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ABSTRACT

In this paper we study the asymptotic behaviour of the joint distribution of rein-
surance aggregate claim amounts for large values of the retention level under
various dependence assumptions. We prove that, under certain dependence
assumptions, for large values of the retention level the ratio between the joint
distribution of the aggregate losses and the product of the marginal distributions
converges to a constant value that only depends on the frequency parameters.
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1. INTRODUCTION

Recently the importance of modelling dependent insurance and reinsurance risks
has attracted the attention of actuarial practitioners and scientists. Even though
classical theories have been developed under the assumption of independence
between risks, there are practical cases where this assumption is not valid.

In a recent paper Embrechts, McNeil and Straumann (2001) wrote:

“Although insurance has traditionally been built on the assumption of inde-
pendence and the law of large numbers has governed the determination of pre-
miums, the increasing complexity of insurance and reinsurance products has led
recently to increased actuarial interest in the modelling of dependent risks...”

Although the literature on dependence between risks in insurance portfo-
lios is increasing rapidly, very few authors have applied these development to
practical problems, for example reinsurance modelling.

In this paper we study the problem of dependence between risks from the rein-
surer’s point of view when he provides excess of loss cover for two dependent
risks under different dependence assumptions. When the reinsurer undertakes
excess of loss reinsurance for a portfolio, in particular for catastrophe excess of
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loss, the probability that a claim will impact the reinsurance layer is very small.
Therefore, in many cases the correlation coefficient between aggregate claim
amounts for the reinsurer becomes very small. We could then be tempted to think
that the dependence between portfolios disappears as we look at the tail of the dis-
tribution and that, therefore, we could assume independence. It has been largely
discussed in the literature that the linear correlation coefficient is not a satisfac-
tory measure of dependence in the non-normal case, see, for example, Embrechts,
McNeil and Straumann (2001).

In this paper we look at the effect of different dependence assumptions and
their effect on the joint distribution of the aggregate claim amounts compared
to the product of the marginal distributions when the retention or attachment
is large (hence, the probability of a claim to the layer tends to zero). In Section 2,
we describe a model used for insurance and reinsurance aggregate claim
amounts that are subject to the same events. In Section 2.1, we discuss how to
calculate the distribution of the sum of aggregate claim amounts under different
dependence assumptions. In Section 3, we define a measure of asymptotic
dependence. We use this concept to study the effect of large values of the reten-
tion level on the joint distribution of reinsurance aggregate losses under the
dependence assumptions described in Section 2. Numerical illustrations and dis-
cussion of the results are presented in Sections 3.2 and 3.3.

2. A DEPENDENCE MODEL FOR REINSURANCE AGGREGATE LOSSES

In this section we describe a model that has been typically used in the actuarial
literature to model insurance aggregate claim amounts that are exposed to the
same events or claims. This model has been proposed, for example, in Sundt
(1999) and Ambagaspitiya (1999) where they develop multivariate recursions
to calculate the joint distribution of the aggregate claim amounts. We will
assume that there are only two portfolios, however the results can be generalised
for any number of risks or portfolios.

The Model: Two risks or portfolios are affected by the same events, therefore
they are subject to the same frequency distribution. This model is the general
model described in Sundt (1999). One of the most common applications of this
model is, for example, catastrophe reinsurance where several portfolios are
exposed to the same events. Also in fire insurance, the same fire can cause
damage to neighbouring buildings or properties insured under different policies
by the same insurer.

Assumptions:

1. Let N be the total number of claims in a fixed period of time. It is assumed
that N belongs to the Panjer class of counting distribution, i.e. there exists
constants a and b such that NV satisfies

P(Nzn)z(a+§)P(N=n—1) forn=1,2,...
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2. Let {X i}i -, and {¥;},_ be sequences of i.i.d. random variables represen-

ting the claim amounts for each risk. We assume that (X}, Y;) are i.i.d. pairs
from a bivariate distribution.
3. N is independent of (X, Y;) Vi

Then the aggregate claim amounts for these risks are

N N
=X, and §,=2YY, (1)

i=1 i=1
The claim amounts for each risk could have various interpretations:

1. From the primary insurer’s point of view, the losses due to the ith event
(X, Y;) may be dependent or independent

2. Frorn the reinsurer’s point of view (X, ¥;) may represent excess of loss claims
due to the same event from different underlying risks whose individual losses
may be dependent or independent. In reinsurance, this model could also be
used for reinsurance losses for two excess of loss layers from the same under-
lying risk. In this case the aggregate losses are dependent not only through
the number of events, but also through the claim distribution for the primary
risk.

2.1. Joint distribution of dependent aggregate claim amounts

Sundt (1999) and Ambagaspitiya (1999) developed multivariate recursions that
allow us to calculate the joint distribution of the aggregate claim amounts
under the assumptions of the model described in Section 2. As we discussed
above, the individual claim amounts for each portfolio are not necessarily inde-
pendent and we assume that they are integer-valued random variables. The
joint probability function is given by p(x,y) for x=0,1,2,..., y=0,1,2,... in
appropriate units.

The aggregate claim amounts are as given in formula (1), and the recur-
sion for the joint distribution of (S),S,) is as follows:

g(81,8,)= i_: <a+ —) Zp(u V) g(sy—u, 5,—v), (2)

fors;=1,2,...,5,=0,1,2,...

Sy
)= 3 (a+8) 3 ptun) el = =), )
-
for 5,=0,1,2,...,5,=1,2,... See Sundt (1999).

In many cases the insurer/reinsurer would only be interested in calculating
the distribution of the sum of the total losses for both risks. For example, if
we are interested in calculating how much capital we must allocate (under some
criteria) to each portfolio separately or to the combined portfolio, then we
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would be interested in the distribution of the sum of the corresponding aggre-
gate claim amounts.

To calculate the distribution of the sum of dependent aggregate claim
amounts under the assumptions of the model described above it is not neces-
sary to calculate the joint distribution. In the next section we discuss in more
detail how this is possible.

2.2. Distribution of the sum of dependent aggregate claim amounts

Under the assumptions of the dependence model described in Section 2 the sum
of the aggregate claim amounts is given by:

N N N
S=8+8=2X,+ 2Y;= 2 (X;+Y)). (4)
i=1 i=1 i=1

Therefore if we can calculate the distribution of the sum X;+ Y; foreach i > 1,
then the distribution of S can be calculated using Panjer recursion for uni-
variate compound random variables. We denote U; = X;+ Y.

Given the joint distribution of the individual claims for the ith event, the
distribution of U; is given by:

u
PU;=u)=PX;+Y,=u)= 2 )P(X;=u—m,Y,=m), foru=0,1,....

m=0

If X;and Y, are independent then P(U, = u) is given by the convolution of the
margmal dlstrlbutlons

When we consider two excess of loss layers from the same risk, e.g. (m,, mz)
and (mz, my), if Z; represents the claim amount due to the ith event for the pri-
mary insurer, then the losses for the reinsurer are

X,;=min(max(Z; - m,0),m,—m)  and
Y;=min(max(Z;—m,,0), m;—m,).

Hence, X; + Y, represents the losses for the combined layer (m,,m;), whose
distribution can be easily calculated from the distribution of Z, However,
Mata (2000) showed that for layers of the same risk that are subject to differ-
ent aggregate conditions such as reinstatements and aggregate deductibles,
the distribution of the sum of aggregate losses for two or more layers is not
equivalent to the distribution of total aggregate losses for the combined layer.
Therefore, the bivariate recursion given in formulae (2) and (3) must be used
in these cases.

Example 1. Assume a reinsurer is considering to provide excess of loss cover
for the following two layers: 10 xs 20 and 10xs 30 from any two risks (in appro-
priate units and currency). The reinsurer is given the following information
about the underlying risks:
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1. Both primary risks are exposed to the same possible events of claims. N,
the number of claims during the period of coverage, follows a Poisson dis-
tribution with parameter A=1.

2. The individual claims for the ith event for each primary risk, X; and Y;,
have the same marginal distribution. We assume that the claim size distri-
bution follows a Pareto distribution with parameters @ =3 and 8=10 and
probability density function:

ap*
0= e

for x>0.

Therefore, for each event the reinsurer’s claim amounts are:

X['=min(max(0,X,;,-20),10) and  Y*=min(max(0,Y;-30),10),

i =

hence, the reinsurer’s aggregate claim amounts are:

N N
Sk=2xF and SF=2YE
i=1 i=1

Since we do not have any extra information about the individual claim amounts
for each risk, there are many dependence structures that can be used in order
to calculate the joint distribution of the individual claim amounts. Even if we
were given the marginal distributions and the correlation coefficient there are
several possibilities for the joint distribution of the individual claim amounts,
see, for example, Embrechts, McNeil and Straumann (2001). Let us study the
following three set ups:

(a) The individual claim amounts X; and Y, are independent.

(b) The individual claim amounts are dependent and their joint distribution
follows a bivariate Pareto distribution with parameters («, f;, f,) and joint
probability density function

Ca(atl)( . xtB y+ By
Jen="pp (” B T B )

In this example « =3, 8, =, = 10. For more details about the multivari-
ate Pareto distribution see, for example, Mardia et a/ (1979).

(c) The layers belong to the same underlying risk in which case notice that
they are consecutive layers.

Each of these set ups satisfies the assumptions of the model described in
Section 2. It can be seen that the covariance between the aggregate claims
amounts under the assumptions of the model presented in Section 2 is given
by:

Con(S),S,) = EIN)Con(X;, Y;) +Var(N)E[X, ] E[Y ] fori#j (5
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FIGURE I: Distribution of S1R+ SZR, cases (a) and (b).

It is interesting to note that the correlations calculated according to (5) are
quite different from each other in the three cases considered in this example.
The correlations are:

@ p(S*.85)=0.019
(b) p(Sf.S5)=0.206
© p(S].85)=0.761

Figure 1 shows the c.d.f. of S + Sy when the layers belong to different risks, i.e.
dependence assumptions as in (a) and (b). The dashed line in Figure 1 represent
the c.d.f. of S+ S¥ when we assume these risks are completely independent, i.e.
ignoring that both risks are exposed to the same claims. We observe that under
the simplest dependence model (a), where the dependence arises only through
the common number of events, the distribution of the total aggregate losses is very
close to the distribution of total losses under the assumption of independence.
However, when more complex dependence assumptions are built in, such as the
bivariate Pareto claim distribution, the distribution of total aggregate losses is very
different to the distribution under the independence assumption. In particular
we notice that under the dependence assumption in (b) the tail of the distribution
is significantly heavier than when independence is assumed.
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FIGURE 2: Distribution of SIR+ Sf, cases (c).

Figure 2 shows the c.d.f. of S+ SX when the layers belong to the same risk
and the distribution of S¥+ S¥ if independence is assumed. We notice that the
distribution of total losses for consecutive layers would be totally mis-esti-
mated if the dependence structure is ignored. This is of course due to the fact
that when layers belong to the same risk there would be a positive claim in the
second layer only when the claim for the first layers is a full loss. Hence, for
layers of the same risk the claim amount dependence has more effect than the
frequency dependence.

With this numerical example we have shown how different dependence
assumptions may impact the distribution of total losses for the reinsurer. There-
fore, by not taking into account how dependence arises one could mis-estimate
the overall risk. This is of particular importance when pricing multi-layer excess
of loss treaties, where dependence arises not only through he number of claims,
but also through the claim size distribution.

3. ASYMPTOTIC BEHAVIOUR OF DEPENDENT REINSURANCE AGGREGATE
CLAIM AMOUNTS

In the previous section we looked at the distribution of the sum of dependent
aggregate claim amounts from the reinsurer’s point of view. In Figures 1 and 2
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we observed the effect of different dependence structures that might be used
to model reinsurance aggregate claim amounts.

Clearly, given the distribution of the individual claim amounts for the
primary insurer and the distribution of the number of claims, the choice of
retention level M completely determines the distribution of the aggregate claim
amounts for the reinsurer. For large values of the retention level, the proba-
bility of a claim to the reinsurance layer is small. Hence the probability of
zero losses is very high, and therefore the correlation coefficient is small.

Based on the results showed in Figures 1 and 2, where we observed that
under some dependence assumptions the distribution of total aggregate losses
for the reinsurer is very close to the distribution of total aggregate losses if inde-
pendence is assumed, it is our objective to give some insight to the following
question:

Are the reinsurer’s aggregate claim amounts from different but dependent
risks approximately independent for large values of the retention levels?

In the next section we give some theoretical insight into the asymptotic
behaviour of the distribution of the aggregate claim amounts for large values
of the retention levels under different dependence assumptions.

3.1. On measures of asymptotic independence for reinsurance aggregate claim
amounts

In order to provide some answers to the question outlined above we start by giv-
ing the definition of asymptotic independence which will be referred to in the
remainder of the paper. For large values of the retention levels the probability
of a non-zero loss for the reinsurer tends to zero. Hence we use the following
definition of asymptotic independence.

Definition 1 Suppose two sequences of random variables {V, } and {W,} are depen-
dent for each n. If these random variables satisfy
. PWV,edA,W,eB) _
Jm By e POV, eB) (©)

for all sets A and B that have positive probability, then it is said that V, and W,
are asymptotically independent. We will refer to the ratio in (6) as the dependence
ratio.

We prove below that under certain dependence assumptions the reinsur-
ance aggregate losses satisfy the condition given in (6) for some sets 4 and B,
but not for all sets. We set out below the assumptions we require to prove this
result.

Assumptions and notation:

1. The primary insurance risks satisfy the dependence assumptions of the
model described in Section 2, but we assume that the claim amounts for
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the ith event are independent. Hence, the dependence structure arises only
through the common number of events N.

2. Individual claim amounts for the primary insurer X; and Y; are integer-valued
independent random variables that take values x=0,1,2,... and y=0,1,
2,... in appropriate units. We assume that the probability functions of the
individual claim amounts do not have fin§(ite upper limit. We denote
p,(x) and p,(y) as the probability functions of the individual claim amounts
for each portfolio.

3. The common number of claims, N, belongs to Panjer’s class of counting
distributions. Thus, @ and b will represent the constants of Panjer’s class.

4. We denote by Py(?) the probability generating function of N which is
defined as

Py(=E|t]

5. Let {M,,}  and {M,,} _ be sequences of integer numbers representing
ting the retention levels of the excess of loss reinsurance for each risk.
These sequences satisty M; ,> M;, | for i=1,2. For a given value of the
retention, the reinsurer’s claim amounts for the i th event are:

Xf(Ml,n): max(Xl-—Ml’n,0> Y,~R(M2,n): maX<Yi_ M2,n’0>'

Therefore, the aggregate claim amounts for the reinsurer are:

N N
SlR(MLn):Zle(MM) and Sf(Mz’n):ZIYiR(MZ’,J. (7

The distribution functions of the aggregate losses are functions of the reten-
tion levels {M,,} _ and {M,,} _ .

6. The retention levels are such that the reinsurer’s aggregate claim amounts
satisfy

lim P(Sf(M;,)=0)=1,  fori=12. ®)
7. The probability functions for the individual claim amounts for the rein-
surer are p, (x)=P(X*(M, ,)=x)and p, (v)= P(YiR(M“) = y) for x,y=
0,1,2,...,
8. We assume that the probability functions for the individual claim amounts
satisfy
. pix+M,;,)
Iim ————+—— = C(x, for x=1,2,...,
n—-oo]?i()/‘i‘M,-,n) x,) Y

for y=1,2,... where C(x,y) is a constant that only depends on x and y
and 0 < C(x,p) <oo.
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9. The probability functions for the aggregate claim amounts are g, ,(s;) =
P (SIR(MM) =s,) and g, (s,)= P(Sf(M“) =s,), for s,5,=0,1,2,.... We
assume that g, (s,) >0 for i=1,2 and for s,5,= 0,1,2, ...

10. The joint probability function for the aggregate claim amounts is defined
as g,(s,,5,)= P(SIR(MM) =5, S5(M, )= s2>, fors,,s,=0,1,2,...
Proposition 1. Under the assumptions outlined above the aggregate claim amounts
for the reinsurer defined in (7) satisfy:
: 8,(0,0)
a) lim ———=
e, 0,0
R R
. P(Sl (Ml,n)SSl’SZ (MZ,n>SS2)
b) lim 7 7
n—o P(S{(M, ) <5) P(SK(M,,)<s)

1

=1 for all s,5,=0,1,2,...

. gn(slao)
lim — ~——==1 =1,2,...
¢/ nljlloghn(%)gz,n(o) for s
. g (O:SZ) S
d) lim ——="—=1 =1,2,...
R O oY R
. 2,(51,5,) _ 1 _
¢) nh—l:llogl,n(sl)gln(SZ) T a+tb for s1,5,=1,2, ..

Proof. The proof of this proposition is essentially an induction based proof.
In order to avoid confusion with the details of the algebraic proof we leave
the analytical proof for the Appendix and we concentrate in the interpreta-
tion of the results and the assumptions.

From the results shown in Proposition 1 we make the following remarks:

1. Note that for the Binomial, Poisson and Negative Binomial distribution it
always holds that « + 5> 0. Hence, 1 + 1

a+b
dence ratio is always greater than or equal to 1.

> 1. In other words, the depen-

2. The statement in b) implies that when we consider cumulative distributions
we are including the value of zero which has a high probability for large
values of the retention level. This result explains the behaviour observed in
Figures 1 and 2 where we considered the cumulative distribution function
of the sum of the reinsurer’s aggregate claim amounts. In other words, if
zero is included in the probability being evaluated the probability would tend
to 1 due to assumption 6 above.

3. In Proposition 1 we assumed one of the simplest cases of dependence in
insurance/reinsurance risks. Hence, under more complicated assumptions
of dependence between risks the dependence ratio might converge to a dif-
ferent value. In the next section we compare numerically the asymptotic
behaviour of the dependence ratio under various dependence assump-
tions.
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4. Statement e) shows cases where the ratio between the joint distribution
and the product of the marginal distribution does not tend to 1, which
proves the fact that even under the simplest dependence assumption inde-
pendence cannot be assumed. However, if a + b takes large values, the limit
would be close to 1. For example, when N follows a Poisson distribution
with parameter A, a+ b= A which is the expected number of common events
per unit of time. If we increase A we are increasing the dependence para-
meter as the expected number of common events becomes larger. Never-
theless, by increasing A the limit in €) would be closer to 1 which implies
that the joint distribution is closer to the independent case. This shows how
counter-intuitive results can be when the independence assumption is
relaxed.

The following proposition shows another case when the result in e) also holds.

Proposition 2 Assume that two risks follow assumptions 1 and 3 of Propo-
sition 1. Let {M, ,} and {Mz’n} be sequences of real numbers representing the
reinsurance retention levels for each portfolio. These sequences are such that the
reinsurer’s aggregate claim amounts satisfy the condition in (8) and that for
each n

P(Sf (M, ,)=0)= P(SF(M,,)=0)=a

ne

Then, the reinsurance aggregate claim amounts defined in (7) satisfy

PS> 0.55(M,,)>0)
lim = : R =1+ .
n- P(SfM, ,>0) P(S§(M,,,)>0) atb

Proof. We give detailed analytical proof of this result in the Appendix.

Note that the assumptions for Proposition 2 are more general than the
assumptions we made for Proposition 1. Since the result in Proposition 2 refers
to the joint survival function evaluated at zero, the claim size distribution could
have a continuous density function. Also the retention levels are not required
to be sequences of integer values, it is enough that {M,,{ _ and {M,,} _ are
sequences of real numbers such that: - -

lim P(SX(M,,)=0)=1  fori=1,2

n — oo

For Proposition 2, we assumed that both aggregate claim amounts for the rein-
surer have the same probability of being zero. Nevertheless, in Example 2 we
show that this is not a necessary assumption. It seems to be sufficient that
when 7 tends to infinity the probabilities of being zero tend to one. We discuss
this in more detail in Example 2.
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3.2. Numerical illustrations

It is our objective in this section to illustrate numerically the results shown in
previous section. We compare numerically the behaviour of the dependence ratio
as defined in (6) under all dependence assumptions described in Example 1
above.

Example 2. Assume that two insurance portfolios follow the distributional
assumptions as in Example 1. For each risk the reinsurer takes a layer of size 10
with deductibles M, ,=nand M, ,=10+nforn=0,1,2,.... Therefore, for each
event the reinsurer receives claims for the following amounts

XX(M, ,)=min(max(0,X;-n),10) and
Y*(M,_,)=min(max (0, Y;-10 - n),10).

We consider the three set ups as described in Example 1. In this example
N follows a Poisson distribution with parameter A =1. Hence, it follows that

L__o

1+a+b

P(Sf(M,,)>0.55(M, ,)>0)
P(S{(M, ,)>0) P(SX(M,,,)>0)
n — oo. We observe that the asymptotic behaviour of the joint survival function
at zero is very different under the three dependence assumptions. In the case

Figure 3 shows the dependence ratio as

of independent claim amounts, the dependence ratio converge to 1 + ﬁ as

shown in Proposition 2. However, when the claim amounts are dependent,
as in cases (b) and (c), the dependence ratio tends to infinity. We also notice
that for layers of the same risk the dependence ratio goes to infinity faster
since

P(SlR(MLn) >0,S5(M,,)> o) = P(S§(M2,n) > o)

and therefore,
1

P(SIR(MLH) >0,858(M,_,)> o) ;
1m =lm ——F%—=
n-P(S{(M,,)>0) P(SK(M,,)>0) n===(SF(M,,)>0)

g,(0,1)
8..(0)g, (1)
tion n. We note that for layers of the same risk the dependence ratio has a
constant value of zero since it is not possible that the second layer takes a
positive value if the first layer is zero. However, for layers of separate risks the
dependence ratio tends to one. We also observe that in the case of layers from
different underlying risks with dependent claim amounts the dependence ratio
converges to one, but slower than in the case of independent claims amounts.

Figure 4 shows the behaviour of for large values of the reten-
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1,)1) > 2’S§ <M2,n> > 2)
)>2) P(SY(M,,,)>2)

as n — oo

1,n

We notice that the asymptotic behaviour of joint survival functions for
sy, 8, > 0 (in this case s; = 5, = 2) is very similar to the asymptotic behaviour of
the joint survival functions for s, =s,=0. In the case of independent claim
amounts the dependence ratio for the joint survival function also converges to

1
1+a+b

as shown in Proposition 2 for s, =5, =0.

3.3. Comments on the assumptions in Section 3.1 in practical applications

The results shown in Section 3.1 are a step towards a better understanding of
the effect of dependence between reinsurance risks that have small probabil-
ities of large losses. In order to get a better understanding of the results of
Propositions 1 and 2 one has to look closely to each of the assumptions made.
We discuss below the relevance of each assumption.
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1. Assumption 5: Note that in Example 2 we have assumed that the excess of
loss layers for the reinsurer have a finite upper limit equal to 10. Therefore,
assumption 5 does not seem to be a restriction in practical terms. However,
the assumption that the reinsurer takes excess of loss layers with infinite
limit facilitated the analytical proof.

2. Assumption 6: It is not unreasonable to assume that for non proportional
reinsurance the retention or deductible is such that the probability of claims
affecting the reinsurer is very small. This is a typical assumption in prac-
tice.

3. Assumption 8: We assumed that the probability function is such that

% =C(x,y) for 0 <x <y, where 0 < C(x,y) < oo and ana-

lytically this is the key assumption for the proof of Proposition 1.

Although this property seems to be related to the theory of slowly or reg-

ularly varying functions (see, for example, Embrechts, Mikosh and Kliip-

pelberg (1997)) it is in fact a weaker condition as some density functions
satisfy assumption 8§ but are not regularly varying functions. For example,
the Exponential distribution satisfies the condition in assumption 8, how-
ever its probability density function is not a regularly varying function.

On the other hand, the density function of a Pareto distribution is a regu-

larly-varying function and it also satisfies the condition in assumption 8.

The condition in assumption 8§ is satisfied by most of the continuous

loss distributions used to model insurance/reinsurance losses, such as:

Exponential, Gamma, Log-normal, Pareto and Generalised Pareto. The

Normal distribution does not satisfy this property as it can be seen that

o S
o )
claims are usually skewed and heavy-tailed, and therefore, the Normal dis-
tribution is not a reasonable loss distribution for practical use.

4. Proposition 2. In this proposition we assumed that both aggregate claim
amounts have the same probability of being zero. Example 2 shows that this
seems not to be a restriction. In fact in Example 2 the layers are such that
for each n we have

P(Sf(M, ,)=0)<P(S(M, ,)=0).

lim,,

oc. In practical cases the loss distributions for insurance

However, for any € > 0 there is M such that for n = M
R _ R _
P(S§(M,,)=0) - P(S{(M, ,)=0)<e€,
and as » tends to infinite both probabilities tend to one.
4. CONCLUSIONS

Modelling dependencies between risks has become an area of increased
research interest in actuarial science. Although many authors have emphasized
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the importance of differentiating between correlation and dependence, in prac-
tice, when one thinks of dependencies, inevitably the correlation coefficient is
the first thing that comes to mind.

The numerical examples in this paper showed that even when the correla-
tion coefficient becomes small dependence cannot be ignored. Failure to iden-
tify dependence between risks may lead to underestimation of the overall risk.
This is particularly relevant when pricing risks or managing aggregation of
risk exposure.

Throughout this paper we have looked at dependencies from the reinsurer’s
point of view where there is a very small probability of very large losses.
Loosely speaking, the main result states that for large values of the retention
levels the dependence ratio converges to a constant defined by the frequency
distribution. This constant is always greater than or equal to one. Intuitively,
if the aggregate losses are dependent only through the number of events, one
would be inclined to think that if the expected number of events increases then
the dependence becomes stronger. However, we showed that when the number
of events follows a Poisson distribution the larger the expected number of
events the joint distribution of aggregate losses gets closer to the product of
the marginal distributions which is the distribution of independent aggregate
claim amounts.

Modelling dependencies is an area with a vast possibility for research. It is
of particular importance to extend the ideas presented in this paper of com-
paring the joint distribution with the product of the marginal distributions for
more general right tail dependence models, for example by looking at multi-
variate extreme value distributions or extreme value copulas. This comparison
is always helpful in practice when often the practical actuary is interested in
the impact of making simplified assumptions to facilitate the implementation
of new models and techniques.
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APPENDIX: ANALYTICAL PROOF OF PROPOSITIONS 1 AND 2
This Appendix gives the analytical proof of Propositions 1 and 2 in Section 3.1.

Proposition 1: Under the assumptions outlined in Section 3.1. the aggregate claim
amounts for the reinsurer defined in (7) satisfy:

a) lim £,(0,0)

—en» )
n "OOgl n(o)gZ,n(O)

P(S{(M,,)<5.S8(M,,)<s)
0 P(SE(M,) < 5) PSS (M) < )

gn (Sl b} O)
) im 6 2,0

=1 forall s,5,=0,1,2,...

for 5,=1,2,..

g (O,SZ)
d) lim —k——="———=1 fi =1,2,...
) n—o &1,00) & ,(52) or %2
g.65,8) 1
© ’1111130 8120182, n(52) e for 5;,5,=1,2,..

Proof.

Reminder: in what follows n represents the indexation of the retention level
that are increasing sequences (tending to infinity) as defined in the assumptions
in Section 3.1.

a) Since the aggregate claim amounts satisfy the condition (8) in assumption 6,
we have that 2133@ gin(0)=1 for i=1,2. This also implies that }113)10 pin(0)=1
for i =1,2. The joint probability of being zero is given by g,(0,0) =
Py (pi1,(0) p5,(0)), where Py(t) is the probability generating function of N.
Therefore from assumptlon 6 it also holds that hm 12,(0,0)=1. Then we
directly obtain the result in a).

b) From a) we have that the joint probability of being zero tends to one as well
as the probability of each aggregate claim amount being zero. Hence, the
result in b) follows directly since we are considering cumulative probabilities
which include the value of zero.

c) Since we have assumed that the random variables are integer-valued we can
evaluate the joint distribution of the aggregate claim amounts using the
bivariate recursion proposed by Sundt (1999) defined in formulae (2) and
(3). We will prove the statement in ¢) by induction and we do the basic step
for s, =1.
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1
L= ap, ,O)ps ) @ DPaDP2,,(0) 8,0.0)

tim — &G0
(= @ 2,0 £2,0)

n— oo glyn(l)gz’n(o) - n— oo

where the last inequality is due to the result in a). The limit above is equal
to 1, only when a # 1. For the Poisson, Negative Binomial and Binomial dis-
tributions a takes the values: a=0,a=(1- p) and a=-p/(1 - p), respec-
tively. Hence a # 1 for the three distributions that belong to Panjer’s class.
Therefore the limit above is equal to 1. We now state the inductive hypothe-
sis: Let us assume that the result in c) holds for all the pairs (s,,0) such that
s,=1,2,..., X, then we have to prove that it is also true for (X +1,0) (note
that X in this context does not represent a random variable, it is an index
in the induction proof). From the recursion in (2) we have

p2,n(0) ! bu
1= aP1,n(0)Pz,n(0) ugl (a + m) Pl,n(u)gn(X +1-u,0)

Using Panjer’s univariate recursion for g, ,(X +1), we have

g,(X+1,0)=

g,X+1,0)
gl,n(X+ 1)g2,n(0)

25,0, Ol —ap, ,0)] —x +1 bu g,(X+1-u,0)
1= ap, ,0)p, ,0) 2 (_%X+JPMNO&J&Y+1_u)&JX+1—mg“@

X 1 u
gZ,n(O) Zu :+1 (Cl + ﬁ) pl,n(u)gl,n(X +1- Ll)

u=1

Since lim,_ _p, ,(0)=1im,__ p, (0)=1, and using the inductive hypothe-
sis, for any € > 0 there exists K such that for n > K

P2, Ol —ap ,0)]  g,X +1-u,0)
1- apl,n(o)pZ, n(o) gl,n(X +1- Ll) g2,n(0)

foru=1,2,...,X +1. Hence for n > K
g, X +1,0)
gl,n(X+1) g2,n(o)

<l+e€,

I-€e<

<l+e€,

which proves c).

d) The prove of the statement in d) follows the same argument as c) but using
the recursion in formula (3) instead of (2).

e) To prove the statement in e) we will use the results in a), ¢) and d). We start
by proving the result for s; = 1 and s, = 1. Using the recursion in formula (2)
we have
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: g1, 1)
1 z =
n l—l:Ilogl,n(l)gZ,n(l)

. 1
1
nte I=apy ©0)p, ,0)

apl,n(o)pZ,n(l)gn(la O) n (Cl + b)pl,n(l) Zl =0 pZ,n(v) gn(O’ 1- V)
g1,n(1)g2,n(1) gl’n(l) gz,n(l)

In the limit above we have three terms, we will analyse each term separately.
Using Panjer’s univariate recursion for g,,(1) the limit for the first term
can be calculated as follows:

li apl,n(o) p2,n(l) g2,n(0) gn(l’ 0) _ Cl(l — a)

nlﬁn?,o%(a_,_b) g, (©0) 812108240 -~ a+b”
1— apZ,n(O) p2,n g2,n ’ ’
£,d,0)

since from part ¢) we know that lim = 1. For the second

" g (1) g, ,0)
. . gl’n . gz’.n .
term we use the result in d) and Panjer’s univariate recursion for g; (1),

therefore the limit for the second term is

lim (a + b)Pl,n(l)Pz,n(O)gl,n(O) gn(oa 1)

n —

=1l-a.
oo 1 g1.,0)g,.,(1)

1—611?1,,1(0) (a+b)pl,n(1)gl,n(0) 3 3
And finally for the third term we use the result in a) together with Panjer’s
univariate algorithms for g (1) and g,,(1), hence the limit is

@+b)p,,(1) &, 1,1 &,,0)  £,0,0) (- a)( 1-a )

im
n— oo gl,n(l) g2,n(1) gl,n(o) gZ,n(O) a+b
Putting these three results together we obtain
g 1 fal-a) o (=aP]_ o 1
nlgr},oglqn(l)gz’n(l)_(l—a) a+b tl-a)+ a+b _1+a+b'

We have to use a bivariate induction to prove the result in ¢). We state the
inductive hypothesis as follows:
Assume that

. 2,(5,5,) 1
lim u =1+
n— o0 81 n(51)82,(52) a+b

for all (sy,s,) such that s,=1,2,...,X and 5,=1,2,...,Y, together with the
results in a), ¢) and d). Therefore using this hypothesis we need to prove that
the result in statement e) holds in the following three cases:
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(i) (X +1,p)such that y=1,2,...,Y
(i1) For all (x,Y +1) such that x=1,2,..., X
(ili) For (X +1,Y +1).

Note that X and Y should not be confused with random variables. In each
case above the argument is similar except that in (i) we use the recursion
in (2) whereas in (ii) we use the recursion in formula (3). We will prove
the result only in case (i), the other cases follow. Let us fix y such that
y=2,3,..., Y. Together with the inductive hypothesis and a), c) and d) we
also assume that the statement in e) holds for all the pairs (X + 1, s,) such
that s, =1,...,y—1, then we want to prove the result for (X + 1, ). Using the
recursion in (2) to evaluate g, (X +1,y) we have

. g(X +1,)
lim n =
n—-o gl,n(X + 1) g2,n(y)
i 1 ap; ,©0) 23 py g, (X +1,y-)
n—ol=ap ,0)p, ,0) g, (X +1Dg, )

X +1
Zu :+1 <a+bﬁ>pl,n(u)2i):o p2,n(v)gn(X+l_uay_V)
+
g.,X+1D) g 0

To be able to use the results in a), ¢) and d) we must separate those terms for
which one of the entries is zero in the evaluation of g, from the terms where
both entries are greater than zero. Doing so we obtain the following result

. 1
1 X
n e 1= apy_,0) p, ,0)

ap, ,(O) (207) P 8,X +1,y =1+ py ,0) g,(X +1,0))
g, X+ g ,0)
Z,i(: 1((1 +b ﬁ) pl,n(u) <Zi;é p2,n(v) gn(X +1-u, Y- V))
gl,n(X + 1) gz,n(y)
S (0 b 4g) Pt P (V) g, +1-100)
g.,X+1) g ,0)

@+5) pr X +1)(Z) 25 22a0) €0, 7 =0+ 1 ,0) £,0,0))
g.,X+1) g ,0)

+

+

+

Now we can use the same method of multiplying and dividing each term
that contains g, by the corresponding product of the marginal distributions.
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Then for those terms where one or both entries is zero the ratio tends to
one, and for the ratios where both entries are greater than zero the ratio

tends to 1+ due to the inductive hypothesis. Therefore, the limit above
can be written as follows

. g, (X+1,y) . 1
lim u =1lim X
n— oog1,n(X+ 1)82,,1()/) n— ool _aPLn(O)Pz,n(O)

(apl.n(o) gl,n(X + 1)) (1 + ﬁ) Zf:—ll p2,n(v) g2,n(y - V) + p2,n(y) g2,n(0)

gl,n(X+ 1) g2,n(y) -
Zi{: 1<a +b ﬁ) D) g (X +1-u)
+ g, X +0) %
(1 + ﬁ) Zf:_(: 2., &, 0 =)+ py () &.,0)
g2,n(y) "
+ (a+b)pl,n(X+1) gl,n(0)> p2,n(0) gz,n(y)"'Zf:]Pz,n(V) g2,n(y_v) (A 1)
gl,n(X+ 1) g2,n(y) . '

From condition (8) in assumption 6 it follows that lim, _ _ g; ,(x)=0 for
all x=1,2,3,... and for i=1,2. The same result holds for p, ,(x). Using
these results we have

Y
nlim Z P2.,00) &, —v)=0,
%y =1

since each term tends to zero. However, when we divide the above sum by
g2.,(») we obtain the following result

lim > P 2,0 )
n—oo L §w v ~
l—apzﬂn(O) Zv:1<a+by>p2,n(v) g27n()7 V)
hm pz’n(l) g2’n(y _ 1) et p2,n(y - 1) g2,n(1) + pZ,n(y) g2,n(0)

a0 F) 2D 8,0 =D+ @+ 5) 2,00 2,0)

We observe that in the limit above each term tends to zero, however the last
term contains g,,(0) which tends to one as n tends to infinity. Therefore,
we divide each term by p,,(y) and we obtain
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1 -1
P2 1)92gji;§y Vot gy ,0)

lim
n— oo 1 b pzjn(l) g2,n(y_1)
I~ ap, ,0) ((“ B

++(@+b) g, ,0)

The last equality is due to the result in assumption 8 where we assumed

that lim ?‘ "gg =C(x,y) which is a constant for i = 1,2, and lim g, ,(x)=0
forall x= li’,l2, .... From the discussion above we obtain directly the following
results
-1
o 2ot P €2,070)
m =0
n— o gz, n(y)
X
| Zu:1<a+bXbi_1>pl,n(“)g1,n(X+1_“)
im =0
" oo g X +1)

@) p X 4D, 0)
n— oo gl,,,(X+1)

Hence from all the above, we can evaluate the limit in formula (A.1) and
we obtain the following result

: g,X+1Y) l1-a l—-a\]_ 1
nhfriogl,n(X+1)gz,nm‘1—a[“<a+b>+“‘“)<”a+b>]‘”

which is the result shown in e).

Proposition 2: Suppose that two risks follow assumptions 1 and 3 of Proposition 1.
Let {M l,n} and {Mz,n} be sequences of real numbers representing the reinsurance
retention levels for each portfolio. These sequences are such that the reinsurer’s
aggregate claim amounts satisfy the condition in (8) and that for each n

P(Sf(M, ,)=0)=P(S}(M,,)=0)=a

Then, the reinsurance aggregate claim amounts defined in (7) satisfy
_ P(S}(Mm,,)>0,88(Mm, ,)>0)
lim = TV
n—e P(SK(M, ,)>0) P(SX(M,,)>0)

1
a+b

1,n

=1+

Proof. Note that in this case we do not require that the individual claim amounts
are integer-valued random variables. We also do not need that the retention
levels are integer numbers. We denote by p;,(0) the probability that an indivi-
dual claim amount for the reinsurer is zero and by g,,(0) the probability that
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the aggregate claim amount for the reinsurer is zero for retention level M;, for
i=1,2.

If n — oo then o, — 1". We can write the probabilities of being zero in terms
of the probability generating function as

g.,0)=P(SK(M,,)=0)=Py(p,,O0)=0c, fori=1,2,

where Py(?) is the probability generating function of the frequency distribution.
Hence, p, ,(0)= Plgl(a”) for i =1,2, provided that the inverse of the proba-
bility generating function exists. For the Poisson, the Negative Binomial and
the Binomial distributions the inverse of the probability generating function
can be written explicitly.
As in part a) of Proposition 1 we can write the joint probability of the aggre-
gate claim amounts being zero as follows

gn(oa O) = PN<p1,n(O) p2,n(0)> = PN(<P1:71(an>> 2) .
Therefore,

P(SK(M, ,)>0,8%(M,,)>0)  1-g ©0)-g ,0)+g,0,0)

li =1
W P(SH(M, )= 0) P(SE(M, ) >0) nox (1-g,0)(1- g, 0)

1-20 + P ((Ple))’
o (7)) -3

a, - 1° (I—O(n>2

Applying L’Hospital rule twice the limit above can be calculated as follows

- Py,
lim 2dc(lj ((PNI(%)>2> (Py (@,)) -

a, - 1" n (dg( PN<P (a )))
1 ELE— (Py@,))
-4 by,
%%PN@;/I(OC”)) der, Py )( d‘é PP, )))2

From the properties of the probability generating function we have Py(1)=1

and therefore P]\_,l(l) =1. Moreover, the probability generating function satisfies

%PN(l) = E[N]. Therefore, the limit above is given by

2
; P(S{(M,,)>0.55(M,,)>0) _jt2PN(1)+ |
o= P(SF(M, ,)>0) P(SK(M,)>0) ~ (EIN)® ~ EINT
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Therefore, by evaluating the limit above with the corresponding values for each
of the distributions that belong to Panjer’s class it follows that

i P LPOSM,)20) |y
naooP(S1 (Ml,n)>0)P(Sz (Mz’n>>0) a+
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