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Abstract. TPF-I capability for planetary signal extraction, including both detection and spec-
tral characterization, can be optimized by taking proper account of instrumental characteristics
and astrophysical prior information. We have developed the Point Process Algorithm (PPA), a
Bayesian technique for extracting planetary signals using the sine/cosine chopped outputs of a
dual nulling interferometer. It is so-called because it represents the system being observed as
a set of points in a suitably defined state space, thus providing a natural way of incorporating
our prior knowledge of the compact nature of the targets of interest. It can also incorporate the
spatial covariance of the exozodi as prior information which could help mitigate against false
detections. Data at multiple wavelengths are used simultaneously, taking into account possible
spectral variations of the planetary signals. Input parameters include the sigma of measurement
noise and the a priori probability of the presence of a planet. The output can be represented as
an image of the intensity distribution on the sky, optimized for the detection of point sources.
Previous approaches by others to the problem of planet detection for TPF-I have relied on the
potentially non-robust identification of peaks in a “dirty” image, usually a correlation map.
Tests with synthetic data suggest that the PPA provides greater sensitivity to fainter sources
than does the standard approach (correlation map + CLEAN), and will be a useful tool for
optimizing the design of TPF-I.
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1. Introduction
A key component of the proposed Terrestrial Planet Finder mission is a nulling inter-

ferometer (TPF-I) for the wavelength range 7–15 µm, currently envisaged as a free-flying
four-element dual-Bracewell array. The outputs of two nulling pairs are combined co-
herently to produce a modulated signal as the interferometer is rotated about the line
of sight to the star (Beichman & Velusamy 1999). This signal may be “sine-chopped”
by differencing two phase-shifted versions (π/2 & 3π/2) to maximize the information
content for planetary signals (Velusamy & Beichman 2001).

Various inversion procedures exist for extracting the fluxes and locations of possible
planets (see, for example, Angel & Woolf 1997; Velusamy & Marsh 2004); the one most
widely used involves making a correlation map (referred to as a “dirty image”) followed
by deconvolution with the CLEAN algorithm (Draper et al. 2005). A key step in that
procedure is an iterative search for peaks in the dirty image, which can be non-robust
when noise bumps fall on “side lobes” of the responses to other sources.

In this paper we propose a Bayesian technique for planet detection which avoids
the noise-vulnerable peak-finding step. It can process data at many wavelengths
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simultaneously, and can incorporate prior information such as the spatial covariance
of the exozodi. Since the planetary signals are represented as a random set of points in
a suitably-defined state space, we refer to the resulting algorithm as a “Point Process
Algorithm” (PPA) following the terminology of Richardson & Marsh (1992).

2. Measurement Model
The starting point of our approach is a measurement model which relates a data

vector, d (whose components are the complete set of samples of the sine-chop signal at
all wavelengths of observation), to the intensity distribution, I(x, y), on the sky. The
latter is modeled as the superposition of a set of point sources of unknown number,
fluxes and positions, upon an extended background whose intensity at position (xj , yj )
is denoted by ζj . The distribution of point sources is represented as a set of occupation
numbers in a 3-dimensional state space whose axes are flux and x, y position. The state
space is divided into a regularly-sampled grid of cells, such that the cell labeled (fk , xj , yj )
represents the kth possible flux value, fk , at the jth spatial position, (xj , yj ). If a point
source of that particular flux density is present at that particular position, then the
occupation number of that cell, Γjk , will be equal to 1; otherwise, it will equal zero. This
representation provides a convenient way of incorporating our prior knowledge of spatial
dilution.

The measurement model must include a spectral model which relates the planetary
fluxes at the different wavelengths. There are several possibilities, one of which is to
treat the planets as black bodies at the local radiation temperature. If the orbital in-
clination and position angle of the orbital tilt axis are known, the planet temperature,
Tj ≡ T (xj , yj ), can then be determined at each (xj , yj ) from knowledge of the stellar
luminosity and radial distance. Our measurement model can then be written as:

di =
∑

j,k

fk [B (λi, Tj )/B (λ0, Tj )] Hi (xj , yj ) Γjk +
∑

j

Hi (xj , yj ) ζj (λi) + νi (2.1)

where λi represents the wavelength corresponding to the ith measurement, B (λ, T ) rep-
resents the Planck function, and the fk represent possible values of planetary flux at
some suitably-defined reference wavelength, λ0; Hi(xj , yj ) represents the response of the
measurement system to a source of unit flux at (xj , yj ), and νi is the measurement noise.
We can rewrite (2.1) in more compact notation as:

d = AΓ + µ (2.2)

where µ is a stochastic quantity representing the combined effects of νi and ζj (λi), and Γ
is the state vector whose components are Γjk ; A is a matrix whose elements are derived
from values of Hi(xj , yj ) and other quantities as indicated by (2.1).

We assume νi is an uncorrelated zero-mean Gaussian random process (GRP). The
exozodi distribution, ζj (λi) is also assumed to be a GRP, but with covariance Cζ corre-
sponding to the spatial correlation properties. If an estimate of the exozodi distribution
is available from lower-resolution (possibly ground-based) observations, its contribution
can be subtracted a priori from d, so that ζj (λi) may be regarded as zero-mean. The
state vector, Γ, is also regarded as a stochastic process whereby each cell is statistically
uncorrelated, and the a priori probability of cell occupancy is a small number, P1.
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3. Estimation Procedure
The central operation is to estimate the state vector, Γ, given the observed data.

Specifically, we will obtain the expectation value of this quantity, defined by:

ρ (xj , yj , fk |d) ≡ E Γjk (3.1)

where E is the expectation operator. We refer to ρ (xj , yj , fk |d) as a density, since it
represents the average local density of occupied cells in the state space of position and
flux.

Estimating the density in state space given a set of observed data is a generic problem
in statistical mechanics, and has been applied to acoustical imaging (Richardson & Marsh
1987) and target tracking (Richardson & Marsh 1992). The solution procedure involves
the solution of a hierarchy of integro-differential equations which fortunately can be
truncated, to a good approximation, at the first member. We then obtain:

∂ρ

∂t
+ φ1ρ = 0 (3.2)

where t is a dimensionless progress variable representing the degree of conditioning on
the data, and φ1 is a conditioning factor which incorporates the data, d, and the system
response matrix, A.

Equation (3.2) is to be integrated from t = 0 to a terminal value, tf , defined by a
stopping rule based on consistency with the observed data, corresponding to a reduced
chi squared value (χ2

ν ) of unity.
The initial condition on ρ for the numerical solution of (3.2) is ρ (t = 0) = ρ0, where

ρ0 is the a priori density equal to the constant value P1; its integral over all state space
represents the a priori expectation number of planets present.

Our corresponding estimate of the source intensity distribution is then:

Î (xj , yj ) =
∑

k

fkρ (xj , yj , fk ) (3.3)

Estimates of the planet fluxes themselves may be obtained from the integrated value
around each peak in this image; the uncertainties correspond to the standard a posteriori
variances of maximum likelihood estimates.

4. Tests with Synthetic Data
We have tested the PPA using a set of 15 test cases designed to replicate realistic

observing scenarios for TPF-I in the wavelength range 7–15 µm. Each case involved 0–5
planets at radial distances of 0.4–5.25 AU from a solar-type star at a distance of 10
or 15 pc, superposed on a 1 Zodi dust distribution. The 15 cases involved a total of 37
planets, 24 of which were of 1 Earth flux, and 2 of which were < 1 Earth flux. The orbital
inclination was 60◦ except for two face-on cases. All planets were at Earth temperature
(260 K). Radial distances and signal-to-noise ratios were distributed as shown in Fig. 1.

The measurement configuration was the “X array” consisting of four 4-m detectors at
the vertices of a rectangle of width 12 m (corresponding to the nulling baseline length)
and a length of either 36 m or 72 m. Note that we have adopted 12m for nulling in lieu of
the nominal design value of 20m to improve the sensitivity at the short wavelengths. The
measurements consisted of the simulated sine chop signals through a full rotation of the
array, at wavelengths of 7.44, 8.50, 9.92, 11.90 & 14.90 µm, and a total integration time
of 1 day. The data generation included the effects of stellar leakage (due to incomplete
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Figure 1. The distribution of planet parameters in the test cases, with respect to radial distance
from the star and corresponding ideal SNR for an isolated planet. The distances to the stars are
indicated.

Figure 2. Images obtained by PPA and Clean methods for a test case involving 5 planets
with the X-36m array. Similar images were obtained for all 15 test cases.

nulling of the stellar photosphere) and thermal emission from a symmetrical exozodiacal
dust cloud. The noise model included the effects of Poisson noise from all components.

The data were inverted using the PPA, and also by the standard technique of “correla-
tion map + CLEAN” for comparison purposes. The spatial covariance of the exozodi was
ignored (i.e., Cζ was set at zero) since symmetrical sources cancel in the sine chop signal.
Full account was, however, taken of the Poisson noise contribution of this component.
Figure 2 shows the results for a case involving 5 assumed planets.
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Figure 3. Planet detection statistics. The left two panels show the operating characteristic
curves for PPA and CLEAN. The solid line on the left hand plot represents the idealized theo-
retical curve for an isolated planet. The right panel shows the detection performance of PPA as
a function of threshold in sigmas.

These inversions yielded images for all 15 test cases (as exemplified by Figure 2) from
which we extracted estimates of point source locations, fluxes, and corresponding uncer-
tainties. We identified the six brightest peaks in each image, then applied a SNR threshold
and counted the detections. Comparison with the true (assumed) planet positions then
led to the number of true detections and false alarms as a function of the detection
threshold in sigmas. Figure 3 shows a plot of true positives vs. false negatives, known as
the operating characteristic curve of the detection system, for both PPA and CLEAN.
It is apparent that for a large range of abscissa values, the PPA detected more planets
than CLEAN, particularly with the 72 m array. The PPA performance as a function of
detection threshold in sigmas is shown in Figure 3.

5. Discussion
The PPA is theoretically a near-optimal approach, and the present results support

this. For the 72 m array in particular, the PPA has effectively increased the sensitivity
of the array for planet detection over standard techniques exemplified by CLEAN.

The results also indicate that the 72 m array would be less sensitive than the 36 m
array for this ensemble of planets, presumably due to the smaller relative range of spatial
frequencies involved. By combining the data from both configurations (with same total
integration time), we found that the added spatial frequency coverage provided by the
72 m array did not offset the reduced signal to noise of the 36 m data.

The detection statistics from Figure 3 indicates that:
• At the 5.8σ level we detect 26 of the 37 planets, but obtain 11 false positives; the

26 detections include 15 of the 24 Earth flux planets.
• A threshold of 5σ would facilitate detection of more than half of the Earths in a

TPF survey, with only one false positive.
• Lowering the thresold to 4σ would facilitate detection of 19 of the 24 Earths in the

sample, but with a penalty of 5 false positives.
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Future work will emphasize the effects of exozodi, including the effects of spatial in-
homogeneities which may masquerade as planets in the interferometer signals, and their
mitigation via appropriate incorporation of a priori estimates and spatial covariance.
For the latter purpose we will make use of recent observations of debris disks using the
Spitzer Space Telescope (Beichman et al. 2005).
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Discussion

Kaltenegger: Do you find that the use of two baselines improves the results such that
it justifies the double integration time needed then?

Velusamy: We find that for a given total integration time, it is better to put all of it
into the 36 m configuration rather than splitting it between 36 m and 72 m, i.e. the added
(u, v) coverage provided by the 72 m data did not quite compensate for the reduction in
signal to noise of the 36 m data.

Kaltenegger: Do your calculations take the properties of the instrument over a full
rotation into account, i.e., do you extract the signal over a full rotation of the instrument,
or over a fraction of a full rotation, or do you assume no rotation for your calculation?

Velusamy: The inversion makes simultaneous use of the data at all rotation angles of
the array, from 0◦ to 360◦ in increments of typically 1◦, as in our simulations. However
the algorithm can work on any given data set with partial or complete rotation.
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