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THE DIFFERENT AND DIFFERENTIALS OF LOCAL FIELDS
WITH IMPERFECT RESIDUE FIELDS

by BART DE SMIT
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Let K be a complete field with respect to a discrete valuation and let L be a finite Galois extension of K.
If the residue field extension is separable then the different of L/K can be expressed in terms of the
ramification groups by a well-known formula of Hilbert. We will identify the necessary correction term in the
general case, and we give inequalities for ramification groups of subextensions L'/K in terms of those of
L/K. A question of Krasner in this context is settled with a counterexample. These ramification phenomena
can be related to the structure of the module of differentials of the extension of valuation rings. For the case
that [L : K] — p2, where p is the residue characteristic, this module is shown to determine the correction term
in Hilbert's formula.

1991 Mathematics subject classification: 11S15, 13N05.

1. Introduction

By a local field we mean a complete field with respect to a discrete valuation. In this
note we study ramification groups, the different and differentials for finite separable
extensions of local fields with inseparable residue class field extensions.

For the case that the residue class field extension is separable, which we will call
the classical case, there is a beautiful theory of ramification groups for which we refer
to Serre [11, Ch. Ill, IV]. The classical results, such as Hilbert's formula for the
different in terms of ramification groups, do not hold in general. In the classical case
one has the "upper numbering" of ramification groups [11, Ch. IV, §3], which is
preserved under restriction to subextensions, but the examples in (3.7) below show that
no such renumbering exists in our context.

Known results on the non-classical case include Kato's class field theory for "n-
dimensional complete discrete valuation fields," see [6] and [4]. In Zariski-Samuel [12,
Vol. I, Ch. V, §10] two intertwined filiations with ramification groups are defined,
and some classical results on where the jumps can be, have been generalized to this
double filtration [2]. Krasner [7] focuses on the different, and some of the present
results can be inferred from his paper.

For any local field K we denote the prime ideal by pK and the residue class field
by K. Let vK be the normalized valuation on K and let the valuation of a fractional
ideal of K be the valuation of a generator, so that vK(pK) = 1. In this introduction the
results will be formulated for Galois extensions L/K with Galois group G. With the
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354 BART DE SMIT

exception of Section 5, all results will be shown for non-Galois extensions too.
In the classical case, the different T>B/A can be expressed in terms of ramification

groups by the following formula that is due to Hilbert

VL(PB,A) = £ ( # G , - 1). (1)

Recall that the ramification groups G, are defined by G, = {a e G : iG{a) > i + 1} where
ia{a) — inf{uL(crx - x ) : x e B ) . Hilbert's formula holds under the weaker condition that
B is monogenic over A, i.e., that B = A[<x] for some a € B. For the non-monogenic case
we will show that one needs to add a term on the left hand side of (1), namely the
smallest integer n for which there is an a e B with p"L c A[oc\. We call the ideal p"L the
monogenity conductor of B over A.

Suppose L' is an intermediate field of the extension L/K corresponding to a normal
subgroup H of G. In the classical case, the ramification numbers IG/H('Z) °f L'/K can be
computed from the I'GC0') by the well-known formula

»G/HO0 = -

where e' is the ramification index of L over L'. Again, the same formula holds if B is
monogenic over A. We can only give inequalities for the general case (see (3.6)), and
examples showing that they are optimal if one only wants to take the ramification
groups into account. It follows that the ramification groups of L' over K are not in
general determined by those of L over K.

Krasner [7] raises a question which in our terminology asks whether an extension
for which the monogenity conductor is multiplicative in towers, is necessarily
monogenic. We give an example that shows that this is not the case (see (3.5) below).

In Section 4 we look at the module ilB/A of ^-differentials of B. Using derivations
rather than differentials, Moriya [10] showed that the length of the B-module C1B/A is
vL(DB/A). Such a statement holds in the much more general ring theoretic context of
locally complete intersections [8, Prop. 10.17]. We will give an alternative proof, and
we show that for any ring homomorphism A -*• A, there is a canonical short exact
sequence of B-modules:

0 -+ QA/A ®AB^ Qm - • C1B/A -+ 0.

Like Moriya's proof, our proof is a reduction to the monogenic case. The module
QB/A contains more information than the different, namely its structure as a B-module.
We will show that the number of elements needed to generate SlB/A as a B-module is
equal to the number of elements needed to generate B as an algebra over A if B is not
unramified over A.

One can hope that there is some relation between the correction terms needed in
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(1) and (2) and the B-module structure of QB/A. In Section 5, we give such results
under the assumption that L is Galois over K of degree p2, where p is the residue
characteristic.

2. The different and the monogenity conductor

Let L/K be a finite separable extension of local fields with valuation rings Ac B. We
recall the definition and some basic properties of the different VB/A of B over A. For any
subset S of L its complementary set S* is defined by Sf = {x e L : V_y e S : TvL,K(xy) e A}.
The different VB/A of L over K is the inverse ideal of the fractional ideal B. Let a e B
with L = K(a). It is a well-known result due to Euler, that A[txf =f'(a.yiA[a], where
/ ' is the derivative of the minimal polynomial / of a over K. We say that B is
monogenic over A if there is an a with B = A[a], The different can then be computed
easily, namely T>B/A =f'(<x)B.

In the classical case, i.e., if L is separable over K, the ring B is monogenic over A.
See [11, Ch. Ill, §6, Prop. 12] for a proof. Without the separability condition this need
not hold. However, we always have a monogenic extension of rings of integers if
[L : K] is prime, because then the ring-generator can be taken to be either a prime
element or a representative of a generator of the residue field extension.

(2.1) Notation. Fix a Galois extension M of K that contains L, and let C be the
valuation ring of M. By a K-embedding we mean a K-algebra homomorphism between
extension fields of K. For any K-embedding a : L -> M let aL(cr) be the C-ideal
generated by the elements x — ax with x e B. If L/K is normal we may take M — L
and then aL(<r) = p'tW- Thus the ideals a.L(a) provide an easy way to consider
"ramification numbers" for non-normal extensions (cf. Deligne [1]). The monogenity
conductor xB/A of B over A is defined as the largest ideal of B that is contained in A[a],
for some a e B. Note that A[<x] is open in L if L = K(<x), so xB/A ^ 0.

Theorem 2.2. We have

where the product ranges over all K-embeddings of L in M that are not the inclusion.

Proof. Let a e B with L = X(a). Define the conductor t, of A[a] in B as the largest
ideal of B that is contained in A[u], so ta = {x e B : xB c 4[a]}. As in [11, Ch. Ill §6],
we show that ta • VB/A =f\a)B, where/ is the minimal polynomial of a over K:

x e t , oxBc A[a] &f(<x)~lxB c A[af

B)A.
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Since xB/A — ra for some a, one inclusion of the theorem now follows from

To finish the proof, we need to show that there is an a e B for which the ideal on the
right is generated by /'(a), for it then follows from the inclusion that we showed
already, that ra = vB/A. Such an element a is provided by the following lemma.

Lemma 2.3. There is an element a. e B such that for all K-embeddings o : L-+ M
we have aL{&) = (a — <xa)C.

Proof. If B is monogenic, then we may take a to be a generator of the ring extension,
because for any C-ideal a the question whether a and the inclusion induce the same
yl-algebra homomorphism B ->• C/a, then depends only on the two images of a.

Now assume that B is not monogenic over A. Then K is imperfect and in particular
infinite, because the residue field extension must be inseparable. For each a : L -» M
that is not the inclusion, the mapping from V — B/pKB to aL(o)/pMaL(cr) induced by
1 — a is a non-zero K-linear map, and for each a e B the element (amodpKB) lies in
the kernel Va of this map if and only if (1 — o){B) <$. (a — aa)C. It follows from the
well-known fact that a vector space over an infinite field is not a finite union of strict
subspaces, that there always exists an element x e V that is not contained in Va for any
a. Any representative a of x in B satisfies our conditions. •

(2.4) Remark. For a Galois extension L/K with Galois group G the theorem says

»L(PB/A) + » =

where n is the smallest integer for which there is an a e B with p"L c A[x].

3. Ramification groups of subextensions

Let K c L' c L be finite separable extensions of local fields with valuation rings
A c B' c B. We fix a finite Galois extension M of K that contains L with valuation
ring C and we use the notation aL(o) as in (2.1).

Proposition 3.1 For all K-embeddings T : L' —> M we have

i=0

where the product ranges over all K-embeddings a : L-> M with G\L, = x.
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Proof. By (2.3) there exists an element a e B such that aL(a) = (a - aa)C for all a.
Let / e B'[X] be the minimal polynomial of a over L', and denote the polynomial that
one obtains from/ by applying x to all its coefficients by xf. Then/ = \[JJC - ooi) with
a ranging over all L'-embeddings of L in M, and xf = n,r>-t(^ ~ ffa)- Since xf —/ has
coefficients in aL,{x), we deduce

a)C = {xf -f) (a)C C ot,(t). •

For K-embeddings x of L' in M that are not the inclusion, define the ideal D(T) of
C by D(T)OL,(T) = n ^ t aL(a).

Proposition 3.2. We have

t/1

with x ranging over all K-embeddings ofL' in M that are not the inclusion.

Proof. We can group the factors aL(o) in (2.2) according to the restriction a\L.
Using (2.2) for L/L and K/K' and the definition of 9(T) we get

Now use the transitivity of the different to cancel all three differents. •

Corollary 3.3. We have vB/ffxB,/A | tB/A. If B is monogenic over A, then B1 is monogenic
over A, equality holds in (3.1), and 5(T) = (1),

Proof. The first statement follows from the fact that the ideals 0(T) are integral. If B
is monogenic over A then xB/A — (I), and as monogenity conductors are integral ideals
too, it then follows that all ideals on the left-hand side of (3.2) are all equal to (1). •

Corollary 3.4. JfL'/K is unramified then equality holds in (3.1) and xB/A = xB/B,.

Proof. We can choose a e 11 with minimal polynomial / € A[X] such that
L' = K(a), and /modpK is separable. Let x : L' -*• M be a K-embedding which is not
the inclusion. Since the zeros of/ in M are distinct in M, the map L' -> M induced by
T, is not the inclusion. Therefore, av{x) is the unit ideal, and 0(T) = (1). The valuation
ring of L' is monogenic over A, so it follows from (3.2) that xB/A = tB/B,. •

(3.5) A question of Krasner. Krasner [7] defines the "arithmetic different" 8B/A as
the B-ideal generated by the elements fl(a), where a ranges over the elements of B that
generate L as a field extension of K, and fa is the minimal polynomial of a over K. It
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follows from the proof of (2.2) that 8B/A = T>B/AxB/A, and with (3.1) it follows that
^B/B'^B'/A I $B/A (cf- t^, Thm. 9]). In Krasner's terminology, the extension L/K is said to
be "Dedekindian" if 5B/A = T>B/A, and it is called "Hilbertian" if 5B/A = SB/B,8B,/A for
all intermediate fields L'. Krasner asks the question whether all "Hilbertian" extensions
are "Dedekindian." The answer is no, and to show this we will construct a non-
monogenic extension without intermediate fields.

Suppose k is a field of characteristic p > 0 with elements a,bek such that
k(ai/p, bUp) has degree p2 over k. For instance, one may take k = ¥P{U, V) with a—U
and b = V. Let K = k((t)) be the local field of Laurent series with valuation
uK(52a,t') = inf{i: af 96O}, and valuation ring A = k[[t]]. Consider the separable
polynomial

f(X) = Xp2 + t"2X" - tp2X - t"b - a" e K[X]

and let L = K(a) where a is a zero of/ in the separable closure Kxp of K. Then a is
integral and a" = amodpL. Put 0 = (a" + tpx - a)/t, then 0" = tp2~"ct + b, so that fl is
integral and pp = bmodpL. It follows that L D k(a]/p,b1/p), so tha t / is irreducible, and
B is not monogenic over A.

To answer Krasner's question we still need to show that there are no intermediate
fields of L/K. Let a' be a zero of / in /C"1" with x = a — a! ^ 0. Since / is an additive
polynomial, x is a zero of

xp2 + tplxp - tp2x = x(xp2~l +• /xp-x - tp2y

One first sees that v(x) > 0 and then deduces that v(xp2~x) — v(tp2), so that K(x)/K is a
totally ramified extension of degree p2 — 1. This implies that K(<x, a') — K(jx, x) has
degree p2(p2 — 1) over K. If there was an intermediate field L' of L/K, then a! could be
taken to be conjugate with a over L', and the degree of K(<x, a!) over /C would be at
most p2[p — 1).

(3.6) Inequalities. In addition to the bound on OL,(T) in (3.1) one has an obvious
bound on the other side: choose an extension a of x to L, then aL(a) \ OL,(T).

We can reformulate this if L is Galois over K with group G and L' corresponds to
a normal subgroup H of G. If e is the ramification index of L over L', then the
restriction of vL to L' is e'vL,, so (3.1) and the bound given above can be stated as

-supiG(ff) < IC/W(T) < -

By (3.3) we have equality on the right in the monogenic case.

(3.7) Examples. To conclude this section, we give examples that show that these
are the best bounds possible if one only wants to consider the ideals aL(a).
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Furthermore, we will show that contrary to the classical case, the ramification numbers
of L/K do not determine those of L'/K.

Let k be an imperfect field of characteristic p, and let K be the field k((t)) of Laurent
series in t with coefficients in k. Fix an integer s e {1,..., p] and let L' — K(n) where
KP — f^~X)n = t. Then L' is a Galois extension of K of degree p, and the Galois group is
generated by the automorphism T of L' over K defined by n^n + t1. Note that L' is
wildly ramified over K with prime element n, so its valuation ring is B1 — A[n].

Suppose that a e k with a 4 kp, and define the local field L as L = L'(a), where

Then L is a Galois extension of L' of degree p, and the Galois group H of L over L'
is generated by the map a : a H-> a + t2. By construction, L = L'(a) is a purely inseparable
extension of L' = K of degree p, and £ = B̂ oc]. We can extend T to L by a i—> a +1 ,
which shows that L is normal over K, and that G = Gal(L/X) is elementary abelian of
order p2, generated by a and T. The filtration with ramification groups is as follows:

G = Go = • • • = G,_, ^ Gp = (<T> = Gp+l = • • • = G2p_, # G2p = {1}.

Note that the first trivial ramification group of L' over K is (G/H)ps, so the rami-
fication groups of L' over K are not determined by those of L over K alone. With the
given definition of x, the inequalities in (3.6) read p < ps < p2. In particular, we have
equality on the right if s = p (the monogenic case), and on the left if s = 1.

Using the fact that B — A[n] and B — B'[<x] we see that

VB/A = VB/B,VB,/A = t*r-nt#-»B = tis+2)(p-l)B.

By (2.2) we have tB/A — ^" '^" ' 'B . We return to the case of Galois extensions of degree
p2 in Section 5.

4. Differentials

Let L/K be a finite separable extension of local fields with valuation rings A c B.
In this section we study the B-module QB/l4 of Kahler differentials of B over A, and its
relation to the different and to questions about monogenity. See [9, Ch. 9] for
definitions and fundamental properties of differentials.

The B-module ClB/A is finitely generated, because B is a finitely generated /4-algebra.
Since L is separable over K we have C1B/A ®BL = C1L/K — 0, so the B-module QBM has
finite length.

Theorem 4.1. (1) The length of the B-module QB/A is vL(VB/A).
(2) For any ring homomorphism A —> A there is an exact sequence of B-modules:

o -> o , / A ®AB^ nB/A - • QB/A -+ o.
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Proof. For (2) we only need to show injectivity of the map ClA/A ®AB -*• fiB/A,
because exactness at the other places holds for arbitrary ring homomorphisms
A-». A-> B[9,Thm. 25.1].

Suppose A is generated as an A-algebra by a set S c A. We have a surjection of
the polynomial algebra A[X, : s e S] onto A sending a variable X, to s e A. Let R be a
set of ideal generators of its kernel. Denoting the free ^-module on a set X by Am,
we can describe QA/A as the cokernel of the ^-linear map Am -*• A(S), with matrix

Let us assume first that B is monogenic over A, so that B — A[<x] = A[X]/(J), where
/ e A[X] is the minimal polynomial of a over K. Then the above argument for B over
A instead of A over A implies that QB/A = B/f'(a)B. We already knew that
VB/A =/'(a)B, so this shows (1). If we add the element a to S we find generators for B
over A, and one more relation given by lifting/ to a polynomial in A[XS] [X\. It follows
that we have a diagram with exact rows and columns:

0

0 - •

0 -+

B( R )

I
B(S)

I

0

-» Bm e
I

-»- B ( 5 ) ©

0

IB - •

iB ^ .

B -»>
X •/(«)

B -»

T
0

0

0

Statement (2) now follows from the snake lemma. This proves the theorem for the
monogenic case.

We now show that the theorem is "transitive in towers", i.e., we show that the
theorem holds for B over A, if it holds for B over B and for B" over A, for some inter-
mediate complete discrete valuation ring B'. Since the different is multiplicative in
towers, statement (1) for B over A follows from (1) for each of the steps and (2) for B
over B1 with A = A. Furthermore, if (2) holds for each of the steps, then the map
QA/A <8>A B1 -*• QB7A is injective, so after tehsoring with the flat B'-algebra B we get
injections

& A/A ®AB>-^ &IHA ®B' & >-> n B / A ,

which implies (2) for B over A. This proves "transitivity".
It follows that (4.1) holds if L/K is a tower of monogenic extensions. Not all

extensions are of this type (cf. (3.5)), but Galois extensions L/K are. To see this, first
note that the tame part T/K is monogenic. Furthermore, L is Galois over T of prime
power degree. Every p-group has a chain of subgroups with steps of index p, and every
extension of local fields of degree p is monogenic. This shows (4.1) for Galois
extensions L/K.
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For the general case, let M be a finite Galois extension of K containing L, and let
C be its valuation ring. Then the theorem holds for C over A and for C over B. To get
statement (1) for B over A we apply (2) for C over B by taking A = A and using
transitivity of the different. It remains to show (2) for B over A. Given a ring
homomorphism A -»• A, we let N be the kernel of the map £lA/A ®AB -*• Qfl/A. Since C
is flat over B, the C-module N®BC is the kernel of the canonical map
&A/A ®A C -*• fifl/A ®B C. We know that QA/A ®A C and fiB/A ®B C both inject to fic/A, so
AT ®B C = 0. But C is free over B, so we must have N = 0. •

The kernel YB//4/A of the map n,,/A O^ B -*• QB/A is called the module of imperfection.
Each of the reduction steps to the monogenic case in the above proof is an easy
consequence of the following result, which has been proved by Grothendieck [3, Ch. 0,
(20.6.18)]; for any flat B-algebra C there is a canonical exact sequence

" ""*• 1 B/A/A ® B C —• I C//I/A ""*" * C/B/A * C/B/A ""*" "•

Kahler differentials are often used in commutative algebra to linearize ring theoretic
problems. For instance, if the B-module QB/A of Kahler differentials is not cyclic, then
B is not monogenic over A. By the next proposition the converse holds too.

Proposition 4.2. Suppose that L is not unramified over K. Then the smallest number
of elements generating QB/A as a B-module is equal to the smallest number of elements
that generate B as an A-algebra.

Proof. One inequality is clear: if B — /l[a, txk] then QB/A — J^i Bdx{.
Now let n be the smallest number of elements that generate ilB/A as a B-module.

We want to show that B is an /4-algebra generated by n elements. The L-vector space
&B/A ®B L has dimension n by Nakayama's lemma. It has a basis of the form
dx, <g> 1 dxn <g> 1 for suitable a , , . . . , an e B, and the elements dx{ generate QB/A. Put
S — A'[<Xi, a 2 , . . . , an], where A' is the valuation ring of the inertia field K' of L over K.
We first show that B = S. It follows from the exact sequence

&S/A ®SB^>- QB/A - • QB/S ->• 0

that fifl/s = 0, so _B_ has no derivations that are trivial on S. Since L is purely
inseparable over K', and every inseparable extension of fields has a non-zero
derivation, it follows that the reduction map S -> L is surjective. If S contains no prime
element of B, then S n pL c p\, and we can construct a derivation of B over S by
writing an element x e B as x — r + y, with r e S and y e pL, and mapping x to the
class of y in pt/p£. So let n e S be a prime element of B and choose representatives
x , , . . . , Xy in S of a basis of L over K'. Then the elements xtf of S with 1 < i < / and
0 < _/ < e form a basis of B as an ,4'-module, and therefore B = S.

Since L/K is not unramified, n is at least 1. We may assume that K is imperfect
because otherwise B would be monogenic over A. We are done if we can find an
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element /? e A' for which A'[<x{] = A[at + P], because we then have B =
A[a.x + /?, a2,. . . , a j . By the primitive^[ement theorem (see Jacobson [5, Ch. I, §11]) we
can find an element P e A' such that K7 = K(~P) and Kfc + 0) = K(a,, /j). We then have
A' — A\fi], and in order to deduce that /4'[a,] — A[cci -f/?], we still need to show that
the ring R = /4[a, + P] contains the element p.

The ring R is a local ring, because B is a local ring that is integral over R (see [12,
Ch. V, §2, Thm. 3]). Let m be the maximal ideal of R. The m-adic topology on R is the
same as the pK-adic topology of the /1-module R, and since R is a free /4-module of
finite rank, it is complete. Therefore, Hensel's lemma holds for R (see [12, Ch. VIII,
§7]). Let h be the minimal polynomial of P over K, then the reduction of h mod pK has
a simple zero p in R/m. By Hensel's lemma, h has a zero in R whose residue class is
p , so P e R.

The following gives a generalization and an alternative proof for the fact from
(3.3) that a subextension of a monogenic extension is monogenic.

Corollary 4.3. Let K C L C M be finite separable extensions of local fields, with rings
of integers A c B c C . Then the number of elements needed to generate B as an algebra
over A is at most the number of elements needed to generate C over A.

Proof. Assume that C can be generated as an ,4-algebra by n elements. By (4.2)
the C-module Qc/A can be generated by n elements. By (4.1) we see that C1B/A <g> C is a
submodule. Looking at the pM-torsion, we deduce that the C-module ClB/A <S> C can also
be generated by n elements, and then the same holds for the B-module QB/A. If L is
unramified over K, then n < 1, and the statement is obvious. If L is not unramified
over K, then (4.2) implies that B can be generated as an /1-algebra by n elements. •

5. Galois extensions of degree p2

In this section we suppose that L/K is a Galois extension of degree p1 with
p = char K. We will show that the defect in the classical formulas (1) and (2) in the
introduction can be expressed in terms of the module structure of C1B/A.

Put G = Gal(L//C), let L' be an intermediate field of degree p over K and let B' be
the valuation ring of L'. Each of the steps in the extension A c B1 c B is monogenic, so
the outer two modules in the exact sequence

0 -+ Slr/A 8 * B -»• QB/A - • QB/r -> 0

are cyclic. The B-module QB/A is therefore isomorphic to B/p"L © B/pb
L, for unique

integers a, b with 0 < a < b. By (4.1) we have T>B/A = p^b.
In (2.1) the monogenity conductor tB/A was defined. For i e Gal(L'/K) with r ^ 1,

the B-ideal 5(T) was given in Section 3 by Y\a~x °L(ff) = °t(T) • KT)-
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Theorem 5.1. We have D(T) = pa
L and xB/A = p f ~°.

Proof. It is easy to check that 0(T) does not depend on the choice of
T e Ga\(L'/K), as long as r ̂  1, and we will just write 5 for 0(T). Furthermore, we have
XB/A =J)l>"1 by (3.2), so the first statement implies the second. It also follows that 73 does
not depend on the choice of the intermediate field L'.

First we give an explicit description of the ^-algebra B in order to compute ttB/A.
We can write S = A[cc], where either a is a prime element of 11 (if [L': K] = 1), or the
image of a in L' generates the residue class field extension (if [L : K] = p). Let
/ e A[X] be the minimal polynomial of a over A. Now choose a generator /? for B over
B1 in the same way, so that ft is a prime element of B or ft has degree p over L'. Let

g=Y> + cp_lY
l'-l+-+coeB'[Y]

be the minimal polynomial of fi over L'. Then each coefficient c, can be written as
g,(a) for some polynomial gt € A[X] of degree less than p. It follows that the kernel of
the surjective /4-algebra homomorphism A[X, Y] -*• B that maps X to a and Y to /?, is
the ideal generated by / and Y" + gp_} Y"~l + • • • + g0. Putting 5 = £ S 0!(a)0"> we can
now compute SlB/A as the cokernel of the B-linear map B2 -*• B2 with the matrix

The smallest invariant factor a of QB/A is the largest integer for which the image of this
map lies in p"L • B

2. In other words,

Pi - gcd(f («), d, gW) = ^ + VB,/A • B + VB/r.

Since D does not depend upon the choice of L', we may assume that H = Gal(L/L') lies
in the highest non-trivial ramification group of L over K (in other words, take U to
be an intermediate field of degree p with vL(^Dg,/A) minimal). In particular this means
that there is a B-ideal b such that aL(p) = b for all a & H, and b \ aL(a) for a e H.

The theorem follows from the following three statements, which are proved below.

(i) 0 | VBIB, and 0 | Vr/A • B;

(ii) 0 | SB;

(iii) 0 =SB or D = VSIA • B.

In order to show (i), note that for T e Gal(L'/.K) with i ^ l w e have

&) I M^r'a^x)" = ©,,„ • B.

If a0 is any lift of T to L, our choice of L' implies that
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B/B"

This proves statement (i). To prove (ii) we will use the following lemma.

Lemma 5.2. Let h e A[X] be a polynomial of degree less than p and suppose that L'
is not unramified over K. Then h(tx) — x(h(a)) and h'(jx) (a — TOC) have the same valuation k
in L', and they are congruent modulo p**1.

Proof. First consider the case that h = X' for some i e {1, 2 , . . . , p — 1}. From

a1' - TOC1 = (a - TOC) (a'"1 + a'~2Ta H 1- TOC'"1),

and from aB = xtxB', it is easy to infer that

a' - TOC1' = ia'"'(a - TOC) mod oc'~2(a - TOC)2B'.

If e(L'/K) = 1, then a € B* and a s= TOC mod pL, (as L' is not unramified over K), and
the required congruence follows. Assume e(L'/K) = p, so that a is a prime element of
B'. We claim that a # Omod(a — TOC). T O see why this holds, note that the extension is
not tamely ramified. This means that the tame ramification group of L' is the full
group Ga\(L'/K) and therefore a — TOC e p2

L, — oc2B. This shows the claim, and the
lemma follows for h of the special form X' with i < p.

For the general case, write h = £ btX' with b, e K. Our choice of a ensures that
vv(h'(jx)) = infjVL,(ibitt'~l). The lemma now follows from the next lemma, whose proof is
left to the reader.

Lemma 5.3. For i = 1, 2 , . . . , n let at and fc, be elements of a local field F, such that
at = bj mod a,pF. Put a — J ] , a, and b = Y2t bi- If vF(a) — inf, vF{a,), then we have
a = bmodap f , and in particular vF{a) = vF(b).

This proves (5.2). We return to the proof of (5.1). If 11 is unramified over K then
B is monogenic over A by (3.4), and (ii) and (iii) are trivial, so let us assume that L' is
not unramified over K. We have 8 = ^DfJo «,/?' where a, = g!(a). By (5.2), we have
afa — xa.) = b,modpLfcj, where the 6, = g,(oc) — T(g,(oc)) are the coefficients of g — ag. Our
choice of f$ implies that vL(8) = inf, vL(a^'). We can now apply (5.3) to get
<5(oc — xa)B = eB, where £ = £] *>,/?'. We have (a — xa)B = aL,(x), and repeating the
argument of the proof of (3.1) we get

5aL.(x) = eB = {xg - g) (0)B = (xg) (0)B
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In particular this gives 5 e 5, which shows statement (ii).
Finally, we show (iii). If aL(o) = QS - ufS)B for all a e Gal(L/K) with a\v = x, then

the inclusion above is an equality, and we have SB = 0. Alternatively, suppose
aL{a) ̂  ifi — aP)B for some a e G with a\L, = T. Since every element of B = A[x, /?] is an
^-linear combination of elements of the form <x'f¥ it follows by an argument similar
to the first paragraph of the proof of (2.3) that OL(CT) = (a — aa)B — OL-(T). By our
choice of L', we then have aL{&) = aL,{x) for all a € G with a\L, = T. The definition of 0
and (2.2) now give 0 = aL.(zf~l = T>B,/A • B. This concludes the proof of (iii) and of
(5.1). •
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