull < 6po;?
2L|>||+|M|] + poi?[||«||+ll*IIMMMIwIll] •

But by (15) of [ /]

M I + nun <2|d-c2| •

Since

lls'H « ff[||*IMMI] , II"' II £ 2ffDl*IMMl]

it follows that

Hence

\ y ( t , g , T ) | < kQ

From (23) and (2U) we obtain in particular

(25) | V ( T , C)| £ l6yN2KpQ ,

(26) |I>5(T, C)| 5 hR(3RL+2N)pQ .

It will now be proved that the solutions considered in Theorem 2 of

the previous section all converge exponentially to the integral manifold

y = v(t, x) as t -*• °° . Let x(t) , y{t) be a solution of (l) such

that |#U)| £ u for t > T . By the partial differential equation which

V satisfies, (29) of [/],

dv[t, x(t)]/dt = vt[t, x(t)] + vjt, x(t\\x'[t)

= A(t)v\t, xM] + git, x(t), v\t, x{t)~]\

- vjt, *(*)]/{*, x{t), v[t, x(tm

^+vx\t, s(t)]/|t, x(t), y(t)\ .

Therefore, if we put
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s(t) = v[t, x(t)] - y(t) ,

we w i l l have

z'it) = A(tMt) + g\t, xit), yit)+zit)] - g\t, xit), yit)]

- v x [ t , » ( * ) ] { / [ * , x ( t ) , ? ( * ) + » ( * ) ] - f [ t , x i t ) ,

Thus s(t) is a solution of the equation

z' = A{t)z + hit, z) ,

where

Ht, z) = ff[t, x(t),

The function /j is continuous, vanishes when s vanishes, and has a

continuous partial derivative

established in [/] imply that

continuous partial derivative h . Moreover, the properties of v

z

\hzit, z)\ < 2N ,

\h i t , zx) - h It, 3 2 ) | 5 2L\z1-z2\ ,

while by (26) above

rtz
h (t, Q)dt

2
= 0(1)P 0 + 0 ( l ) u Q for | t 2 - * l l - 1 •

If we set

hit, z) = h it, Q)z + Hit, z)

then \Hit, z)\ S L|s|2 . It follows from the Lemma proved below that

with a suitable choice of u and q

\zit)\ S hKe~a('t~s)\zis)\ for t 2 s > T ,

that is,

LEMMA 3 . £e t / l ( t ) and Bit) be continuous matrix functions with

\Ait)\ 5 N , \B(t)\ 5 N for t i T <2M<i suppose the linear equation (2)
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has a fundamental matrix Y(t) satisfying (3). Suppose also that

(t2
B(t)dt < r for \t2-t1 5 1 ,

and let fit, y) be a continuous vector function such that

If 'the positive constants r3 6 are so small that r < 1 and

6 = O~XK\& + r [3N+8+e2a) 1 < | ,

then any bounded solution y(t) of the nonlinear equation

(28) y' = \A(t)*B{t)~]y + fit, y)

satisfies

\yit)\ < kKe-a[t-s)\y{s)\ for t > s .

In fact any bounded solution y{t) of (28) satisfies

I 1
(29) y(t) =

Put

= sup \y(u)| .

By integrating by parts in the accustomed way we obtain

If Y{t){I-P)y'X{u)B{u)y{u)du
't

Similarly, if s+m £ t < s-Wi+1 then

If* , x _i, w , , _ ? _2a(t-s-j), , M

y(t)PI (.u)B(u)y(u)du s rK i e \y\s+j)
'> s j=o
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But i f j > 1 then

3+j)\y(s+j)\ <
• 3 - 1

Hence

If Y(t)PY~X(u)B(u)y(u)du £rXe"2 a ( t"8 ) |z /(s) |

+ rK[3N+6+e2a)

Estimating the other terms in (29) in the crudest way we obtain

(30) \y(t)\ 5 (l+r)&T2a(t-s) \y(s)\ + 6a f e^^vMdu + \ 6y(t)

Choose 7z > 0 so large that 8ife £ 1 . Then, since y is a

non-increasing function, for t 2 s+h

\y(t)\ = 4

Hence p(s+^) < 4 p(s) , which shows that |i/(t)| -»• 0 as t •+ °° .

Therefore for any t there exists t' > t such that

u(t) = u(s) = |j/(t')| for t < s 5 t1 .

By (30), with t' in place of t ,

s)\y{s)\ + 9a f e~2a{t'~u)v(u)du

Thus ip(t) = e a u(t) satisfies

£ ltXe2as| a f
's

Therefore by Gronwall's inequality,

,,•> . . . 2as I / >i a( t -s)
<p(t) £ hKe- \y(s) \e
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Hence

\yit) | < kKe \yis)| •

Finally it will be shown that the solutions of Theorem 2 are

asymptotic not only to the integral manifold but also to particular

solutions on the manifold. As in [J] let

kit, x) = f[t, x, vit, x)] .

The function k is continuous and has a continuous partial derivative k

such that \k \ S 2N . Let xit) , yit) be a solution of (l) such that

\yit)\ < y for i > T , and put

Xit) = \yit) - v[t, xit)] | .

By (27) we have

X(t) 5 kKe^^hix) for t > T .

Let x (£) be the solution of the equation

x' = k{t, x)

such that x ix+n) = a;(T+n) . Since

x'it) = k[t, xit)] + lit) ,

where

lit) = f[t, xit), yit)] - f\t, xit), v\t, xit)~\\ ,

the difference s it) = xit) - x At) has the representation

z
n

{t) = f l f e & ' a
•* x+n-1 *•

Therefore, since \lit)\ < NXit) ,

rtrt rt
z it)\ 5 2N \z is)\ds + N Xis)ds .

n 'T+n-1 n h+n-1

Thus for T+n-1 < t £ T+W
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ft
z (t)\ s 2N \z {s)\ds

'T+n-1

and so, by Gronwall's inequality,

(31) \x(t)-xn_x{t)\ = \zn{t)\ 5

In particular, for t = i+n ,

Therefore, by (15) of [7], for T S t < T+

(32) |a:n(t) - xn_ x(t)| < 2Y"
1i?e

This shows that the sequence {x (t)} converges uniformly on any bounded

subinterval of [x, °°) . Let x^t) denote its limit. Summing (32) for

n > m we get for x S t S x+m

Taking n = m in (31) we deduce that for x+m-1 2 t S x+m

Thus for a l l t > x

(33) |*<t) - x j t ) | S 5i?

If we set yjt) = v[t, xjt)] then

\y{t)-yjt)\ < \y(t)-v[t, x(t)]\ + \v\t, x(t)]-v[t, xjt)]\

by (27) and (33). Altogether we have proved

THEOREM 3. Let the hypotheses of Theorems 1 and 2 hold for

_oo < t < °° ara? Z-et j/ = w(£, a;) be the integral manifold whose existence

was established in [/]. If x{t) , y(t) is a solution of the system (1)

such that |y(t)\ S y for t 2 x
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)-v\t, x{t)]\ 5 UKe-akt~s)\y{s)-v\e, x{s)]\ for t > s > i .

Moreover there exists a solution xa>(t)} ym(t) = v\t, xm(t)~\ of (1) such

that for t > x

\x(t)-xjt)\ + \y(t)-yjt)\ = o(l)\h(T)-v(r, * ( T ) ] | e - (

4.

My first work on this subject was contained in a joint paper with

W.A. Coppel, communicated to the Journal of Mathematical Analysis and

Applications in September 1968. In April 1969 the Editor of the Journal

wrote that they had no record of having received the article. Since the

earlier treatment has now been superseded by [7], it has not been

resubmitted for publication. However, its introduction contained some

motivation for the study of the problem and comparison with related work

which it seems worthwhile to include here, in a slightly extended form.

The method of averaging, for non-conservative systems, was first

applied to some special second order equations by Krylov and Bogolyubov in

1931*- Their results were considerably generalized by Bogolyubov in 19^5

and given a finished form in Bogolyubov and Mitropolskii [£]. An account

of their methods, with numerous applications, was given by Hale [3] and

[4D. There are three main results. The first says that solutions of the

original equation and solutions of the averaged equation with the same

initial point remain close over a large, but finite, interval of time. The

second says that if the averaged equation has a constant solution then the

original equation has in its neighbourhood a unique bounded solution, with

the same stability properties. The third, and most remarkable, says that

if the averaged equation has a periodic solution then the original equation

has in its neighbourhood a unique integral manifold, with the same

stability properties. The introduction of moving orthonormal coordinates

near the given periodic orbit reduces the problem to the study of a system

(l). The proofs of these results were rather indirect and depended on

changes of variables combined with smoothing operations.

It was shown by Gihman [5] in 1952, and by others after him, that the

first result is a simple consequence of a theorem about the continuous
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dependence of solutions on a parameter when the variation is not small in

the usual sense but is 'integrally small1. A version of his result will

be presented here, using Lemma 3 of [/].

THEOREM 4. Let f(t, x) and g(t, x) be continuous functions such

that

, xx)-f{t, x2)\ + \g(t, xx)-g(t, x2)\ SL^-a^l ,

{fit, x)-g(t, x)}dt for

If x(t) and y{t) are solutions of the differential equations

x' = fit, x) , y' = g(t, y)

for 0 < t S T , with a;(0) = y(0) 3 then

\x{t\-y{t)\ < peLt + p[eLt-l)/L for 0 < t 5 T ,

provided q £ — p2(p+LN)~ .

I f we s e t h(t, x) = f{t, x) - g{t, x) t h e n , by Lemma 3 of [ / ] ,

I h[s, <p for

Therefore

h[s, y(s)]ds
o

The difference z(t) = x(t) - y(t) has the representation

rt , If*
z(t) = | / [ s , x(s) ] - / [s , j/(s)]Ws + h[s, y(s)~\ds .

Hence

\z{t) I s i |s(s) \ds
'O

and the result follows by the extended Gronwall lemma.
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It was shown by Coppel [6] that the second result of the method of

averaging could also be treated, more generally and more directly, as an

integrally small perturbation problem. His use of the roughness of

exponential dichotomies can be avoided, as in the present paper, and the

result thus extended to arbitrary Banach spaces.

The third result, on integral manifolds, has been treated by

different methods by a number of authors, e.g. Levinson [7], Diliberto and

Hufford [S], Diliberto [9] and [JO], Sacker [J7] and [72], and Kurzwei I

[73], [74], [75]. In many cases, however, the problems treated are less

general or stronger assumptions are imposed than in the work of Bogolyubov

and Mitropolski i. Only Kurzwei I has treated the problem as one of

integrally small perturbations. The generality of his approach has

perhaps obscured some of his contributions. In particular he showed that

a solution asymptotic to the integral manifold was also asymptotic to a

particular solution on the manifold, which Bogolyubov and Mitropolskii

proved only in a special case. Our proof of this property was modelled on

his. Otherwise this work has been essentially independent of that of

Kurzwei I. A detailed comparison of the differences in hypotheses,

conclusions and methods will not be attempted here.

Sacker's main contribution is connected with higher order smoothness

of the manifold. This can also be treated by the present methods. It can

be shown that if f and g have v continuous partial derivatives with

respect to x and y , the r-th derivatives being Lipschitzian in x

8 8 S S~l
and y , then for q sufficiently small, 3 v/dx and 3 v/dtdx exist

for 1 5 s 5 r , 3ru/3xr is Lipschitzian in t and x and 3 u/3£3x

is Lipschitzian in x and continuous in t . Also, for 1 < s 5 r ,

In order to obtain the latter estimates we need the integral

smallness of the higher derivatives. However, it is not necessary to

impose this as an additional hypothesis since it follows from the

assumptions already made. For let us suppose that h(t, x) has a

continuous partial derivative h (t, x) such that

\h (t, xi)-h it, x2)\ 5L|x 1-x 2| and
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II 2 fc(t,x)dt 5 q if Iti-tzl 5 1 .

Then if

R = ft(t, x+fe) - h{t, x) - h (t, a;)fe ,

\R\ 5 Z/|fe|2 . If we assume q 5 q\/8L and take k to be any vector

with \k\ = qx/2L then for |t2-*ll - 1

II2 v*« *)dtk

Hence

f*2
, x)dt

= q\/2L .

5 £?! for |t2-*l I - ! •

This was suggested by KurzweiI [73], Lemma 1.1. It also shows that in [7]

the assumption that g is integrally small is redundant.

Finally as a by-product, the present methods yield a generalization

of Bogolyubov's and Mitropolskii's theorem. They assumed that the

averaged equation

x' = £XQ(x)

has a solution £(et) with period 2TT/E such that the variational

equation

has (n-l) characteristic exponents with nonzero real parts. This can be

replaced by the assumption that the averaged equation has a bounded

solution £(et) such that the variational equation has a fundamental

matrix Z(t) satisfying

\Z(t)P1Z-
1[e)\ ±Me-°{t-8) if e 5 t ,

\Z(t)P2Z-
1(e)\ £ W e - °

( e - * ) if 8 > t ,

where M, a are positive constants and Pj, P2 are mutually orthogonal
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projections such that Pj + ?2 ^ias rank n - 1 .

Under these assumptions the existence of the integral manifold can be

established and almost periodic properties of £(i) induce similar

properties in the manifold.
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