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LIMIT THEOREMS FOR STOCHASTIC
DIFFERENCE-DIFFERENTIAL
EQUATIONS

TSUKASA FUJIWARA ano HIROSHI KUNITA

1. Introduction

There are extensive works on the limit theorems for sequences of stochastic
ordinary differential equations written in the form:

(1) 90— fr) + g0,

where f = f/(x), t 2 0 is a stochastic process and &7 = gf(x),t =0 is a
deterministic function, both of which take values in the space of vector fields. The
case where {f{"}, satisfies certain mixing conditions has been studied by Khas-
‘'minskii [7], Kesten-Papanicolaou [6] and others. The limit process is characterized
as a diffusion process governed by a stochastic differential equation based on a
Brownian motion. Further, the approximation theorem of stochastic differential
equation studied by Wong-Zakai [18], Tkeda-Watanabe [4] etc. is also formulated
in this way. A unified method of treating these problems was proposed by Kunita
[9].

On the other hand, a lot of attention has also been shown to the discrete time
approximation of stochastic differential equations. Approximating sequence of
equations is written as

(1.2) Orrr = @ T flQ & + 8800, k=1,2,...

where {£}} is an array of random variables with certain mixing conditions and
{f, &%, is an array of continuous maps of the state space into itself. See Kush-
ner [13], H. Watanabe [17] and Fujiwara [2]. The limit process is either a diffusion
process mentioned above or a diffusion process with jumps governed by a stochas-
tic differential equation based on a Lévy process.

In this paper we will present a unified method which is applicable both
to stochastic ordinary differential equation (1.1) and to stochastic difference
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equation (1.2). Equations are written as stochastic difference-differential equa-
tions of the form:

(13) of = o+ [ Ui + 2iet) dAl.

Here {f7} is a sequence of vector field valued stochastic processes and {g%} is a
sequence of deterministic vector field valued functions of u. {A%Z} is a sequence
of deterministic nondecreasing cadlag (right continuous with left hand limits)
functions of .

Assumptions required for equations (1.3) and techniques employed for the
proof of the limit theorem, are closely related to those in [9], where stochastic
ordinary differential equations are discussed. However there are some important
differences. In this paper, we get a sharper estimate of the solution. This enabled
us to obtain a better result than authors’ previous works. Another different point
in this paper is that we introduced Lévy measures so that the limit process can
have jumps and can be characterized as a Markov process associated with Lévy’s
infinitesimal generator.

The organization of this paper is as follows. In the next section we state our
main theorem (Theorem 2.1). Assumptions on equations are presented in an
abstract manner. They appear to be technical and complicated. A reason why we
presented the theorem in this form is that we want to apply the theorem to
various types of limit theorems. The theorem will be proved at Section 3. Since
the proof is long, it will be divided into four subsections.

In the last section we will apply the theorem to stochastic ordinary differen-
tial equations. Two cases will be discussed separately. The first is the case where
certain uniform mixing (or ¢-mixing) conditions are satisfied (Theorem 4.2). The
second is the case where certain strong mixing conditions are satisfied (Theorem
4.6). Our typical results are Corollaries 4.5 and 4.8. There we discuss the weak
convergence of solutions of equations

(1.4) 90 — it (o1, 0,
where f(z, t) = (fYz, t),...,f%=x, t)) is a stationary process with mean 0.

We show that the sequence of solutions {¢"} converges in law to a diffusion pro-
cess if the following (@) and (b) are satisfied:

(@): Elsupiz<y|0%f(x,0)]?] < oo forall N>0and |al <2.
(b): The uniform mixing rate ¢ (¢) satisfies J,~ @ (s)2ds < oo,

or if the following (@)s and (), are satisfied for some d € (0, ©) and 7 €
0,0/224+06)A + a)).
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(@j: Elsupi<n| 08 f(x, 0) [2*] < oo for all N> 0 and | a| < 2,
(b)7: The strong mixing rate a(t) satisfies [, a(s)7ds < oo,

Here 0F = (8/0x)® - - - (8/0x%)% and |a| = a1 + - -+ + @a The diffusion and
drift coefficients (characteristics) of the limit process are given by

15 a¥@ = El( [ fiz, 9as) piz, 01 + E( [ fia, 9ds) £, 0],
we v@ =Se(f L @, 9ds) i, o).
j=1 0 ox

Similar limit theorems have been discussed by many authors. See Khas’'mins-
kii [7], Kesten-Papanicolaou [6], Kunita [8], [9], Kushner [13], and references there-
in. Conditions assumed in these works are much stronger than ours. Concerning
moment conditions, f(x, f) is assumed to be bounded in [7], [13] and is assumed
to satisfy Condition (@); with 6 > 2 in [9]. It seems to us that our present condi-
tion (@) (existence of the second moment) would be the best possible one as far as
the moment conditions are concerned, since our assertion can be regarded as
a central limit theorem. Conditions (a); and (b); with & € (0, ), v €
(0, 6/2(2 + 9)(1 + d)) is also a relaxization of conditions in [6] and [8].

Another interesting application of our main theorem will be to the sequence of
stochastic difference equations (1.2). We show in Fujiwara [3] that the sequence of
solutions of stochastic difference equations of the form (1.2) converges in law to a
certain Markov process with jumps under mixing conditions for {&F} similar
to (a) or (a)s. Futher, we show in Kunita [11] that the sequence of random mea-
sures of the form

1 nt)

(L.7) B*(t, E) = I = {Is(Vnép) — m,(E)},

where Iz is the indicator function of the set E and 7, is the law of vz &7, con-
verges in law to a Brownian random measure B (¢, E) and the sequence of ran-
dom measures

(1.8) N, F) = ;Z‘] LED,

converges to a Poisson random measure N (¢, F). These limit theorems are ap-
plied for the limit theorem of solutions of stochastic difference equations (1.2).

2. A convergence theorem

We begin by introducing some function spaces. Let & be a nonnegative integer
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and let C* = C*(R?, R? be the set of all C*¥-maps from R? into itself. For f &
C*, we define the norm | f ¥ by

(2.1) 171 = sup (1[ +(x)x| ) + X sup|ozf(a)l.

reR4 1< |l <k zeR4

We denote by Ck, the set of all f € CF such that || f|lf < 0. The space C¥y and
the norm || f ¥ are often denoted by Csx and || f[*. We also denote by | £1| (I £llx)
the supremum norm (the C*¥-norm, respectively).

Now let (2, %, P) be a probability space with a family of filtrations {Z7;
t 2 0} »en. Suppose that for each # € N we are given an {#7}-adapted cadlag
stochastic process f* = f*(x), + = 0 with values in Cj+« and a determinitic
cadlag function g7 = g%(x), t = 0 with values in C}«. Suppose further that we
are given a sequence of nondecreasing, deterministic and cadlag functions {A7}
such that Af = 0. We often use the following abbreviations. For nondecreasing
processes A and B, we denote by A € Bif B — A is also nondecreasing. We set

441 = At — AL,

(2.2) fils(x) = fil @) lagamer<a,  fist(@) = fi (@) Lo<izami<m,
and

(2.3) fis(x) = E[f2:(x)], fus(@) = fls(x) — fis(),

for 0 < § < M, where it is assumed that the expectations fZs;(x) exist for all
n, 0, u, x and fis, u =0 is a C3x-valued cadlag function for any # and 4. Note
that fis = fi and fis = 0 hold if AA% =0. We denote by fi*® the i-th component
of f*. We also denote by R? @ Re (8,) the set of all d X e real matrices (the set
of all d X d real, symmetric, nonnegative definite matrices, respectively).

Consider the sequence of stochastic difference-differential equations (1.3).
For almost all w € £, it has a unique global solution %, ¢+ = 0. It is a cadlag
process with values in R?. The purpose of this paper is to discuss the weak con-
vergence of the sequence of cadlag processes {¢F}.. Let D, = D([0, o), R?) be
the space of all cadlag functions from [0, ) to RY endowed with Skorohod’s
Ji-topology. See Jacod-Shiryaev [5] for the Skorohod space. We denote by B(D,)
its topological Borel field. Then the law of the cadlag process ¢, ¢ = 0 can be de-
fined on the space (D4, (D)) as usual. The sequence of cadlag processes {7},
is said to converge in law if the corresponding sequence of laws on (D4, B(Dy))
converges weakly.

To establish the weak convergence of {¢"}, we introduce the following
system of conditions (A. I)~(A.IV) for {f*(x), g2(x), A%},
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(A.I): (1) For every compact set K in R? and positive constants M, 7, there
exists a sequence of nondecreasing cadlag processes {D"}, satisfying following
properties (i) and either, (ii) or (ii)’

(1) Forall s<t< V< T
4 % ([ swlElf  oitu(y)dai| 2l 08u(@) | dal

lal<2,181<1 ¥ (St zyek

+ [ sup| 9% fu(x) [2AAz dA) < Df — D
(s,t] rek

(ii) The sequence of compensators {D™?}, of {D"}, is C-tight in the space
D,, that is, it is tight and any limit law is supported on the space of continuous
paths C ([0, ), RY). In addition, {D?*}, is uniformly integrable for each ¢

@i))” {D"}, is C-tight in the space D; and {D?}, is uniformly integrable for
each £

(2) For every compact set K and for every pair of positive constants 0 < M,
there exists a sequence of deterministic nondecreasing functions (D"}, satisfying
the following properties.

@

(2.5) > {f sup|df (fiu(x) + Zix)) | dA:

181<1 ©,t] zek

+ [ Elsup| o2 faicz) [1 dAn < Dr.
(0,¢] €K

(i1) For every T > 0, supxen D% and
(2.6) limlimsup sup (D7 — D7) =0.

6lo n—oo S<t<T,t-s<6
(A.ID): (1) There exists a family of o-finite measures v (df), # = 0 on Cs«
satisfying the following properties of (i) and (ii).
(1) Forevery T>0

en  [1 [ Ifl@)du< e and v (5l > du < e,

(ii) For every bounded continuous function # on R? compact set K in R
and 0 < M such that 6, M € C(v) =: {r>0; S vu({f;lfl*=7))du=0
for any T >0},

(2.8) lim Elsup | El X h(fI(x)AAD) Lo<iszanio<m |F2]

n—o0 xeK s<u<t

B Lt ./:;,,* h(f (X)) le<irr<mvu(df)du l] = 0.
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In addition, 1 € C (V).
(2) There exists a cadlag function a@o(#) = ao(r, #) with values in
2«(R?, S;) such that for every compact set K and s < ¢

(2.9) lim lim sup Elsup| E[ f( y s (x) fud (x) AALdAL | F1
ek S,

seCw) o m=e x

- j: ai(x, uydull = 0.

(3) There exist cadlag functions a;(#) = a;(xr, #) with values in
2« (R REQRY and c(u) = c(x, u) with values in Ci« (R? R? such that
for every compact set K, M > 0, and s < ¢

@10)  lmElsup | EC [ [ Fuld (@) Fud (o)dAzas | #2]
n—oo zek (s,8] (v,8]
— ["at(@, waull =0,
and .
i 3 0 Fn,(i) Fn,(j) n,JAn ”
@1y mElswl B[ [ £ (G5 7u) @ T @atias | 92

- j: ci(x, wdull =0,

respectively.
(4) There exists a cadlag function b(u) = b(x, u) with values in
1« R4, RY such that for every compact set K and s < ¢

- t
@12 Gmsupl [ (7@ +2i@) a4t~ [ b, wdull = 0.
(A.IID): (1) For every compact set K, s < t, M > 0,
213)  lim sup X Elsup|El f 8571 (x) dAz| F21]1 = 0.
n—oo s€(0,t] |g| <2 rekK (s,t]

(2) For every compact set K, s < ¢, M > 0,

(2.14) lim X EI[ supIE[j:M o fru(y) dAZ| F21|

7o (o] <2 .01 zyek
X | Fou(x) PAALAAL] = 0.
(A.IV): For every t > 0,
(2.15) lim lim sup P[sg | frAAz ¥ > M] = 0.

M- n—oo u

Our main theorem in this paper is stated as follows.
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THEOREM 2.1. Assume (A.I) ~ (A.IV). Then, the family of Ds-valued random
variables {Q"}, satisfying (1.3) converges in law to the unique solution of the following
stochastic differential equation:

216) o=z [ o, WdB+ [ b+ o) (pu, wiu
* f(o,:l —/:tsftf*S1;f(¢“‘)N(d“df)

* ./:o_,, j:nfu*mf(‘p“‘)N(d“df),

where (1) o(u) = o(x,u) is a cddlig function with values in Clx (R?, R @ R”)
such that o (u) o (u)* = ao(u) + {a,(u) + a;(w)*} where a* denotes the transpose of
the matrix a,

(i) B: is an r-dimensional standard Brownian motion, and

(iii) N(dudf) is a Poisson random measure with the intensity measure duvy(df)
and N(dudf) denotes the compensated measure defined by N (dudf) = N(dudf) —
duvy(df).

See Ikeda-Watanabe [4] for stochastic integrals based on Poisson random me-
asures and stochastic differential equations of jump type such as (2.16).
We defer the proof of Theorem 2.1 to the next section.

3. Proof of Theorem 2.1

In this section, we will give a proof of Theorem 2.1, by applying the so-called
martingale method. However, since it seems diffcult to apply the method for {¢™},
satisfying (1.3) itself, we divide the proof into several steps. First, we introduce a
family of stochastic processes which are uniformly bounded and have uniformly
bounded jumps, as follows. For given L > 0, let #,(x) be a nonnegative smooth
function from R? to R! such that #(x) =1 for | x| < L and that 7(z) = 0 for
|| = L+ 1. We fix such a function 7, for each L in the following discussion.
For given M € C(v) and L > 0, define the localized and truncated process @™~
of ¢” as the solution of the following equation:

(3.1 o= o+ [ flua(gi) + gha(ih) dAL,

where we set fiur(x) = n(x) fim(x), gic(x) = n(x)gi(x). Then for arbitrary
T > 0 there exists a positive constant Cpyr such that | @P™F| < Cyyr and
| AL | < Cypp for all m, t < T, and w € . Throughout section 3, we denote
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by K the compact set {z; | x| < Cuyrr).

The first step of our proof is to show the weak convergence of {¢
fixed M and L. For this aim, we will apply the martingale method for {¢™*%},. In
fact, in subsection 3-1, the tightness is shown. See Proposition 3.2. Further, in

ML} for

section 3-2, it is shown that any weak limit is unique and coincides with the law
of some stochastic differential equation. See Proposition 3.4. After establishing the
first step (Proposition 3.10), we will proceed into the second step of removing the
restriction of localization in (3.1). This problem is discussed in section 3-3. See
Proposition 3.11. In final section 3-4, we will remove the restriction of truncation
on jumps, and then we will complete our proof of Theorem 2.1. Though the outline
of the proof follows that given in Fujiwara [2], it should be noted that the proof
given below does not depend on the specific property of mixing arrays of random
variables.

First of all we give a formula of the change of variables for the process ¢7,
which will be often used in the proof of Theorem 2.1.

Lemma 3.1. Let F(x), x € R? be a C'-function and let ¢, = (P, ..., PF) be
an Ré-valued cadlig process of bounded variation. Set AP, = ¢i, — Pi—. Then for any
s <t

(3.2) F(@) = F(g)
_& [ OF f _ _ & OF i
=5 [ Lo ant = (F@) - Feo - 525 o) a0i)

i=1 v 8 0x s<u<t i=1 0

=2 [ (['OF (g + 040, d6) dgi.

i=1+ (s,t] 0 ax

Here we note that
! ——a— = —Q——— 1 =
o og! (- + 604¢,) db or’ (¢y-) if A¢, = 0.

The proof is easy and is left to the reader.

3-1. Tightness of {¢™"1},
The aim of this subsection is to prove the following proposition.

ProposITION 3.2.  Let M and L be fixed. Then {@™"*%}, of (3.1) is tight in Da.

For simplicity, we discuss only on 1-dimensional case (d = 1). Also, in order
to avoid the notational complexity, we consider the equation (3.1) as if 7, = 1, and
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we omit the superscripts and the subscripts M, L in @™™E fy, fou, fiu, f24, and
f28 Further, we will give the proof under the assumption (A.I)-(1)-(ii) because
the proof goes similarly when we assume (A.I)-(1)-(@i)’. In order to show the
tightness of {¢” = @™}, we refer to a criterion originated by Aldous [1]. Fol-
lowing Kurtz [12] Theorem 2.7, it is sufficient to prove that for all T > 0,

(3.3) lim lim sup sup E[| ¢%s — @7 |1 =0,

610 n—e 169"}

where J% denotes the set of all {#7}-stopping times not greater than T. Note that
{¢"}, which we are now considering is uniformly bounded. To show (3.3), we pre-
pare the following lemma.

LEMMA 3.3. There exist a positive constant C, stochatic processes My, and non-
decreasing processes RY satisfying the following (1) ~ (iii) :
() Foralls £t< Tandn €N,

(3.4) |o*— ¢"|? < C{D? — D* + EID? — D] + D? — D™ + MZ + R}

(i) Forallt€T% 6> 0 andn €N, EIM*.s]1 = 0 holds.

(iii) For all t, limy-.. E[R] = 0 holds.

Proof. Note that ff + g% = f2+ (f# + 7). By integration by parts, we
have

(ot =gl =2 [ (o~ gddei+ = |Agil?

s<u<t

=2 ./:s,,] (pu- — @S (pu-) dAL

+2 [ (oh — oD Filei + gieidAL+ = | Al
(s,8] s<u<t
=21 + 212+ I%.
We first estimate I/ for 1 = 2,3. For I}, we have

(45 |12 <2Cur [ sup| F2@) + 22@) | dAL < 2Cus D1 — D),

because | 2| < Cup,r for all #, u, and w.
For I?, since Aol = {f2(¢i-) + Fr(pio) + g2(ph-)} AAL we obtain by (A.I)

@6 1<z [ sw 7@ P+ Fie) + i) P aataa;

<2{(Dr—Dr+ (D?— D* sup D?}.
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We next consider I*. Applying the formula of the change of variables (Lemma
3.1) to the function (x — go?)fZ(x), we have

(3.7) (@i — B fi(gh-)

= f(s o fol {fr(pn- + 6497 + (@i + 64¢: — D) ofi(pi- + 0A¢L)}dbdy:.
Therefore,
(3.8)

) -
= [ [ Fuer + 64 + (o1 + 6Agt — pDOFilgl + bAg}d6
X Af(@h-) + g3(eh-) Y dALdAL.
For fixed s, set
1 -
39) M@, ) = [ [{fia+ 62) + @+ 62— gD filx + 62)}d6dds.
(v,t] < 0

Then Fubini’s theorem implies that
(3.10) Ir= [ hoi, Ag) (f2(or) + gi(ei)} AL,
Further, set
(3.11) iz, 2) = ElhL(x, 2) | F2), iz, z) = iz, 2) — Wiz, 2).
Then, by (3.11), we have

e r= [ Waet, Ad (2 (ot) + 2ot} dAs
+ f(s,n H (@h-, AQY) fi(gh-) dA;
+ -[(s ) hAﬁ"(go:’l" A¢)) (71';‘(405—) + gx(ph))dA

= I+ I + I,

Define M¥; = I{;. We show that it satisfies (ii). For arbitrary 7 € 9% and 6 > 0,
it holds that

(313)  EL[ et AgD (2 (o) + 23(gt))dA%]

=El .[(0 - I(r<v<r+8}E[hg.t+o(x, z)l F:1] |t=r.z=¢3-‘z=/1¢#
X {fMeh-) + Z(gi-)}dAT] = 0,

because lip<y<rrar is F¢ measurable and 7 is so on the set [i<y<r+g. For Iy, we
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have
(3.14) I3 < (1 + 3Cuur)
x = [ swlEL[ ofiyaa:l #2) fro) | dds.

lal<1¥ D zyek

Hence, combining this with (3.5), and (3.6), it is easily seen that (A.I) implies that
(3.15) l 171+ ||+ 1| < C{DF — D + D7 — D%},

for some constant C depending only on M, L, T. For If}, by (A.I)-(2), we have

(16) |ml<c X [ ElsulElf osfi(x)dar| 110 ab:.

lal <1 €K
Define a nondecreasing process R} by the right hand side of (3.16). Then, it is
easy to see that (A.I)-(2) and (A.III)-(1) imply @i1). Thus, we have completed the
proof of Lemma 3.3. O

We continue the proof of Proposition 3.2. By Lemma 3.3, we have for all 7 €
2and 0 < <1

(3.17)
Ell ¢t — 2|1 < C{EL D%y — D#*] + E[ D% — D%} + E[ R}l
Since {D*?}, is C-tight, it is easy to see that
lim lim sup sup P[ D?% — D?* > 3] =0
6lo n—oe regl
for all § > 0. Combining this with the uniform integrability of D%2;, we obtain
lim lim sup sup E[ D% — D**] = 0.
6lo n—e  regh
On the other hand, by (A.)-(2)-(i), the second term of the right hand side of

(3.17) converges to 0 as # - co. Further, by the property (iii) in Lemma 3.3, we
see that (3.3) holds for {¢"%},. O

3-2. Identification of limit process

In the previous section, we have shown that {¢™"%}, is tight in D, for each
M and L, namely, any subsequence of the laws of {¢™%}, contains weakly con-
vergent subsequence. The aim of this subsection is to show that the limit laws are
identified with the law of the unique solution of a stochastic differential equation.
What we would like to show is stated as follows.
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PROPOSITION 3.4. Let @ be any weak limit of the laws of (@™t} ,. Then, Q is
equal to the law of the solution @M of the following stochastic differential equation:

"= » e ML
(3.18) Pt Xo + .l-(o.ll oL(pat, u)dB, + ./:o‘n (br + c) (O, w)du
ML\ A7
+ f«),n -/;H,fll*Sl) fu(@i=) N(dudf)

+ fm,u j:1<||/||*smﬁ‘(¢’1‘uf) N (dudf),

where  ou(x, u) = r(x)o(x,un), bz, u) =n@)b(x, n), c(x, n) = rn(r)’c(r,u)
+ ai(x, u) X r.(x) Vore(x), and fu(x) = rn(x) f(x).

By Jacod’s theorem ([5], Theorem III. 2.26. p. 144), we know that the unique-
ness of the solution of stochastic differential equation implies that of the marting-
ale problem for the corresponding generator. Therefore, to show Proposition 3.4,
it is sufficient to prove the following.

ProPOSITION 3.5. Let Q be any weak limit of {¢™'1} . Define a linear operator

PHUL py
O 1 g 0°F ‘, oF
PULE(x) =5 X2 al(x, u) —— () + 2 bi(x, ) + ci(x, w)) — (x)
2,54 oxiox’ i=1 ox'

+ [ @+ A@) —F @ — S @ iy -2 @)vld)
A< ‘ SR G e

where ar(x, u) = ov(x, u)or(x, u)*. Then, Q satisfies for all s<t and F &
Cr(RY),

(3.20) E°[F(p) = F(g) — [ €4 F(pydu| 2,1 =0,

where ¢ denotes a canonical element of Dy and Ds denotes the rvight comtinuous
sub-0-field generated by {¢, ; u < s}.

In the remainder of this section, we prove Proposition 3.5. We give the proof
only in 1-dimensional case and we omit the superscripts and the subscripts M, L
as in the section 3-1. For the limit measure @, set J = {¢t > 0; Q(d¢; # 0) > 0},
which is at most countable. To prove (3.20), it is sufficient to show that

(3.21) ,
E°[{F (¢ — F (g5 — fs Cu F(pu)dn} U (Qusy Quzye o, Pum)] =0
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for all s,te€J\meN, u; €J°t=1,2,...,m) such that y; <y, < - -+ <
Un < s, and for bounded continuous function ¥ : R™ — R In the sequel, we may
assume that the law of ¢” converges weakly to @.

Applying Lemma 3.1 repeatedly as in the proof of Lemma 3.3, we can obtain
for s < tand F € Cy(RY)

(3.22)
Foh —Feh) = [ Fot) Fitoh) dAt

F(@i-) (filgi-) + gilgi-) dAL

(s,

+ 2 {F(¢l) — F(¢h-) — F'(¢i-) Api}

s<u<t

= [ [ @Ry dafren da
+ f] F (@i ) {Fr(en) + gn(ei)} dA?

+ X {F(¢}h) — F(¢i-) — F'(¢-) Adgl}

s<u<t

[y dasFien) + Bet) das
+)., = (Ffi(eh) — Ffi(eh)
St s<v<u
— (F'fo) (pn-) A} dAL

+ [ Fon Fuon da

= 3 I7Gs, 1),
i=1

Set Ji(s, t) = E[Ir(Gs, ) | F2],i=1,...,6. We first show that the terms

JI(s, t) (1 =4, 5, 6) are neglected when # tends to infinity. Since

7o, 0| <IFl, = EUEL [ supl BL [ og7ite) daz| #510]

lal<1 rek

X itellglf#(x) + gn(z) | dAz | 21,
(A.I)-(2) and (A.III)-(1) imply that for i = 4
(3.23) lim E[| J#(s, t)]1 = 0.

)

Similarly, (A.IIT)-(1) implies that (3.23) holds for 1 = 6. For ¢ = 5, since we have
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(s, 01 <20l = EU[  sup|EL[ aefiy) adi| 21|

lal <2 zyeK
XAl fax) P+ | g2x) + Frx) B AA; dAZ| 721,

(A.I) and (A.III) imply (3.23) for 1 = 5.
Next, we consider I{*(s, t). To show the next lemma is one of principal parts
of the proof.

LemMa 3.6, Foru; (1 =1,...,m) and ¥ given in (3.21), set T = ¥ (¢},
e s Oim) and s = T (Qusy. ., Qum). Then we obtain

@24 mBL[ [P Fiter) Fion) daiaas x w1

- E[ﬂs,t] F”((o,,)al(ga,,, 1}) d” X ws]y
325 mEL[ [ Pt G () Fier) dAzdar x w2

= El f(  F@c(g, v) do X W),

Proof. We will give a proof only for (3.24) because (3.25) can be proved
similarly. For s £ v £ ¢, x and #, set

(3.26) gi@) = EL [ Fi@aaz) 1) 7).
Then, note that (A.I)-(1) and (A.II)-(3) imply that for all s <¢t< ¢ < T and
lal <1

Apn n < n n
(3.27) fw] szgg | 02gry (x) | dA2 < D — D7,
and

t

(3.28) }liigE[sngglE[f(s’”gé’.:(x)dAﬂ?;‘] —j; ai(z,v)dv|] = 0.

Now, since ¢" converges in law to ¢ in Dy by Proposition 2 in Slominski
[15], we know that there exist a sequence of positive constants {o'}; which con-
verges to 0 as {— oo and a sequence of {#?}-stopping times {0}"} ;. satisfying
the following properties (i) ~ (iii):

(1) For each 1 and #n
(3.29) O=g"<ogi"< -+, lim gi" = oo,

koo

https://doi.org/10.1017/50027763000004116 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004116

LIMIT THEOREMS FOR STOCHASTIC DIFFERENCE-DIFFERENTIAL EQUATIONS 97

(i)
(3.30) I,HE lir{,l_.iuP P[ mkin {oi?, — ol 0l" < T} < p'l =0.
(iii)
(3.31) }gg lin:_‘swup P[m?x {vewszy,gm | 2 — @lun| ;0" < TY > ¢l =0,

for all ¢ > 0. Hence, by (3.30) and (3.31), for arbitrary n, ¢ > 0, there exist 7,
and #, such that for all 7 = 7, and # = %, we have

(3.32) Pl min {0}, — oi*; 0i" < T} < o] <1,
k
and
(3.33) P[ max { sup | ot — @tun|; 0b" < T} > el <.
k veloh® o)

In the discussion below, we fix 71, €, and 1 satisfying (3.32) and (3.33). For them,
set

(3.34) " = {w; min {¢{?, — oi* oi"< T} > o
k

and max { sup |@f— @ur|; 0" < T} Ss}.

Kk velod® o)

Set 74" = (gf" V s) A t Then, we have

(335) |EU [ ghigtraas— [ aei, o) w)

T/p*
< n 7 n 7 7 n n
- l E[{»]:S,t]gu't((p”—) dAv k§0 j:‘t‘;;”,r’;;’:l]gv" ((pfi )dAv} w; ]|
+|E[{1§‘f n 7 dAn TZ/‘:]I ( n )d }w-n:”
L7 - i, n
&0y BRI T 2 ] o g @GR D)0 TS

i
=0 v (T Tiy

T/p}
+IEH{ 2 | . el v)do — f a(¢h-, v)dv } T
k f41] (s,t]
=]+ J]F+J3

For J¥, (A.I)-(1) implies that

T/0!

(3.36) r< X El .| &) — ghonn) | dAz 1 7|
£=0 el
< T/pt " "
S k§0 El ey 22}?' 0:80+(x) ” Pv- — Q)tj;"l dA} ]" w"
T/pt
< 2 EIl . ot — ot aDp? 1| @
k=0 @)
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< gE[fM gt = ol ans 271l w1

k#l

5__5 ELf winen, | O ot dDE?; @17l

I
~
ot

+

N Ji.
Since

sup | @f- — otn| <
ve (" 11)"“1] ’

on 2" and D}’ is a nondecreasing process, we have
(3.37) Ji < esup E[D ]| @)
n

Note that (A.I)-(1) implies that sup, E[D??] < o for each ¢. On the other hand,
by (3.32), (3.33) and (3.34), we have

Ji < 2Curr E[Dfn'p; (£2"°]
< 2Cyer {E(DP?; D > 141 + AN P ((27°))
< 2CML,T {E[D,"’p; Dt"'p > l/m + zm.

Combining this with (3.37), we can see that lim Supy—. J# = 0 because {D?*}, is
uniformly integrable and n, € > 0 are arbitrary.
For J# we have

T/p¢
(338 Jr< 2 |EL f . B0 (@) dAT — f( o (G, 0)d0 ) T

+ 3 | El f gtorads— [ ai(on, vdo)en|

k=0 k+12
=!Ji + Jb.
Further, for m € N, set 7™ = t A ([m7i"] + 1)/m. Then we have by (3.27)

/p‘
(439 A< EIE[,, .. (ot da)

=0IE[{ff.,,m & (gt w)dAZ—f(rx,,,,,,_” ay( @ln, v)dv } U

k

+ 3% Bl f( 1 my @1(P, ) QAT

k=0

sﬁE[DM— A1)+ g + el L +1),
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where we set
SIEN
nm — E n %) dA? — f
21 ; t "
] k=0 (™ 1) 8v ( b )dA; (

Since (A.I)-(1) implies that

@ (@, v)dv ywl.

1.;,”,"1"

lim lim sup sup E[ D}sm — D321 =0,

m—oo n—oo k<T/pi

we have
. . T/p! - np
(3.40) lim lim sup 2 E[ Djam — DJs] = 0.
m—roo N~ k=0 k k
We next show that for each m € N
(3.41) lim sup /%" = 0.
Nn—o00

To see this, note that

(3.42)
pm < L ELEL [ . gh( @) dA; — f o @1 @, V) dv | Fhnm] U]
@™ ) (@"m

mt]
< 3% Blsup | EL[ gl (x) AL
(U+1)/m)Vs,t]

k=0 1=0 zeK

- (11(1‘, U)dU I g?(Hl)/m)vs]l]" w”

A+ /m)Vs,t)

Therefore, by (3.28), we obtain (3.41). Combining this with (3.40), we get liMmy—o
J# = 0, because we can take m as large as we want in (3.39). If we note that @%»
is Fyn-measurable for all k, we can see that the similar argument on J# implies
that lim,-. /% = 0. Hence, we have shown that lim,_.. /7 = 0.

For J#, by the similar argument on J, we can show that lim,—. J# = 0. Thus,
we have completed the proof of Lemma 3.6. O

We continue the proof of Proposition 3.5. For I(s,t) and I#(s,t) in (3.22),
the following lemma holds.

Lemma 3.7. Let U and U be the functions given in Lemma 3.6. Then we have

(3.43)  lim ELIZ (s, W] = E9[ f "F(02) b(9.) dul)]

+ B P00 (@) Tocivsin v duls).

Proof. By (A.II)-(1) and (A.II)-(4), we can obtain the conclusion similarly
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as in the proof of Lemma 3.6. U
Finally, we consider If(s, t), for which we get the following lemma.

LemMA 3.8. Let ¥y and U be the same functions as i Lemma 3.6. Then we
have

(3.44)
lim E[I}(s, t) ¥7]

n—oo

= B [ av(pu W F" (9 dul]

t
Q — - ’
B[ [ APt F0) — F @) = F9IF (@)
X v, (df)du¥).
To prove this lemma, we give a preparatory lemma. Set
@n.—flfl F"(”+,BA n)ddB
(7 o 0 a ¢u— [44 (Du (41 .

Then, note that the mean value theorem gives

(3.45) I3, )= T OiAgh?= [ @1 {fi(gh) + gilel) ) AAIdAL.

s<u<t (s,8]

Since it is difficult to calculate the limit of the above term directly, we interpo-
late it by some terms which make the limit clear as follows.

Lemma 3.9. (i) For every 6 > 0,

(3.46) limsup| EI[ f( i (1),':({ fi(eh) + gu(eio))?

= Fra(pi)® = f22(¢1)?) AAZALE)| = 0,
(i)
. : ”n 1., ) Fn 7 \2 nJARY "] —
(3.47) limtimsup| EL [ (0 = 3 F"(¢i) Fis(gi)* AAdAZE7)| = 0.

610 N0

(iii) For every 0 > 0,

(3.48)
lim sup | EI f( (2 - fo ' fo " aF (gt + aBfr(oh) AAD) dadB)

Nn—s0c0 S

X fd (gh-)? AARdALE| = 0.
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Proof. (i) Let 0 <3 <M Then fI+ gi=fls~+frs+ (fis+gn

holds. Therefore

(fr 4+ gn2—(frs)? — (fir)?

= (fus+ @D+ 2fM0(fis+ fis+ @0 + 2f5s(fis + 0.
Since | 25+ g2| < AD?Z, we have
(3.49)
_ 2 ~

EUS out( ot + 2201 ) = Fra(oi)? — £ (91 AAzdAL 7))

<IFLI I sup D% (Dt — D)

sSust

+2 X Elsuplfr(x)AAZ]1(sup Elsup| f7s(x)AA%|] + sup |ADZ2])

s<u<t reK s<u<t TeK s<u<t

+ 4 sup Elsup| fls(x)AAz|] (DF — D2)}.

s<u<t reK

By (A.I)-(2), we have
> Elsuplf®(x)AAL|] < sup D? < o,

s<u<t reK

and SUPs<y<: | ADZ [ — (. Therefore the first term of the right hand side of (3.49)
converges to 0 as #— oo. Further, (A.I)-(1) implies that the second term con-
verges to 0 as # — oo. Therefore we get (3.46).

(ii) If we note that sups supwz | f2s(®)4A%| < 2(1 + Curr)0, we can see that

| EL f(] (i - %F " (i)} Fus(@h-)? AALdAL T

+ sup sup|Zr(x) + fi(x) | AAZ X E[f(s , Sup frs(x)2AA%dAR]}

s<u<t z€K zeK

S| Fls| #1{26Q + Cuwr) + sup AD%} EL D).

s<u<t

Therefore, (A.I) implies (3.47) by the same way as in the proof of (3.46).
(iii) Note that we have

1 1
|BUS tor— [ [ aF (i + affi* (ot 447 dadB) £ (gl)?
X AALAALT]]
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<IFLIZIEL [ sup (| gite) + Fato) | Aat
Sitl xek
| Fra(z) | AAL) £24 (2) AALAAL)

S| Fls I ZI{ sup AD% + sup Elsup| fs(x)4AL (1} E[ D).

s<u<t s<u<t rekK

Hence, by the same argument as before, we have (3.48). O

We continue the proof of Proposition 3.5. As the discussion in the proof of
Lemma 3.6, we can show that (A.II)-(1) and (A.Il)-(2) imply that

(350) limlimsup | EL | F"(ph) Fha(gi)? ARLAALD)

slo  mow
t
— B9 f F"(9) ao(9) dul]] = 0,

and

1 1
. . ” n n,0 n n
(3.51) ll?}) lm’:ﬂsmuplE[ _/: iy j; j; aF" (i + affr? (i) AA%) dadB
X i (gh)? AALAALD?]
t 1 1
—poL [ [ [ aF G+ o (0) dadsf (@) vudndnt])
= 0.

Since the proof is similar to that of (3.24) and (3.25), we will only consider (3.51).
For any fixed § > 0, set

(352)  giz) = fo : fo QB (x + B (x) AAL) dardBfR (z)? AL
Then, as (3.27), we have for all s < tand |a| < 1
f sup | 0%g2(x) | dAZ € C x Dp.
©.t] zek

In fact, since | f°(x)AAL| = | fii(x)AAL| S M (1 + Curr), it follows from

(2.4) that
[ sup|azgr(z) | daz
0] zex
K Fls S sup {| 0 £ () AAL || f22 (@) AA5 2 + | 98 f29 (2) AAD? |}
u<t zeK

https://doi.org/10.1017/50027763000004116 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004116

LIMIT THEOREMS FOR STOCHASTIC DIFFERENCE-DIFFERENTIAL EQUATIONS 103

K| Fls 2 sup {M A+ Cuyrr) | 0227 (x) AAZ || £ (x) AAL |

u<t reK

+ 107 (f* (x) AAD* |}
<[ Fls Z sup ((M A+ Cyrp) + 1) | 08 (£*(x)4AD* |}

u<t z€K

<K A{M@A + Curr) + || F|:D?.
Then we can prove (3.51) similarly as in the proof of Lemma 3.6. Thus, we have

completed the proof of Proposition 3.5. O

Therefore, combining Proposition 3.2 and Proposition 3.4, we obtain the fol-
lowing.

ProrosiTion 3.10. For each M € C(v) and L > 0, ¢™™F of (3.1) converges in
law to ™% which is the solution of (3.18).

3-3. In this subsection, we will remove the restriction of localization in the
equation (3.1). Though the procedure seems routine or similar to the dicussion in
section 3-5 in Fujiwara [2], we will give it for the completeness.

For each # € N and M € C(v), we define the truncated process ¢™™ of ¢”
by

(353) o =zt [ (Sl + gilei) AL

The aim of this subsection is to show the following proposition.

ProposiTioN 3.11. For each M € C(v), the family of Ds-valued random vari-
ables {@™™M} , converges wn law to the unique solution @™ of the stochastic differential
equation:

M — " )
(3.54) ¥ =1+ f( L, o, u) dB. + f( G+, w du
e
* -/:o.tl j:ll/ll*snf(go“‘) N(dudf)

+ »I‘(O,t] ./:1<||/”*SM)f((0ff—) N (dudf).

Proof. For given L > 0, define S;(¢) = inf{t > 0;|¢,| =L or | o= | = L}
for ¢ € D,. Then, it is a {9} -stopping time and lower semicontinuous from Dy to
[0, ©]. Set D5, ={A € D; AN {S. < # € Dy} as usual. Then, since it is clear
that S;(¢™™EF) = S, (¢™™) and that @Mt = @M for t < S;(¢™™), we have
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(3.55) PM=PY on  Ds,

for each n, where P¥* and PY denote the laws of ¢™Mt

Similarly, we have

and, @™ respectively.

(3.56) pMil = pM on Ds,,

where P*L and P¥ denote the laws of ¢™F of (3.18) and ¢™ of (3.54), respective-
ly. Combining (3.55) and (3.56) with Proposition 3.10, we obtain the conclusion
by a similar argument in Lemma 11.1.1 in Stroock-Varadhan [16]. O

3-4. In this subsection, we will remove the restriction of truncation for
jumps in the equation (3.53) and complete the proof of Theorem 2.1. First, we pre-
pare the following lemma.

LemMa 3.12. The family {o™}u of (3.54) converges in law to the solution of
(2.16) as M — oo.

Proof. Let N (dudf) be the Poisson random measure in (2.16), and for M >
0 define a stopping time 7y by 7y = inf{t; N (0, f1, | fI*¥ > M) > 0}. Then, it is
clear that @¥ = ¢, if t < 7y, where @ (@) is the solution of (3.54) ((2.16) respec-
tively). Hence for arbitrary ¢ and bounded %,-measurable continuous function G,
we have

ElG(¢")] = E[G(")]; t < 7wl + E[G(¢M); t 2 7u]
= E[G(p)]; t <yl + E[G(¢™); t = 4]
= E[G(¢)] — E[G(¢); t = i) + E[G(¢M); t = 4]

Therefore we have
|E[G(¢")] — EIG(] < 2| G| Plru < ]
< 2| G| PIN (0, 2, | fI* > M) > 0]
t
=20 6111 = exp(— [ wudlfI* > Myduy 0
as M — oo, because [, v, (| fI¥ = o©)du = 0. Since t is arbitrary, we can con-

clude that @ converges in law to ¢ of (2.16). O

Finally, we show that for every bounded continuous function G on Dy

(3.57) lim E[G (¢™] = E?[G (¢)].

n—oo
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For arbitrary £ > 0, suppose that G is @,~measurable. Then, it holds that
E[G(¢M] = E[G(¢™); sup [l frAAL [ < M] + ELG (¢™); sup | fraAL x> M]

u<t ust
= E[G (¢"")] — E[G (¢™); sup | frAA% |* > M]
u<st
+ E[G(¢™); sup | firdAL |* > M].
u<t

Hence, we have
| E[G(¢") — E°[G(p)]]
< |ElG ("] — ELG(¢™"]] + | E[G (¢™")] — E[G ("]
+ | ELG (¢™)] — E°LG (¢)]]
< 2| G| Plsup || f24A%|* > M1 + | E[G (¢™*)] — E[G (¢")]]
= + | EIG(¢"™)] — E° [G(9)]].
Therefore, by (A.IV), Proposition 3.11, and Lemma 3.12, we get (3.57). Further,

since £ > 0 is arbitrary, (3.57) holds for every bounded continuous function G.

By the above discussion, we have proved Theorem 2.1. O

4. Case of diffusions

As applications of Theorem 2.1, we will consider a sequence of stochastic
ordinary differential equations:

(4.1) %“;—‘ = f (s,

where {f/} is a sequence of {#7}-adapted cadlag process with values in C}x. It
is assumed that f2(x) = E[ f(x)] exists for all ¢, & and f7 = f3(zx) is a
C24-valued cadlag function for any #. We set f7(x) = f*(x) — f}(x) as before.
We denote by ¢ the solution starting at a fixed point Zo at time 0. Since condi-
tions for Theorem 2.1 can be simplified in this case, we state it for a reference.
We will follow the notations in section 2.

(A.I): For every N, T > 0, there exists a sequence of nondecreasing con-
timuous processes {D"}, satisfying the following properties (i) and (ii).

() Forall s<t< ¥ < T
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(42) S (f s 1B aefiwaul 7211 0752 | dv

lal<2,(81<1 S lzllyl <N
t -
-+ sup | 05f2(x) | du} < DI — D2.
S |zl <N
(i) {D™, is tight in the space C([0, =), RY), and {D}}, is uniformly integr-
able for all £

(A.Il)": There exist a cadlag function a;(¢) = a.(x, t) with values in
2« (R, REQRY and cadlag functions b() = b(x, t), c(t) = c(x, t) with
values in Cix (R%, R? such that for all N> 0Oand s < ¢
(4.3)
tim Elsup | EL [ [ 719 @) 73 @ dudv | 721 = [ atf(z, waull = o,

[t lz| <N

(4.4) lim E[ sup |E[J: j: é (%fﬁ"”(x))f;‘""’(x)dudv|9?]

A= x| <N

— fst ci(x, wydu|] =0,

and
t_ t
45 lim su w(x)du — b(x, w)du| = 0.
(4.5) tim sup | [ 7i@adu = [ b, waul
(AIID)”: For all N> 0 and £t > 0,
(4.6) lim sup X E[sup lE[ft 2fr(x)du | F21]1 = 0.
n—oo s€l0,t] || <2 1zl <N s

Then, by Theorem 2.1, we obtain the following diffusion approximation
theorem. It can be regarded as an improvement of the previous work by Kunita [9].

TueoREM 4.1. Assume (A1), (A.ID)’, and (A.IIL). Then, the family of con-
tinuous stochastic processes {Q™ , satisfying (4.1) converges in law to the unigue solu-
tion of the following stochastic diffevential equation:

t t
@7 oo=n+ [ oo wdB.+ [ G +0 (0, wau,

wheve o (u) = o(x, u) is a cidldg function with values in Chsx (RY, R @ R") such
that c(w)o(u)* = a;(u) + a1 (w)* and B; is an r-dimensional standard Broumian
motion.

The solution ¢, of (4.7) is often called a diffusion process with characteristics
(@, (@) + a(D)*, b(t) + c(®)).
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We shall apply the above theorem to the case where the driving processes
{f*(x)}, satisfy suitable mixing conditions. Define the filtrations {#Z,:s < u
<t by

(4.8) Foi=olft, s<ust.

The strong mixing rate &”(f) and the uniform mixing rate ¢”(¢) of the family of
the o-fields {#%s<: are defined by

(4.9) a™(t) = sup sup |P(AN B) — P(AP(B) |,
$20 AeF 4,y mBEF
(4.10) o"(t) =sup sup |P(A|B) —PQA)]|.

$20 A€F 4,1 BEF Y

We will first consider the case where a uniform mixing condition is satisfied.
We introduce the following conditions.

(C.1): For all positive numbers N, Tand | 8] < 1,
sup sup sup | 22/ (x) | < oo,
n t<T |x|<N
(C.2): The sequence of the uniform mixing rates {¢*(¢)} satisfies

Jim f $7(s)V2ds =

n—sco

for all T. Further the following family of random variables are uniformly integr-
able for any N, Tand |a| £ 2

([ #0ras) sup og7rr s £ 0,7, m=12,... ).

(C.3): There exists a sequence {A,} of positive numbers converging to 0 such
that the limits

L1 trhy _
@i b, 0 =ty [ @,

@12) @G, ) =l f f E [F29(z) 729 ()] dud,

n—oo

413) ¢z, £) = lim hf ﬁ E[Iziji(x)fnw(x)] dudv

n—oo

exist uniformly on compact sets of R? X [0, o).

THEOREM 4.2. Assume that {fI}n in equation (4.1) satisfies (C.1) ~ (C.3).

Then {@™}, converges in law to a diffusion process with characteristics (a(t) + a(t)*,
b(t) + c@)).
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Before the proof we show a lemma. We fix N, T and set

T - ~
(4.14) K*w)= X { sup fv | EL8gf2(y) | F2 1| du| 08f2(x)]

lal<2,18|<1 |z|<N,|yl<N _
+ sup | 9ff5(x)]}.
Izl <N

LEMMA 4.3.  The family of random variables {K™(v); n=1,2,...,v € [0,T]}
is uniformly integrable for any T.
Proof. By a uniform mixing inequality, we have
(4.15)
| Elogfu(y) | #211 < 297w — 0)2{ El| 93 F2(y) 1P| F3 12 + El 8¢ F(y) 1119,

See [9], Proof of Lemma 5.6.2. Consequently K”(v) is dominated by the sum of the
following four terms.

T-v 1 ~
(4.16) [T gk sup BNl 0¢Frntu) 1 21 du,
0 MESY
T-v 1 ~
(4.17) [T gt sup ENl 02 F(y) 1 du,
0 ME3Y
(4.18) ([ gt aw) sup | 8F3@) P,
0 lzl <N
(4.19) sup | 3735(x) |.
lzl <N

Clearly (4.17) and (4.19) are bounded by a positive constant not depending on v
and n. Further (4.18) is uniformly integrable by (C.2). We will consider (4.16). By
(C.2), there exists a positive convex increasing function G(4), A > 0 such that
lim;—. G(A)/A = o and

(4.20) sup sup E[G (cx sup | 37f(y) )] = K < oo,

n t<T ly| <N

where ¢, = fOT @"(t)/%dt. See Meyer [14]. By Jensen’s inequality, we have
T—v -
21 EG([ ¢t sup Bl 0fFta(y) 121 F51 du)]

Iyl <N
T 1 ~
<t [ 9" @b EIG (cr sup EU 03 Fia(y) | #21)] du

Iyl <N

lyl <N

T 1 .
<t [ §7 )} BIG GET sup | 07 Fiuo(y) 1| 2 1] d.

By Jensen’s inequality concerning conditional expectation, the above is bounded by
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T 1 -
C’*fo ¢" ()2 ELG (ca sup | 08 f 2+ (y) 191 du < K < o,

lyl <N

Consequently, (4.16) is uniformly integrable. O

Proof of Theorem 4.2. We take DF = [,' K*(v)dv. Then, (A.I)’-(i) is obvious-
ly satisfied. Since {K*(v);n =1,2,...,v € [0, T1} is uniformly integrable, it is
easily verified that { f,' K*(v)dv}, is also uniformly integrable for each £. We will
prove that the latter sequence is tight. The property

(4.22) timsup PL[ K*(w)dv > c] = 0

C—0 n

is obvious from the uniform integrability of {J'O'K”(v)dv} 2 Let 0 <8< Thea
constant and o be a stopping time such that ¢ + 6§ < T. Then we have

ag+6 ag+6 g+6
[ ko= [T K ) Iea & v+ [T K@) Lo (K*@))do

T
< o6+ fo K" 0) Lo (K" (0)) dv

for any ¢ > 0. Therefore
o+6 T
w23  EL[ Krwan < b+ [T EE ) K*(0) > .

For any & > 0, there exists ¢ > 0 such that E[K"(v); K"(v) > ¢] < eT™! holds
for all # and v, since {K”(v)},, is uniformly integrable. Next choose 6, > 0 such
that ¢, < e. Then we have for any | ] < 6,

(4.24) sup sup E|[ f“e K"(v)dv] < 2e,
n oeJp 4
where Jr is the set of all stopping times less than 7. Therefore {fo'K"(v)dv}n
satisfies Aldous’s condition. Then it is tight. Thus we have proved (A.I)".
We will next prove (A.II)". Set

K*"u, v, x) = f2¥ @) f2?@), K'(u, v, x)=EI[K"(u,v, z)].

We can show similarly as in [9], Chapter 5 that (4.12) implies

(4.25) lim ft ful?”(u, v, x)dudy = ft a(z, r)dr,

n—so0

for any s < t. Hence it is sufficient to prove

(4.26) lim E[ sup Ifst f: EIK*(u, v, ) | F2) dudv|] = 0,

[ndad lz| <N
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where K» = K” — K" Let ¢, = J,” ¢"(s)"2ds as before. Since

{Cn sup | fir@) B n=1,2,...,u € [O,T]]

lz| <N
is uniformly integrable, for any & > 0 there exists @ > 0 such that for all », u

4.27) Elcn sup | f(x) 1% ¢n sup | f2x) 2> al <e.
Izl <N Jz| <N
Now consider the truncated process fia = filswuself@l<@ey®. Set fug

=E[fr], fra=fli— froand K2u, v, ) = f28x)f9(x). Define K2 and
K" as above. Then K" = (K? — K" + (K" — K) + K” holds. We have

K"(u, v, x) — K}(u, v, x)
= fra(@) (f3@) = f1a(@)) + (Filx) = fla(®)) fra(z)
+ (fi(x) = fia@)) (Fi(x) — fra(x))
=:I1+ L3+ L3
Apply (4.15) and (4.27) to each term of the right hand side. Then

E[f f sup | ELL? | #71| dudv] < AT(Ce)Y2,  i=1,2,

|zl <N

where C = supny {cn Elsupizi<n | £7(x)]4}, and

E[j: fs“ sup | E[L3| #2]| dudv] < 4Te.

lzl <N

Consequently we obtain

(4.28) sup | Kt — K| < Elsup | K* — KI'|] < 4TeV2(2C"2 + &2,

lzl <N lz|<N

Further by a uniform mixing inequality ([9], Lemma 5.6.3),

(4.29) IﬁtﬁuE[Kﬁ(u, v, ) | F*] dudy|

< ' [" o= 0brw — DT @) o 1759 @) | crdud,

where | X |l (1 < p < ) is the L? norm of the random variable X with respect
to the measure P. The right hand side of the above is dominated by

( _/; ' <J>"(S)%aIS)2 sup | /2" @) | sup | /32" @) | -

Since || f2¥ ey < 2(a/cn)V? the above is bounded by 4ac,. It converges to 0 as.
as # — oo. This fact together with (4.28) proves that (4.26) holds. Therefore (4.3)
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in Condition (A.II)" is verified. Other properties in (A.II)" and (A.III)" can be
proved similarly. O

We will apply Theorem 4.2 to two problems. The first is the approximation
problem of stochastic differential equation.

Let v"(¢) = (Wi(t), ... ,vu®), n=1,2,... be a sequence of R”-valued
stochastic processes with the uniform mixing rate ¢”(¢). We assume the following
(v.1) ~ (v.3).

(v.1): EDi@)] =0foranym, k, ¢
(1.2): limy S, ¢"(s)V2ds = 0. Further, {(f,” ¢"(s)V?ds) | vi(t) !, n = 1,2,
., € [0, T1} is uniformly integrable for any T.
(v.3): There exists a sequence of positive numbers {k,} converging to 0 such
that the following limit exists uniformly on compact sets of [0, ©°):

lim — I f f EVi(w)vi()] dudv = vy (t).

N0

Now define
t
(4.30) Xn(t) = fo Vi (s)ds.

It can be regarded as a solution of the equation d¢./dt = V*(t). Then Theorem 4.2
tells us that {X"(¢)} converges in law to a Brownian X (¢) = (Xi(8),...,Xn(}))
with mean O and covariance fot v (u)du.

Now let fi, K = 0,..., m be deterministic functions of C¢«. Consider a sequ-
ence of stochastic ordinary differential equations:
d m
(4.31) G5 =folon D + 2 filgn, DVE®).

Let ¢f be the solution starting at x, at time 0. Then we obtain the following from
Theorem 4.2 immediately.

COROLLARY 4.4. Assume that {Vi(t)}n sastisfies (v.1) ~ (v.3). Then the sequ-
ence {@™n converges in law. The limit @ satisfies the stochastic differential equation:

432 @o=2+ [ algw 1) + el )du+ 5 [ filon wdXiw),

where ¢*(x, t) is given by

M&

(4.33) cx, ) = f filz, ) %fﬁ(x, Hou(t).

1 k=1

i

Now let f(t) = f(x, t) and g(t) = gz, ),z € R4 t€ [0, ©) be Cix-
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valued cadlag stochastic processes. We assume that f(¢) is of mean O, i.e.
El[f(x,t)] = 0 for all x and ¢ Consider a sequence of stochastic ordinary dif-
ferential equations

(4.34) U= TG )+ 58 b,

For each #, it has a unique global solution ¢} starting at any given point xzp at
time 0. Let # tend to infinity. Then ¢7 converges to the trivial stochastic process

¥ = x,. However if we consider the process ¢} = ¢y, it satisfies
(4.35) 6L — £ (g, nt) + g (g, ).

Then {¢™ , does not converges to a trivial process. We shall show its weak con-
vergence applying Theorem 4.2. A similar problem has been discussed by many
authors. See e.g. Khas'minskii [7], Kesten-Papanicolaou [6], Kunita [8], [9]. The fol-
lowing Corollary may be considered as an improvement of Theorem 5.6.1 in [9].

COROLLARY 4.5. Assume that the driving processes f(t) = f(x,t) and g(t) =
g (x,t) are stationary processes satisfying the following (a) and (b):

(@): Forevery N> 0 and | a| <2, E[supiz <y | 02 f(x,0) 2] < o0 and
E[supz<y| 8¢ g(x,0) 2] < oo,
b): [ d(s)V2ds < oo,

Then {Q"} converges in law to a stationary diffusion process with chavacteristics (a, b
+ ¢) which is given by

4.36) a(x) = EU( [ e, wau) /e, 01 + B [ £/, wau) £ @, 01,
(4.37) ¢'(z) = é E[(_/;mgx% (@, u)du) fi(z, 0],
(4.38) bi(x) = Elg'(x, 0)].

Proof. Set
fi'(x) = Vnf(x, nt) + g(x, nt), Ft = Fp, P (t) = P(nt).

Then (@) and (b) imply (C.1) and (C.2) immediately. Further since f(z,#) is sta-
tionary, we have

t+1/Vn  fu _ -
mEL[™ [* 70 @) 759 @) dudv)
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= _‘/%j;ﬂ E[(ﬁﬂf"(x, u)du)fj(.r,v)]dv +on, x,t)

= El([" fie, wau) f @, 0)]

1

Vn o .
-=/, E[(f&f‘(x, u)du)f’(x,v)]dv Yoln . b)

= E[(j:of"(x, wdu) f'(z, 0] + o(n, z, 1),

where o(n, x, t) converges to O uniformly in (x,f) on compact sets as #— oo.
We can show similarly the existence of b and ¢ in Condition (C.3). ]

We will next consider equation (4.1) in the case where a strong mixing condition
is satisfied. We introduce a condition associated with two positive numbers d, 7:

(C.2)5, The sequence of the strong mixing rates {a”(¢)} satisfies

lim fo 2 (s)7ds = 0

n-—rc0

for any T. Further, for any N, T and | @| < 2, the sequence

Kff o (7dt) sup | sup | 02 7(@) [fovs

t<T |zI<N "

is bounded.

THEOREM 4.6. Assume Conditions (C.1), (C.2)5, and (C.3) for some & €
0, ) and v € (0, 6/2(@2 + 6) (1 + d)). Then {¢™ » converges in law to a diffu-
sion process with characteristics (a(t) + a(@)*, b(t) + c(?)).

Proof. We shall again apply Theorem 4.1. We shall prove that the sequence
of the driving processes {f"}, satisfies Condition (A.I)’. Condsider K"(v) of
(4.14). It is sufficient to prove that {K*(v); n=1,2,..., v € [0, T} is uniformly
integrable since the fact implies the tightness and the uniform integrability of
{J,) K*(v)dv}, as in the proof of Theorem 4.2. In the sequel we will prove

(4.39) sup E[K"(v)1**] < oo,
n,v
for sufficiently small positive number &, which implies the uniform integrability of

{K"(v)} immediately.
The process K™(v) is bounded by the sum of the following terms.
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(4.40) K'(v) = sup fo " Eoe T (y) | F2| du- sup | 98f5(x) |,

lyl<N lz] <N

(4.41) Kz (v) = sup | 02f3(2) |,

|zl <N

where | @] <2 and | B] < 1. The property (4.39) is obvious for K#(v) by (C.1).
We will prove (4.39) for K{*(v) only. We consider the case @« = 8 = 0. Since

@42)  Kr@) < [ sup | Elte(w) | 70| sup | F5@) | du,

lyl<N lz| <N

we have by Holder’s inequality,

T-v - -
I K2 @) lasey < j; I sup | ELf2+o( ) | Folllipase | sup | £3(@) lgasem du,

ly| <N lz| <N

where p, g are numbers greater than 1 such that p~' + ¢~ = 1. Next let p” and ¢’
be positive numbers such that {p(1 + &¢)} > = p’~! + ¢’~%. Then by a mixing ine-
quality ([8], Lemma 3.10.2), there exists a positive constant C = C(¢’, ¢/, d, N)
such that

1

(4.43) || sup | E[f%o(9) | FoMpsepp < Cam ) 7@V | sup | firn(y) |l

lyl <N ly| <N

(@)

Consequently we obtain

l(q’)

(0.44) K2 lasey < C ([ 027 @0 du) sup | sup |Fiy) |

v<u<T |yISN

X | sup | f2@) Wliqare-
x| <N

Set ¢ = (2+ 9)/(1 + &) and ¢ = 2 + §. Then we have (p'(d+ 1)) = (6 —
2e0)/(1 + &) 2+ 0)(d+ 1). If g0 > 0 is sufficiently small, the quantity is not
less than 7 of Condition (C.2)j3,. Then (4.44) is bounded. Therefore (4.39) is sa-
tisfied for K*(v).

Next, property (4.3) of Condition (A.II)" can be verified similarly as in the
proof of Theorem 4.2. Indeed, set ¢, = J, (,T a”(s)” ds and define the trancated pro-
cesses f; similarly as in the proof of Theorem 4.2. Then we can prove that for
any € > 0 there exists @ > 0 such that

E[LT j;u El sup | K"(u, v, x) — K} (u, v, x) || 2] dudv] < Ce¥2?+?,

lz| <N

where C is a constant independent of # and a. Further, instead of the uniform
mixing inequality (4.29), we have inequality:

t u o
@45) | [ " sup | ELEi(w, v, 2) | %2)] dudv lovey

|zl <N
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t u - )
= C./; f a"(uw— v)a(w—s)" sup | fil (@) |

lz| <N

X sup || F2d(x) ||wdudy
x| <N

where 7 = {2(1 + &) (1 + d)}~*. See Lemma 3.10.3 in [8]. Since # = 7 holds for
sufficiently small &, the right hand side converges to 0 as # — co. These two facts
imply (4.3). O

We again consider equation (4.31) in the case where {V}(£)}, satisfies a
strong mixing condition. We introduce:

(1.2)5,7 limy—e J," @"(s)"ds = 0. Further the sequence

Kﬁwwwﬁﬁﬂﬁm%mh

is bounded for any T.

COROLLARY 4.7. Assume that (W)}, satisfies (v.1), (v.2);, and (v.3) for
some 0 € (0, ©) and v € (0, 0/2(2 + §)). Then the assertion of Corollary 4.4 is
valid.

Indeed inequalities (4.43) and (4.45) are valid even if we replace p'(d + 1)
by p’ and {(1 + &)@ +d)}™' by (1 + )%, respectively. See [8]. Then the
corollary follows.

Finally we consider equation (4.35).

COROLLARY 4.8. Assume that the driving processes f(t) and g (t) are stationary
processes satisfying the following (@)s and (b); for some 6 € (0, @) and 1 € (0,
0/2Q2 +0) A+ d)):

(@)3: For every N > 0 and l a' <2, ” SuplxISNl oz f(z, 0) |||<2+a) < © gnd
I supizi<w | 88g (x, 0) [lle+a < oo.
By [=a®rdt < oo,

Then {@™} converges in law to a diffusion process with characteristics given by Corol-
lary 4.5.

Suppose that if f(¢) and g(¢) are represented by
10 = EA@uo, 20 =L a@uno +a@,
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where (v (2), ux(t)) is a stationary process with the strong mixing rate a(t),

then

(a); and (b); with d € (0, ) and 7 € (0, 6/2(2 + 8)) imply the weak

convergence of {¢"}.
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