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Abstract. In this note we use the Hopf map to construct a family of metrics in
the 3-sphere parametrized on the space of positive smooth functions in the 2-sphere.
All these metrics make the Hopf map a Riemannian submersion. Also, the fibres are
all geodesics if and only if the metric comes from a constant function and so, we
have a Berger 3-sphere. Every geodesic in a 3-dimensional Riemannian manifold is a
minimum for each elastic energy functional. Therefore, we characterize those func-
tions on the 2-sphere that locally give metrics which have all the fibres being elastica,
i.e., critical points of those functionals. Some applications are given including one to
the Willmore-Chen variational problem.

1991 Mathematics Subject Classification. 53C15, 53C40.

1. Introduction. The Willmore-Chen functional [5] is defined on the space of
inmersions, (N, P), of an n-dimensional compact smooth manifold N into a semi-
Riemannian manifold (P, g) by

Wig) = /N G(H. H) — )" dy,

where H and 1, denote the mean curvature vector field and the extrinsic scalar cur-
vature function of ¢, respectively, and dv is the volume element of ¢*(g) on N.

Since the group of conformal transformations of (P, g) preserves this functional
[4], it is also called the conformal total tension functional, an it states a variational
problem in (P, [g]), where [g] is the conformal structure defined by g. The critical
points of W are known as Willmore-Chen submanifolds. Certainly, this is the natural
extension to highest dimensions of the Willmore functional which corresponds with
n=2, and now its critical points are the Willmore surfaces [10].

The reduction of symmetry method gives a strong relationship between this
variational problem and another one associated with a certain elastic energy func-
tional. For example, let P be a principal fibre G-bundle (G being an r-dimensional
compact Lie group) endowed with a principal flat connection over a semi-Rie-
mannian manifold (M, g). If g is a metric on P obtained by the Kaluza-Klein
mechanism, then the principle of symmetric criticality [9] can be used to produce
symmetric solutions to the Willmore-Chen variational problem in (P, [g]). These
solutions are associated with the critical points of the elastic energy functional

F(y) = f s,
Y
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defined on the space of closed curves y in (M, g), where « denotes the corresponding
curvature function [2]. We call r-elasticae to the critical points of F’, and again
observe that this notion naturally extends the classical one of free elastic curves,
which is obtained for r=1 [7]. Every closed geodesic in (M, g) is automatically an r-
elastica.

On the other hand, if (SZ, g) is the standard round 2-sphere with radius 1/2, the
usual Hopf map 7 : S*—S? is a principal fibre S'-bundle which admits a canonical
principal connection w with non-trivial holonomy. For every positive smooth func-
tion f on S?, we construct on S° the metric g/ = 7*(g) + (f - m)*w*(di®). Tt is not
difficult to see that all the fibres in (83 ,g/) are geodesics if and only if f=a is a
constant and so, g is a Berger metric, i.c. (53,g") is up to a constant factor, iso-
metric to a distance sphere in CP? or its dual.

In this note, we study the following natural problem.

Given an open subset U in S*, characterize those funtions f such that all the fibres
in 7~ (U) are r-elastica in (53, ).

We also obtain some applications including one that shows the existence of non-
trivial conformal structures which are foliated by equivariant Willmore-Chen sub-
manifolds.

2. Some preliminaires. Let 7 : S*—S? be the usual Hopf fibration. Here S° is
viewed as the unit 3-sphere in C? so that g will denote its standard metric of constant
curvature 1. We define a global vector field ¥ on S® by: V(z) = iz for any z € S°. We
use V and g to define the canonical principal connection w in this principal fibre S'-
bundle. In particular, if we choose on the base S* the metric g of constant Gaussian
curvature 4, then n: (53 , gr)—>(§2, g) is a Riemannian submersion with geodesic
fibres. The following O’Neill formulae are well known. (See [8].)

VY =VyY —g(iX, Y)V, (2.1
ViV = VX = iX, (2.2)
VyV =0, (2.3)

where V and V stand for the Levi-Civita connection of g and g, respectively, and
overbars means horizontal liftings.

For any positive smooth function f on S? and e = £1, we define the semi-
Riemannian generalized Kaluza-Klein metric g/ on S° by

g/ =m"(g) +e(f 1)’ (dr), 24

where di? is the standard metric on S'. Then 7 : (S°, §/)— (S, g) is still a semi-
Riemannian submersion. Notice that g/ is Riemannian or Lorentzian according to ¢
is +1 or —1, respectively. Although in this note we will work in the Riemannian
case, similar conclusions can be obtained in the Lorentzian one. For the sake of
simplicity, we shall write f instead of /- 7. Let T = % V' be the g/-unit tangent vector
field to the fibres. Then, a standard computation involving some well-known facts
from the theory of semi-Riemannian submersions allows us to obtain the corre-

sponding O’Neill formulae:
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VLY =VyY - g/(iX, V)V, (2.5)
[T, X] =¥T, (2.6)
VLT = —grad(logf), 2.7)

where V/ and grad stand for the Levi-Civita connection and the gradient of g/,
respectively.

3. The fibres in a generalized Kaluza-Klein metric. Recall that a helix in a semi-
Riemannian manifold is a curve which has constant all its curvature functions.
Notice also that the fibres are geodesics, and so helices, in a generalized Kaluza-
Klein metric on S® if and only if f'is a constant (see equation (2.7)). More generally,
if pe S?, then 771 (p) is a geodesic in g/ if and only if p is a critical point of f.
Otherwise, let ¥ and N be the curvature and the unit principal normal of 7~ '(p) in
g/, respectively. Then, we combine equation (2.7) with the first Frenet equation of
the fibre to obtain

—grad(f) = fkN. 3.1

|grad(f)
r

Let T and B be the torsion and the unit binormal of a fibre in g/. Then we
combine the formula (2.6) with the second Frenet equation to have

In particular we observe that the fibres have constant curvature x =

VAT =—1B. (3.2)

Let ¥ be the set of critical points of f. It is not difficult to see that {7, N} span an
involutive distribution on S* — 7~ !(X). Furthermore, every leaf of this foliation can
be regarded as a Hopf tube shaped on a curve on S?, i.e., the leaves are as 7 (y),
where y is an inmersed curve in S*. Notice that these tubes, S, can be parametrized
by @ : I x R—S? as follows:

O(s, 1) = e (s),

where 7 is the domain of y and y denotes a horizontal lift of y. It should be observed
that in this parametrization, the coordinate curves ¢=constant generate the N-flow
while those curves obtained for s =constant are fibres. The unit normal vector field
to S, in (S?, g/) coincides with the unit binormal to the fibre. Now, one can compute
[1] the shape operator, 4/, of S, in (S3, g/). In the orthonormal basis {T = %@,,
N = &}, it is given by the matrix: '

A — (—B(log(f ) f >
f o)

where p stand for the curvature of y in (52, 2
On the other hand, formula (3.2) shows that V/;VTis normal to S, and so

VAT =g/(4(N), T)B =fB.
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Now, we compare this formula with (3.2) to deduce the following result.

PRrROPOSITION 1. For any positive smooth function f on S?, the fibres of
7 (S, §N—>(S?, g) are helices in (S°, §) with curvature k and torsion T given by

rad(f
clgad )l
A
REMARK 1. Notice that the fibres of 7 in Proposition 1 are trivially helices
because the S'-action on S* is carried out throughout isometries of (S*, g/). How-
ever, we shall need these particular values of x and t in the next section.

4. Elasticity of fibres. Let © be the manifold of regular closed curves in a semi-
Riemannian manifold (M, do?). For any natural number r, define an elastic energy
functional " : Q—R by

szfwﬁ@
Y

where k denotes the curvature function of y € 2, and we write the integrand in this
form to point out that it is an even function of the curvature. The variational prob-
lems associated with these functionals were considered in [2], [3]. The critical points
of F" are called r-elasticae (or r-elastic curves), and the Euler-Lagrange equations
characterizing these curves were computed there.

In particular, since the fibres of 7 : (83 , gf)—>(§2, g) are helices, we use those
equations to deduce that a fibre is an r-elastica if and only if

& ((r+ DR(N, T)T + (> — (r + 1)T*)N) = 0, 4.1

where R denotes the curvature operator associated with g/.

As a consequence of this formula, we see that every geodesic fibre is auto-
matically an r-elastica for any natural number . In other words, for any p € %, the
fibre 771 (p) is an r-elastica in (S°, g/) for arbitrary r.

Let U be an open subset of S> — . The problem is to characterize those posi-
tive smooth functions / on U in order for 7~ !(p) to be an r-elastica in (S°, g/) for
any p € U. To solve this problem, we only need to compute the curvature term
appearing in equation (4.1). A straightforward calculus involving some formulae
obtained in the last section gives

RN, T)T = (N(x) + ©* + @ K)N + VN,

and so it can be combined with equation (4.1) and Proposition 1 to deduce the
following.

PROPOSITION 2. Let U be an open subset of S* — 5. Then all the fibres in =" (U)
are r-elastica in (S°, g') if and only if
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(1) the unitary field given by N = — grad(f)

———defines a unit speed geodesic flow on
JT_I(U), |grad(f) |

(2) along this N-flow, f evolves according to

(r+ DYN(N(/)) = r(N(f))* = 0.

COROLLARY 1. Let p a point of S? and denote by —p its antipode. We define
U=S*—{p,—p} and f: U—R by fix) = (d(x, p))"", where d(x,p) denotes the
distance in S* from x to p. Then, (7~ (U), g’) admits a foliation with leaves being
r-elastica. Furthermore, this is a subfoliation of a foliation in (7~ (U), g/ with leaves
being flat tori with constant mean curvature.

In the next result, we choose (U, f) as in Corollary 1.

COROLLARY 2. Let G be a compact Lie group of dimension r endowed with a bi-
invariant metric do®. Let H be a closed subgroup of the fundamental group (7~ (U))
and ¢ : m\ (=" (U))/H— G a monomorphism.

(1) There exists a principal fibre G-bundle, n : P—>m~'(U) which admits a prin-
cipal flat connection 6.

(2) The metric h = n*(§' + 6*(do?)) on P defines a conformal structure, [h], on P
which is foliated by (r + 1)-dimensional G-invariant, Willmore-Chen submanifolds
which have constant mean curvature in the metric h.

Proof. The way to construct (P, 0) is well-known [6]. To show the second state-
ment, we first notice that the space of (r+ 1)-dimensional compact G-invariant
submanifolds of P can be identified with Q = {n‘_1 (@) | ais a closed immersed curve
in 77! (U)}. The Willmore-Chen functional W : Q—R is defined on the space Q of
(r + 1)-dimensional compact submanifolds of P and it only depends on the con-
formal structure. Since the natural action of G on P is carried out throughout iso-
metries of (P, &), it preserves W and hence, we can apply the principle of symmetric
criticality (see [9]). Therefore, to obtain G-invariant Willmore-Chen submanifolds in
(P, [h]) we only need to compute critical points of W but restricted to Q. However,
this restriction can be computed to obtain that W(n~!(«)) is a constant multiple of
F'(a) (see [2]). Consequently, n~'(«) is Willmore-Chen in (P, [A]) if and only if « is
an r-elastica in (7' (U), g/). Now the second statement follows from Corollary 1.
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