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VARIETIES OF GROUPS AND OF
COMPLETELY SIMPLE SEMIGROUPS

Mar10 PeTRIcH AND NorMAN R, REILLY

Completely simple semigroups form a variety if we consider them
both with the multiplication and the operation of inversion.
Denote the lattice of all varieties of completely simple semi-
groups by L(CS) and that of varieties of groups by L(G) . We
prove that the mappings V>V nG and V>V v G are
homomorphisms of L(CS) onto L(G) and the interval [G, CS] ,
respectively. The homomorphism V =+ (V. n G, V v G) is an
isomorphism of L(CS) onto a subdirect product. We explore
different properties of the congruences on L(CS) induced by

these homomorphisms.

1. Introduction and summary

The class of completely simple semigroups is one of the most studied
objects in semigroup theory. If considered as a class of universal
algebras with the given binary operation and the unary operation of

inversion it becomes a variety given by a simple set of identities:

z = zxlz , T = (x-l)-l , xx L

-1 -1 -1
=x x, zx = (xyz)(zyx) .
The recent construction of the free completely simple semigroup due to
Clifford [1] and Rasin [6] raised the hope that the varieties of completely
simple semigroups can be determined via a description of fully invariant
congruences on a free completely simple semigroup on a countably infinite

set. Indeed, Rasin [6] characterized fully invariant congruences in terms
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of certain endomorphisms of the structure group of the free completely

simple semigroup.

The present work represents a study of the lattice of varieties of

completely simple semigroups by means of two homomorphisms of this lattice:
V>Vn6G, V>VvVvG,

wvhere G stands for the variety of all groups. We prove that the
combination of the two homomorphisms is an isomorphism of the lattice of
varieties of completely simple semigroups onto a precisely described
subdirect product. Various properties of the above homomorphisms, and the

congruences they induce, are discussed in some detail.

Section 2 contains most of the preliminary material needed in the
later sections. A characterization of the variety V n G 1is described in
Section 3. The homomorphism V >V n G is discussed in Section 4, and the
homomorphism V + V v G in Section 5. Finally, in Section 6, the
homomorphism V - (V n G, V v G) is proved to be an isomorphism onto a

subdirect product.

We note that KleTman [3] has performed- an analogous analysis for the
lattice of varieties of inverse semigroups. There is a remarkable
difference between the case of varieties of inverse semigroups and the
varieties of completely simple semigroups: the mapping V +» (V. n G, V v G)

for inverse semigroup varieties is not one-to-one.

2. Preliminaries

In general, we use the notation and terminology of Howie [Z] or
Petrich [5]. 1In particular, we adopt the notation in [5] for Rees matrix
semigroups, and use the description of congruences on a Rees matrix semi-
group presented in [2]. In order to minimize the typographical complexity
we modify the standard notation for a sandwich matrix and denote the

(4, k)th entry by [4, k] .
We will consistently use the following notation:

G - the variety of all groups,
R8 - the variety of all rectangular bands,
RG - the variety of all rectangular groups (orthodox completely

simple),
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CS - the variety of all completely simple semigroups,

F(G) - the lattice of fully invariant subgroups of the group

G,

[A, B] - the interval of a lattice with minimum A and maximum
B,

TX - the semigroup of all transformations on a set X ,

L(V) - the lattice of all subvarieties of a variety V of

completely simple semigroups,
End S - the semigroup of all endomorphisms of a semigroup S .

The first result provides a form for endomorphisms of a Rees matrix

semigroup expressed by means of three unique parameters.

LEMMA 2.1 ([6]1). Let S =MI, G, Ay P) , where P <is normalized.
Let ¢ € TI , WE€EENAG, Y € TA be such that

(1) [A, tlo = (19, 101[A, 1017100, toll1y, de]™ (X €A, i €1) .

Then 6 = 6(p, w, ¥) defined by

(i, g, N0 = (¢, [1V, i<p]'l(gw)[lw, 10120, 10178, Ap)

is an endomorphism of S . Conversely, every endomorphism of S can be so
written wniquely.
A construction of the Rees matrix representation of a free completely

simple semigroup follows.

LEMMA 2.2 ([71, [6]). Let X = {xi | © € I} be a nonempty set, fix

IN(1} . Let
lg; et vllg, k1 | 4, k eI},

1€l and let I'

Z

F, be the free growp on Z , and let P = ([j, k]) with

(1, k] = [4, 1] =1, the identity of F, . Then
F = M(I, F,, I p)
is a free completely simple semigroup over X , with embedding

x, > (i, 95 i) .
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NOTATION 2.3. We fix a countably infinite set X , and in addition

to the above notation, introduce

F =(q. | i€eD , F_=C[j, k]l |4, keI,
q q; | 2 = <L 114

the free subgroups of FZ generated by the sets {qi | © € I} and

{l7, k] | j, k € I'} , respectively. We will consistently use the notation
F = M(I, FZ’ I, Pﬂ introduced above.

Z

consequence of Lemma 2.1, we have

Note that F,_, = Fh * Fb , the free product of F& and Eb . As a

COROLLARY 2.4. If 6(9, w, V) 1is an endomorphism of F , then
FwcF .
p —p
LEMMA 2.5 ([61). Any fully invariant congruence on F 1is either
(1) idempotent separating or
(i1) a left group congruence or
(1i1) a right group congruence or
(iv) a group congruence.

We will need only fully invariant idempotent separating congruences,
for they are precisely the ones which correspond to the varieties in the
interval ([RB, CS] . 1In this context, the following special case of ([2],

Lemma 4.19) is of particular interest.
LEMMA 2.6. Let S =M(I, G, A; P) . If N is a normal subgroup of
G , then Py defined on S by

(T, gy Npgld, By W =i =3, ght €N, A=u,

18 an idempotent separating congruence on S , and every such congruence is
obtained in this way. Writing P/N for the A x I matriz with the

(4, kK)th entry equal to the (j, k)th entry of P modulo N , S/p 4is
isomorphic to M(I, G/N, I; P/N) .

NOTATION 2.7. We will consistently use the notation Py introduced

above. For a variety V of completely simple semigroups, we denote by

p(V) the fully invariant congruence on F corresponding to V . Also let
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E(r,)

E (Fp)

{w € Ena F, | there exist ¢, ¢ € T, such that (1) holds} ,

{w ¢ End Fb | there exist ¢, ¥ € T, such that (1) holds} .

Hence E(FZ) consists precisely of endomorphisms of F, that arise

Z
in association with endomorphisms of F . The latter are uniquely

.

determined by the functions {qi | © €I} » FZ s @, P € TI independently.
Furthermore, E[E%) consists precisely of endomorphisms of Fb that

extend to elements of E(FZ) .

LEMMA 2.8 ([61). Let N be a normal subgroup of F Then oy

g
is fully invariant if and only if Nw < N for all w € E[FZ].

DEFINITION 2.9. A normal subgroup of F (respeetively, Fb ) is

Z

E-invariant if it is invariant under all w € E(Fz) (respectively,
E(Fp) ). The set of all E-invariant subgroups of FZ (respectively,

Fb ) will be denoted by N (respectively, Np ). For any N € N | let

N =NnF , N =NnF
q q p p

It is clear that N (respectively, Np ) is a sublattice of the
lattice of all normal subgroups of FZ (respectively Fp ), and that each
element of Np is the intersection with fb of an element of N (for

example, its normal closure in FZ ].

PROPOSITION 2.10 ([6]). The interval ([RB, CS) 1is a complete
modular lattice anti-isomorphic to the lattice N .

We take advantage of the basic results on varieties of groups as found
in [4]. 1In particular, we recall that the lattice of group varieties is
anti-isomorphic to the lattice of fully invariant subgroups of the free

group F, on a countable number of generators X .

X

NOTATION 2.11. If U is a group variety corresponding to the fully

invariant subgroup N of FX and G is any group, then the smallest

normal subgroup H of G for which G/H € U will be denoted by N(G) or
u(e) .
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3. A characterization of Vn G

We prove here some basic statements which will be used in later

sections. In particular, we determine the fully invariant subgroup of Fq
which corresponds to the variety V n G .
LEMMA 3.1. Let N €N .

(7) Nq 18 a fully invariant subgroup of Fq .

Let U be the corresponding group variety, so that U(Fq] =N .
(it) U(F,) .
(iit) U(F) cw
p p
Proof. (Z) Any mapping of the free generators of Fz into Fz
extends uniquely to an endomorphism of FZ , and conversely, every

endomorphism of F, is uniquely determined by its action on the free

Z
generators of Fz . Condition (1) for membership in ’E(FZ) relates only
to the free generators of Fb and is trivially satisfied if we choose ¢
and Y to be the identity mappings.

It follows that any mapping of the free generators of Fb into E&
extends to an element of E(FZ) . Consequently, any endomorphism of Fq
extends to an element of E(FZ) . Hence, Nq must be invariant under any
endomorphism of Fq and is thus fully invariant in Fq .

(iZ), (iiZ) 1In the same way, any mapping of the free generators of

Fq into FZ

there exist «k, w € E(FZ) which restrict to bijections of the free

(or Fb ) extends to an element of E(FZ) . In particular,

generators of Fq onto those of FZ and Eb , respectively.

The hypothesis N € N implies

Nkchlh, NwclNnF_ =N_.
q - a — p p

The restrictions of k and w to Fb are isomorphisms of F& onto FZ
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and Fp , respectively, and thus

UlF,) =UF Jx =NKchw,
(7)) = ulF e = <
ulg_ ) = ulr =NwcdkhN
() = Ul Ju = Husw,
which completes the proof.
NOTATION 3.2, Let V € [RB, CS] and p(V) = py - Then IVq =Nn Fq

is a fully invariant subgroup of Fh and so determines a variety of

groups, which we denote by VG .

We are now ready for the characterization theorem.

THEOREM 3.3. If V € [RB, CS] and p(V) = oy > then V,=VnG.

G

Proof. The free group on a countable number of generators in VG is
simply Fq/Nq . Clearly, Fh/Nq €V nG and so VG cVnG.

For the converse containment, let H be any group in V n G . Let
{hi | © € I} be any countable subset of H . Now {qui | © eI} is a
set of relatively free generators of the relatively free group Eh/Nq . If
we can show that there exists a homomorphism ¢ of Fb/Nq into H such
that (qui)¢ = hi , for all % € I , then we shall have, by the
arbitrariness of H and the hi , that every countably generated subgroup
of any element of V n G is a homomorphic image of Fh/N& and therefore

must satisfy all the laws of VG . Hence, V n G satisfies the laws of

VG and so VYV nGc VG , as required.

We will show that such a homomorphism ¢ exists.

We start with the homomorphism 6 of F into H defined on the

generators by: (i, 9;> i)e = hi . Since (1, 1, 1) is an idempotent, we

must have (1, 1, 1)6 =1 . Hence

(1, 4, 1)e = [(1, 1, 1)(2, q;, 4)(1, 1, 1)]6

(7:, a; i)e = h‘l: .
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For ease of reference, let

Fo=1{1,9,1) €7 |ger}.

Since H € V , we have 0 o gt 20y » vhich implies that the homomorphism
® factors uniquely through F/pN . Hence 6 =y , where u 1is the
natural homomorphism of F onto F/pN and ¢ is a homomorphism of F/pN

into H . We illustrate this situation by the diagram

F— i

F/oy

FQ/NQ
The homomorphism ¥ is such that, for all < € I ,
(19 q;, 1)pr = (l, q; l)uw = (1, q; 1)6 = hi .
However, the mapping
£ : Ian +- (1, a, l)pN

11“ is a monomorphism. Let ¢ = & . Then ¢

is a homomorphism of Fh/Nq into H such that

of Fq/Nq into Fll/pN =F

(qu,;)cp = (1, q;. Vo =hy .

Thus ¢ 1is the required homomorphism.

4. The projection of L(CS) onto L(G)

We explore here the relationship between varieties of completely
simple semigroups and varieties of groups by considering the projection of
L(CS) onto L(G) givenby V +V n G . First we introduce two mappings
which will prove to be elements of E(Fz) and will play an important role

in our discussion. Recall that FZ = Eh * F
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NOTATION 4.1. Let Trq and Trp be the projections of FZ onto Fq

and Fp , respectively.

The next result summarizes the most salient features of these

projections.

LEMMA 4.2. () m, m, € E(F,) -

i) If N €N, then Nuv_=N_, Nn_=N_.
(ti) If en Trq 9 Trp b

(ii1) “q induces a lattiece homomorphism of N onto F(r q)

Proof. (i) It suffices to produce mappings ¢,  : I » I in each

case so that condition (1) is satisfied. For Trq take ¢ = t¥ =1 for
all 7 € I , and for Trp let ¢ = Y be the identity mapping on I . (In

addition, one has qi"q =4q; and qi‘np =1, forall 7 €1 )

(ii) Let N €¢ N, Then Nm_CN since m_ € E(F,) , and Nn_CF
g S since T, €E(F) q="q

by the definition of ’nq , so that Nﬂq SV n Fq . On the other hand,

since N _CF we have ¥ = N1 C Nm and thus Nm_ =¥ . The same
q-"q9° 9 99~ q° q9 q

type of argument can be used to prove that an = IVp .

(iii7) Let M, N € N . By part (i7i) and Lemma 3.1 (Z), we have

IV‘qu = Nq which is a fully invariant subgroup of Fq ;3 thus

: N> F . iti
‘nq > (Fq) In addition,

(Man)nq:(MnIV)q:MnNnFq= [MnFq) n(NnFq)

=Mr nNw_,
q q
MvAN)r = (MV)n_ = \MT |{Nn ] =Mr Vv Nw_ |
( ) q (e} q t q)( q) q q
and thus Trq determines a lattice homomorphism of N into F(Fq) . Since

Fq is a free group on a countable number of generators, any N € F[Fq]
determines a variety of groups U , say. Then M = U(FZ] € N and
leq = N . Consequently, the homomorphism induced by ﬂq maps N onto

F(r,)
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NOTATION 4.3. For any V € L(CS) , 1let
V = {5 € CS | a11 subgroups of § are in V} .

It is readily verified that V is a variety of completely simple

semigroups. We are now ready for the principal result of this section.
THEOREM 4.4. The mapping
X:V=>VnG (VeL(S))

is a homomorphism of L(CS) onto L(G) . Denote by o the congruence
induced by x . For any V € L(CS) , we have

Va = [V n G, V] .

Proof, Let V € [RB, CS] be determined by the fully invariant

congruence P, on F ., By Theorem 3.3, the variety of groups determined
by the fully invariant subgroup Nq of Fh is just VY n G . Combining
the mappings

v - Py + N »—Nq +>VnG
we obtain, by Lemma 4.2 (ZZZ), a homomorphism of [RB, CS] onto L(G) .

It is then straightforward to verify that this homomorphism extends to a

homomorphism of L(CS) onto L(G) .
The statement concerning Vo needs no formal argument.
The rest of the section is devoted to characterizations of the maxima

of a-classes in terms of identities and subgroups of FZ . In the context

of completely simple semigroups, group identities are written in the form
u=v with u#1# v . In the interest of simplicity, we will frequently

abbreviate expressions of the form u(xl, ey xn) for words in the
variables z; to u(xi) . However, for an identity
uLxl, cees xn) = vﬂxl, ceny xn) , it need not be the case that all
variables appear on both sides of the identity.

LEMMA 4.5, et u(xl, ey xn) = v(xl, e xn] be a group identity

and S be a completely simple semigroup. Then all subgroups of S
satisfy u(xi) = v[xi] if and only if S satisfies u[Ei] = v[&i) » where
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T = -1 -1 < 4 <
z, = [xlxl )xi[xlxl ] ., 1 =i=n.
Proof. Assume that all subgroups of S satisfy the identity
u(xi) = v(xl) . If we assign any value to the variables :z:l, x2, e xn N
all the variables 57: will be contained in the maximal subgroup of §

containing & Since u(xi) = v(:ci) is valid in that subgroup,

1
u[iz) = v(&i) is valid in § .

Conversely, assume that S satisfies the identity u(i‘i] = v[:?:,b)
If all variables xl, xz, ey :z:n assume values in the same subgroup G
of S , then '57: =z, for 1 <7 =<n, and G satisfies the identity
u(xi) = v(xi] .

COROLLARY 4.6. If U is a variety of groups given by the set of
identities {ua(xi) = va(xi) }(xGA , then U 4is determined by the system of

identities {ua(:?:i) = va(‘;:i) }aGA » where X, = (xx_l)xi (xx_l) and x is a
fized variable.

NOTATION 4.7. For any S € CS , let (S) denote the subvariety of
CS generated by &S .

PROPOSITION 4.8. For any U € L(G) , we have U = (F/pM) where

M=u(F,) .

Proof. First note that M € N and that M, = U(Fq) is the fully
invariant subgroup of Fq corresponding to U . Theorem 3.3 then gives
that (F/pM) nG=U. Let V € L(CS) be such that YV nG=U. If V
is a variety of groups, left or right groups, then clearly V E(F/DM) .

Otherwise, let V be determined by the fully invariant congruence on

Ow
F ., Since Ux =U , we must have M = U(Fz) € N . But then Py S Py and

thus .V E(F/pM) . By the maximality of u , the result follows.

Indeed, we see from Proposition 4.8 that

https://doi.org/10.1017/5S0004972700007231 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007231

350 Mario Petrich and Normal R. Reilly

Floy, = M(z, F,lM, I P/H)

is a relatively free object in u.

COROLLARY 4.9. Let V € [RB, CS] and o(V) = Then V <is the

pN‘
maximum element of its a-class if and only if N 1is a fully invariant

subgroup of F, .

Proof. That N is fully invariant if V is the maximum element of
its a-~class follows immediately from Proposition 4.8. For the converse,

suppose that N is fully invariant and let p(V) = Py - BY Proposition
4.8, M 1is also fully invariant so that, by Theorem 3.3, we have
(F/N)Y=UnG=VnG=(F /M) .
9 9 q q
Thus, in the notation of 2.11,

N|F =N =M =
( q) q q

|
=
—
xy
—

from which it follows that N =M and V =V , as required.

COROLLARY 4.10. The varieties that are maximum (respectively,

minimum) in their a-classes form a sublattice of L(CS) .

Proof. The varieties that are minimum in their «-classes are simply
the group varieties and so constitute a sublattice. By Corollary 4.9, the

maximum elements correspond to the fully invariant subgroups of FZ .

Since these form a sublattice of N , it follows that the maximum elements

form a sublattice of L(CS) .

5. The projection of L(CS) onto [G, CS]

We now turn to the study of the relationship of the lattice L(CS)
and its interval [G, CS] wvia the homomorphism V =+ V v G . We then
characterize the maximal elements of the congruence on L(CS) induced by

this homomorphism in two different ways.

NOTATION 5.1. Let ?-’p denote the normal closure in F, of F .

For any N € N , let N; =Nn ?b and let

N* = {N* | W ¢ N} .
RPN
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The following lemms supplies the necessary information for the main

result of this section.
LEMMA 5.2. (1) N;SN .
(i) o(RG) = pp .
p
(iii) F, = Fq?p .
(tv) F._nF_={1}.
q p

(v) Forany N €N, we have N = N N* .

qp
Proof, (Z) Since any endomorphism in E(FZ) maps Fp into Fp , it
must also map %p into itself. But then it must map ¥ n ?‘p into itself,

for any N € N |

(i1) For N = ?"p » it is clear that F/p, is a rectangular group.

On the other hand, if ¥ € N 1is such that F/pN is a rectangular group,

then Fp C N , and since N is normal, we have ?p cN.
(ii1) This is a consequence of the fact that FZ = Fq * Fp .

(iv) Consider the projection 1Tq : FZ > Fq . Its kernel is ?’p and

it maps Fq identically, whence the assertion.

(v) Let N €N and n € N, By part (i2Z), n = ab for some
aGFq, bG?'p. Hence

a=(ab)n_ €ENONF_ =N
q q q
so that
b=a_l(ab)€an’=1V*.
p p

Thus N C IVqIV; , and the opposite inclusion is trivial.

We first deduce two interesting consequences.

COROLLARY 5.3. For V € [RB, CS] with p(V) = Py » we have
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p(V v 6) = py, . Consequently, RGcV ifandonlyif Nc ?’p

Proof. The hypothesis V D RB yields
VvG=VVRBVG=VVRG,
whence, by Lemma 5.2 (71), we get

p(V v G)

p(V v RG) = p(V) n p(RG)

=Py Pp T Pk T Pyxo-
p p p

COROLLARY 5.4, For U, UV € [RB, CS] with p(U)

Py
p(V) = Py » we have

UvG=UVvG=M =N,
p p

We are now ready for the principal result of this section.
THEOREM 5.5. The mapping
8:V->VvG (VelL(CS))
is a homomorphism of L(CS) onto [G, CS] .

Proof. We first consider 8 on the interval [RB, CS] . Recall that
this interval is anti-isomorphic to N . 1In the light of Corollary 5.3,
for any V € [RB, CS] with p(V) = , we have p(V v G) = Pyt - Hence

p

Py
it suffices here to show that the mapping

HL:N>Nt=NAP
p p

is a homomorphism of N onto Nl’; .

Obviously u maps N into N; and preserves meets. The onto part

is a consequence of Lemma 5.2 (7). It remains to show that for any
M, N € N , we have

(M Vv N)u=™MiV N,

that is, (ME)* = MAN* .
st is, (MV)] = M3V

Let aE(MIV);,say a=m , wvhere m €M, n € N. By Lemma

5.2 (v), we have m = m,m, and n = nin, with m o, ny € Fq ,
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My Ny € Fb . Then
_ _ -1 -1
(2) m = mmn n, = [mlmzm:L ][[mlnl)n2 (m,n,) :lmlnl .
Note that in (2), my, n, € ?’p , which is normal, and also m = a € (MN)E s
which implies that mn, € ?p . But then, by Lemma 5.2 (iv), we get
F nF = )
m ny € q n Fb {1} Consequently,

= = -1 A%
a m = Lwlm2m1 ]n2 € Mpr .

This proves that (MW); E_M;N; ; the opposite inclusion is obvious.
Therefore 6 is a homomorphism on the interval [RB, CS] .

To see that 6 is a homomorphism on the entire lattice L(CS) , we
consider U € L(RG) and V € L(CS) . It is straightforward to verify that

the following is true:

(UaV)vG=1{5€CS|S=GxR,GeG, RE€(UnV)nRB)

(UvG)yn(Vvag) .

Therefore 6 is indeed a homomorphism of L(CS)} onto [G, CS] .

We have seen in Theorem L.l that the congruence o induced by the
homomorphism V + V n G has the property that its classes are intervals of
L(CS) . We conjecture that the congruence B induced on L(CS) by the
homomorphism ¥ > V v G also has this property. We are unable to prove
the existence of the least element of the B-class containing an arbitrary
variety V , but observe that the greatest element is obviously V v G .

In Corollary 5.3, we have already characterized the corresponding element
of N . We now turn to the description of V v G in terms of the system

of identities it satisfies.

NOTATION 5.6. In any group G , denote by a° the conjugate aLza
of x . For iy £1, Jt #¥1, qk € Fq »

frlays--00q,) fm(ql,-.-,qn)] .

(3 v=9[[,, 4] ]

e eees Gy 3,

let
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. (@ senz) flz ,. ...z )
(4) 5=ovlz.t L n, 8T L n
Ll’Jl tm’Jm
where .
z, = -1 . = . -1 . . -1
(5) Ty T XX XXX, zit’Jt (xyzt)(xyit) (ygtx)(th“J

—
x*
i

for variables x, xk, yi > Y

. 1,2, .o.,n, t=1,2, ..., m .
t Yt

LEMMA 5.7. Let V € [RB, CS], p(V) = Py s then
N*:{vé?’ |62=6isa1awinv}.
p p
Proof. Let v € N; be given by (3). Consider any substitution of

the varisbles in » , see (4), into F :

x+a, x, +a, , Y. *b s Y. *b
k k T, o, Jy B
Let 50, zq . and so on, denote the elements obtained from 5, 2. .
teode Tysdy

and so on, see (5), by making these substitutions. Without loss of
generality, we may assume that b €H , b €H , Where
O % By By

H need not all be distinct even for distinct « or B

s H .
-a, St' t t

Let a € H and note that
re
g:(r,h,8)+[s, rIh (he FZ]

is an isomorphism of Hrs onto FZ . Then

-0 _-c
(6) T Clpg > G = TS5 € Fy

where the latter part of (6) defines g > and

o _ 1 . 2L
zit’jt = (abat)(abat) (bst )(bgt )

[r, [:at, r7t, atJ [Bt’ [s, Bt]-l, s]
[+ G A7y 810, 8172 )
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so that

(7) zgt’jtg = [ss r][at’ r]-l[at’ Bt] [:8, Bt]—l ‘

Taking into account (6) and (7), we obtain

(8) 3% = [{[s, Py, A7y, 610, Bl]}fl(gl,...,gn]

f (g 9-'-,9 )
{[s, rlla, r]'l[am, B, [s, Bm]} meL n]
Let © € E(F,) be defined by (1) end
qkw=gk’itw=at’ jt(p=8t’ l¢=1”, l‘P=s,

and let ¥ and ¢ be defined arbitrarily elsewhere. Using (1), we obtain

£y (.0 )

folags... ,qn)w

OREAD

[t ;]

f yores
(te, #)lay, 71Ty 806, 8)7Y) oy

Comparing this with (8), we conclude that 605 = vw , where wvw € N; since

v € N; and N; €N, by Letnma 5.2 (Z). Since

(s, 71 ()2 (s, r) " vw)) ™t = [s, 217 (ow)(s, »] € e,

Lemma 2.6 yields

(. e, 21 W%, 8)oy.(r, (5, »17 (), &)
p

Using N; C N and the definition of £ , we deduce (SGJQDNGO and thus

2=9 isalawin V.
Conversely, suppose that 32 =? is alaw in V. Consider the
substitution

og:x*>(1,1,1), a:i'*(l,qi,l),
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Then

Eg = (1, a;s 1), zit’jt = (1, lit, jt" 1)

and thus 30 = (1, v, 1) . Since 62 = 5 is a law in V | we get
(1, v, l)2pN(l, v, 1) and so Mo° =Ny . But then v € N n ?’p = N; , as

required.

PROPOSITION 5.8. Let V € [RB, CS], p(V) = oy - Then
{32 =v|ve N;} i8 a basis of laws for V v G .

Proof. This is immediate from Corollary 5.4 and Lemma 5.7.
It is a simple conéequence of Proposition 5.8 that

Flpys = M(z, FZ/IVZ’;, I; P/IV;)
p

is a relatively free object in V v G .

6. Embedding of L{(CS) into a subdirect product

We combine here the homomorphism ¥ of Theorem 4.4 with the
homomorphism © of Theorem 5.5 and prove that the resulting mapping
V> ((VnG, VvG) is actually an isomorphism of L(CS) onto a subdirect
product of L(G) and [G, CS] .

THEGREM 6.1. The mapping
E:V>(WnG, VvG) (VelL(Cs))

is an isomorphism of L(CS) onto the subdirect product of L(G) and
[G, C8] consisting of the pairs (U, V) such that Vc U v G . Moreover,
for W € L(CS) ,

WnG=U, WvG=V=W=UnV,

Proof. Since X and © are homomorphisms (Theorems 4.4 and 5.5) so
also is & . Let V, W € [RB, CS] and p(V) = Py p(W) = Py - Then, by

Corollary 5.3,

(9) PV Vv G =p,, oWvG) =opy .
p p
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On the other hand, by Theorem 3.3,

VAaG=(F /M) WnG=<(F /N .
(10) n q/ A n q/ q

If VE = WE , then from (9) and (10), we have

M =N, M*=N*,
9 q p p

and from Lemma 5.2 (v) it follows that

M=MM =NN*=N
qp ap

Therefore V =W and & 1is one-to-one on [RB, CS] .
If either of V or W does not contain RB , then it must be a
variety of left groups or a variety of right groups (or a variety of

groups) and a simple case-by-case argument will asgain show that Vg = WE

implies that V = W . Therefore £ is an isomorphism.

For Wv L(CS) ,let U=WNG and V=WVvG. Then Wc T and so
V=WvGclvs.

Conversely, let (U, V) € L(G) x [G, €S] with V< U v G , and let

W=UnV . We have
WnG=UnVnG=UnG=U.
Now consider W v G . Then
WvG=(UnVYyvGcV
since Gc V . For the opposite inclusion, first assume that RGc V .

Then clearly RB<C W . Let p(U) = py and p(V) = Py ; also let m €M,
n € N be such that mm € ?‘p so that mn € (MV)S . The hypothesis RG c V
implies that n € N g’p ,and VclUvVG implies that

DM; = Py = p(lvG) c Py so that Ml’; C N . Consequently

m = (mn)rt_l EMNE =M CN
p p
and thus mn € N , which proves that (Mv); c N . But then
p(W v G) = p(lW v RG) = "szn?'p = D(MN)E € py = o(V)

and hence VcWvG.
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If V does not contain RG , then we must have V equal to G , or
to the variety of left groups or the variety of right groups. Particular,
but simpler, arguments will show that W v G = V in each of these cases.

We have thus established the converse part of the implication in the
statement of the theorem. This establishes that & maps L(CS) onto the
sublattice {(U, V) | U € L(G), GcVcUvG}.

The direct part of the implication follows from the fact that £ 1is

one-to-one.
COROLLARY 6.2. For any V € L(CS) , we have
V=VnGn(Vve) .

REMARK 6.3. By Theorem 3.3 and Corollary 5.3, we have the following

associations for any U € L(CS)

N
/q
V>o(V) =py

\zv*=1vn? sV vG.

p p

NnF +>VnG
q
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