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Abstract

In this article we introduce and prove a Z/p meta-abelian form of the birational
p-adic section conjecture for curves. This is a much stronger result than the usual p-adic
birational section conjecture for curves, and makes an effective p-adic section conjecture
for curves quite plausible.

1. Introduction

Let X → k be a complete geometrically integral smooth curve over a field k. Recall that
Grothendieck’s ‘section conjecture’, which evolved from his Esquisse d’un Programme of 1983
(see [Gro98a]) and Letter to Faltings of 1984 (see [Gro98b]), predicts that under certain ‘anabelian
hypotheses’ π1 gives rise to a bijection between the k-rational points of X, which are actually
the sections of X → k, and the (conjugacy classes) of sections of π1(X)→ π1(k).

The aim of this article is to formulate and prove a very ‘minimalistic’ birational variant of
this conjecture in the case where k is a finite field extension of Qp.

To begin with, let k be an arbitrary base field and K|k the function field of a complete
geometrically integral smooth curve X → k. Let K̃|K be some Galois extension, and let
Gal(K̃|K) denote its Galois group. Further, let k̃ := k ∩ K̃ be the ‘constants’ of K̃, and consider
the resulting canonical exact sequence

1→Gal(K̃|Kk̃)−→Gal(K̃|K)
p̃rK−→Gal(k̃|k)→ 1.

Let X̃ →X be the normalization of X in the field extension K ↪→ K̃. For x ∈X and x̃ ∈ X̃
above x, let Tx and Zx, with Tx ⊆ Zx, be the inertia and decomposition groups of x̃|x, respectively,
and let Gx := Aut(κ(x̃)|κ(x)) be the residual automorphism group. By decomposition theory, one
has a canonical exact sequence

1→ Tx→ Zx→Gx→ 1. (∗)

Suppose next that x is k-rational, i.e. κ(x) = k. Since k̃ ⊂ κ(x̃), the projection Zx
p̃rK−→Gal(k̃|k)

gives rise to a canonical surjective homomorphism Gx→Gal(k̃|k), which in general is not
injective. Nevertheless, if k̃ = κ(x̃), then Gx→Gal(k̃|k) is an isomorphism. Hence, if the
exact sequence (∗) splits, then p̃rK has sections s̃x : Gal(k̃|k)→ Zx ⊂Gal(K̃|K), called sections
above x; also, notice that the conjugacy classes of the sections s̃x above x build a ‘bouquet’
which is in canonical bijection with the (non-commutative) continuous cohomology pointed set
H1

cont(Gal(k̃|k), Tx) defined via the split exact sequence (∗).
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Note that if char(k) = 0, then Tx is Gal(k̃|k)-isomorphic to a quotient of Ẑ(1) and thus abelian;
hence H1

cont(Gal(k̃|k), Tx) is a group. Furthermore, if K̃ =Ks and k̃ = ks are separable closures
of K and k, then Gx = Gal(ks|k) and (∗) is split, and thus sections above x exist; moreover, if
char(k) = 0, then Tx ∼= Ẑ(1) as Gk-modules, and hence H1

cont(Gk, Tx)∼= k̂× via Kummer theory.
If v is an arbitrary valuation of K and ṽ is a prolongation of v to K̃, then we denote by Tv

and Zv, with Tv ⊆ Zv, the inertia and decomposition groups of ṽ|v, respectively, and by
Gv = Zv/Tv the residual automorphism group. If s̃v : Gal(k̃|k)→ Zv ⊆Gal(K̃|K) is a section
of p̃rK , then we say that s̃v is a section above v.

Next, let p be a fixed prime number. We denote by K ′|K a maximal Z/p elementary abelian
extension of K and by K ′′ a maximal Z/p elementary abelian extension of K ′. Then K ′′|K is a
Galois extension, which we shall call the maximal Z/p elementary meta-abelian extension of K.
Note that k′ := k ∩K ′ and k′′ := k ∩K ′′ are, respectively, the maximal Z/p elementary abelian
extension and the maximal Z/p elementary meta-abelian extension of k. We further consider the
canonical surjective projections

pr′K : Gal(K ′|K)→Gal(k′|k), pr′′K : Gal(K ′′|K)→Gal(k′′|k).

We will say that a section s′ : Gal(k′|k)→Gal(K ′|K) of pr′K is liftable if there exists a section
s′′ : Gal(k′′|k)→Gal(K ′′|K) of pr′′K which lifts s′ to Gal(k′′|k).

Note that if the pth roots of unity µp are contained in k and hence in K, then by Kummer
theory we have K ′ =K[ p

√
K ] and K ′′ =K ′[ p

√
K ′ ], and similarly for k.

From now on, suppose in the above context that k is a finite extension of Qp. Then the
promised ‘minimalistic’ form of the birational p-adic section conjecture is the following.

Theorem A. In the above notation, suppose that µp ⊂ k. Then the following hold.

(1) Every k-rational point x ∈X gives rise to a bouquet of conjugacy classes of liftable sections
s′x : Gal(k′|k)→Gal(K ′|K) above x, which is in bijection with H1(Gal(k′|k), Z/p(1)).

(2) Let s′ : Gal(k′|k)→Gal(K ′|K) be a liftable section. Then there exists a unique k-rational
point x ∈X such that s′ equals one of the sections s′x defined above.

Actually, one can reformulate the question addressed by Theorem A in terms of p-adic
valuation and obtain the following stronger result. See § 2-H. for definitions, notation and a
few facts on p-adically closed fields and p-adic valuations v (for example, the p-adic rank dv
of v), and see [AK66, PR85] for proofs.

Theorem B. Let k be a p-adically closed field with p-adic valuation v, and suppose that µp ⊂ k.
Let K|k be a field extension with transcendence degree tr.deg(K|k) = 1. Then the following hold.

(1) Let w be a p-adic valuation of K with dw = dv. Then w prolongs v to K and gives rise to
a bouquet of conjugacy classes of liftable sections s′w : Gal(k′|k)→Gal(K ′|K) above w.

(2) Let s′ : Gal(k′|k)→Gal(K ′|K) be a liftable section. Then there exists a unique p-adic
valuation w of K such that dw = dv, and s′ = s′w for some s′w as above.

Remarks.

(1) First, observe that the above assertions do not hold if µp 6⊂ k. Indeed, if µp 6⊂ k, then the
maximal pro-p quotient Gk(p) of Gk is a pro-p free group on [k : Qp] + 1 generators; see,
e.g., [NSW08, Theorem 7.5.11]. From this it follows that all the sections s′ : Gal(k′|k)→
Gal(K ′|K) of pr′K are liftable. Thus, for X with X(k) empty, we have that pr′K has liftable
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sections but that none of these originate from k-rational points of X. (Actually, the same
holds for all curves X as above, even when X(k) is non-empty.)

(2) Nevertheless, in the case where µp is not contained in the base field, assertions similar to
Theorems A and B hold in the following form. Let l|Qp be some finite extension and Y → l a
complete geometrically integral smooth curve with function field L= κ(Y ). Let k|l be a finite
Galois extension with µp ⊂ k. Setting K := Lk, consider the field extensions K ′|K ↪→K ′′|K
and k′|k ↪→ k′′|k as above. Then k′ =K ′ ∩ l and k′′ =K ′′ ∩ l; moreover, K ′|L and K ′′|L, as
well as k′|l and k′′|l, are Galois extensions too, and one gets surjective canonical projections

pr′L : Gal(K ′|L)→Gal(k′|l), pr′′L : Gal(K ′′|L)→Gal(k′′|l).

As above, we will say that a section s′L : Gal(k′|l)→Gal(K ′|L) of pr′L is liftable if there exists a
section s′′L : Gal(k′′|l)→Gal(K ′′|L) of pr′′L which lifts s′L. Then one has the following extensions
of Theorems A and B.

Theorem A0. With the above notation and hypothesis, the following hold.

(1) Every l-rational point y ∈ Y gives rise to a bouquet of conjugacy classes of liftable sections
s′y : Gal(k′|l)→Gal(K ′|L) above y, which is in bijection with H1(Gal(k′|l), Z/p(1)).

(2) Let s′L : Gal(k′|l)→Gal(K ′|L) be a liftable section. Then there exists a unique l-rational
point y ∈ Y such that s′L equals one of the sections s′y defined above.

Theorem B0. Let l be a p-adically closed field with p-adic valuation v, and let L|l be a field
extension with transcendence degree tr.deg(L|l) = 1. Then, in the above notation, the following
hold.

(1) Let w be a p-adic valuation of L with dw = dv. Then w prolongs v to L and gives rise to a
bouquet of conjugacy classes of liftable sections s′w : Gal(k′|l)→Gal(K ′|L) above w.

(2) Let s′L : Gal(k′|l)→Gal(K ′|L) be a liftable section. Then there exists a unique p-adic
valuation w of L such that dw = dv, and s′L equals one of the sections s′w as above.

Notice that Theorem A0 obviously implies the full Galois birational p-adic section conjecture,
but not vice versa; see Koenigsmann [Koe05] for a proof of the latter (among other things), as
well as Remark 7 in this paper.

Indeed, for given Y → l with function field L= κ(Y ) as above, let s :Gl→GL be a section
of the canonical projection GL→Gl.

(a) Consider finite field extensions Li|L with im(s)⊂GLi , and let Yi→ l be a complete smooth
curve with function field Li = κ(Yi). Notice that Yi→ l is geometrically integral.

(b) Consider finite Galois extensions ki|l with µp ⊂ ki, and setKi := Liki. Let φ′i :Gl→Gal(k′i|l)
and ψ′i :GLi →Gal(K ′i|Li) be the canonical projections.

Then s gives rise functorially (in Li and ki) to liftable sections s′i : Gal(k′i|l)→Gal(K ′i|Li)
of the canonical projection pr′i : Gal(K ′i|Li)→Gal(k′i|l) such that for ki ⊆ kj and Li ⊆ Lj , and
thus for Ki ⊆Kj , one has s′i = prji ◦ s′j where prji : Gal(K ′j |Lj)→Gal(K ′i|Li) is the canonical
projection. By Theorem A0, there exists a unique l-rational point yi ∈ Yi(l) such that s′i = s′yi

in
the usual way; and since s′i = prji ◦ s′j , the uniqueness of yi ∈ Yi(l) implies that the canonical
morphism Yj → Yi maps yj ∈ Yj(l) to yi ∈ Yi(l) and that s′yi

= prji ◦ s′yj
. We conclude from

this that if y ∈ Y (l) is the common image of all the points yi ∈ Yi(l) in Y (l), then one has
s= lim←−

i

s′i = lim←−
i

s′yi
= sy.
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As an application of the results and techniques developed here, one can prove the following
fact concerning the p-adic section conjecture for curves. Let k|Qp be a finite extension and X → k
a hyperbolic curve. Then there exists a finite effectively computable family of finite geometrically
Z/p elementary abelian (ramified) covers ϕi :Xi→X, i ∈ I, satisfying:

(i)
⋃
i ϕi(Xi(k)) =X(k), i.e. every k-rational point of X ‘survives’ in at least one of the covers

Xi→X;

(ii) a section s :Gk→ π1(X) can be lifted to a section si :Gk→ π1(Xi) for some i ∈ I if and
only if s arises from a k-rational point x ∈X(k) in the manner described above.

The details of the proof will be given later.
With regard to the proofs of the above theorems, the main technical point is a generalization

of the Tate–Roquette–Lichtenbaum local–global principle for Brauer groups of function fields of
curves over p-adically closed fields, as introduced and studied in [Pop88]. As a result of this
generalization, one is led to analyze the cohomological behavior of Z/p elementary abelian
extension of Henselizations of the function fields under consideration.

2. Generalities

A. Z/p derived series and quotients
Let G be a profinite group. We denote by Gi the derived Z/p series of G; hence, by definition, we
have G1 :=G and Gi+1 := [Gi, Gi](Gi)p for i > 0. We will further set G i :=G1/Gi+1 for i > 0.
Hence, in particular,G′ :=G1/G2 is the maximal Z/p elementary quotient ofG, andG′′ :=G1/G3

is the maximal Z/p elementary meta-abelian quotient of G, i.e. the maximal quotient of G
which is an extension of G′ by some Z/p elementary abelian extension.

One can check without difficulty that mapping every profinite group G to G
i, for i > 0,

defines a functor from the category of all profinite groups onto the category of all pro-p groups
whose derived Z/p series has length no greater than i. In particular, if pr :G→H is a (surjective)
morphism of profinite groups, then the following hold:

(1) pr gives rise canonically to a (surjective) morphism pri :G i→H
i;

(2) every section s :H →G of pr :G→H gives rise to a section si :H i→G
i of pri.

Finally, in the above context, we say that a section s′ :H ′→G
′ of pr′ is liftable if there exists

a section s′′ :H ′′→G
′′ of pr′′ which reduces to s′ or, equivalently, lifts s′.

B. Cohomology and sections
Let G be a profinite group. We endow Z/p with the trivial G-action and let Hn(G, Z/p) be the
cohomology groups of G with values in Z/p. Then, in the notation of the previous subsection,
for all i > 0 we have

H1(G, Z/p) = Hom(G, Z/p) = Hom(G i
, Z/p) = H1(G i

, Z/p),

and for every i the cup product gives rise to a canonical pairing

Hom(G i
, Z/p)×Hom(G i

, Z/p) = H1(G i
, Z/p)×H1(G i

, Z/p) ∪
i

−→H2(G i
, Z/p).

Next, let pr :G→H be a quotient of G, and let pr′ :G′→H
′ and pr′′ :G′′→H

′′ be the
corresponding surjective projections as introduced in the previous subsection.
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Lemma 1. In the above notation, let s′ :H ′→G
′

be a liftable section of pr′ :G′→H
′

and let
Γ⊆G be the preimage of s′(H ′)⊆G′ under the canonical projectionG→G

′
. Then, for characters

χH , ψH ∈Hom(H, Z/p) and the induced characters χΓ, ψΓ ∈Hom(Γ, Z/p), the following are
equivalent:

(i) χH ∪ ψH = 0 in H2(H ′′, Z/p);
(ii) χH ∪ ψH = 0 in H2(H, Z/p);

(iii) χΓ ∪ ψΓ = 0 in H2(Γ, Z/p).

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow from taking the inflation maps coming
from the surjective group homomorphisms Γ→H →H

′′. One proves (iii) ⇒ (i) as follows.
Suppose that χΓ ∪ ψΓ = δ(ϕ) is the co-boundary of some map ϕ : Γ→ Z/p. We claim that ϕ
factors through the canonical projection Γ→H

′′. Indeed, χΓ ∪ ψΓ = δ(ϕ) means that

(χΓ ∪ ψΓ)(g, h) = g ϕ(h)− ϕ(gh) + ϕ(g) = ϕ(h)− ϕ(gh) + ϕ(g) for all g, h ∈ Γ,

where the last equality holds by virtue of the fact that G, and hence Γ, acts trivially on Z/p.
Now, if g or h lies in G2 ⊂ Γ, then we have (χΓ ∪ ψΓ)(g, h) = 0. Equivalently, if g or h lies in
G2 ⊂ Γ, then ϕ(g)− ϕ(gh) + ϕ(h) = 0 and thus, in particular, the restriction of ϕ to G2 is a group
homomorphism to Z/p. Hence the restriction of ϕ to G3 = [G2, G2](G2)p is trivial and, finally, ϕ
factors through Γ/G3 ⊂G′′. Therefore, χG ∪ ψG = 0 in H2(Γ/G3, Z/p). Now let s′′ :H ′′→G

′′ be
a lifting of the section s′, and observe that s′′(H ′′)⊆ Γ/G3. Then the restriction of χG ∪ ψG = 0 to
s′′(H ′′)⊆ Γ/G3 is trivial too, i.e. χH ∪ ψH = 0 in H2(s′′(H ′′), Z/p). Thus, finally, χH ∪ ψH = 0 in
H2(H ′′, Z/p), as claimed. 2

C. Basics from Galois cohomology

Let K be an arbitrary field of characteristic other than p, and let GK be its absolute Galois
group. Further, let GiK and G i

K be, respectively, the derived Z/p series and quotients of GK . We
recall the following fundamental facts.

(a) By Kummer theory, one has a canonical isomorphism K×/p= H1(GK , µp). In particular,
if µp ⊂K, then the absolute Galois group GK acts trivially on µp; hence, upon choosing
some identification ı : µp→ Z/p of trivial GK modules, we get

K×/p= H1(GK , µp) = Hom(Gal(K ′|K), µp)
ı−→Hom(Gal(K ′|K), Z/p).

(b) Let pBr(K) denote the p-torsion subgroup of Br(K). Then pBr(K) = H2(GK , µp)
canonically. Hence, if µp ⊂K, then ı : µp→ Z/p gives rise to an isomorphism

pBr(K) = H2(GK , µp)
ı−→H2(GK , Z/p).

(c) Consider the cup product K×/p ⊗ K×/p ∪−→H2(GK , µp ⊗ µp), (a, b) 7→ χa ∪ χb, which is
actually surjective by the Merkurjev–Suslin theorem. If µp ⊂K, then the isomorphism
ı : µp→ Z/p gives rise to a surjective morphism

K×/p⊗K×/p ∪−→H2(GK , Z/p), (a, b) 7→ χa ∪ χb.

Combining these observations with Lemma 1 above, we deduce the following result. Let K|k
be a regular field extension, and suppose that char(k) 6= p and µp ⊂ k. As in the Introduction, we
consider a maximal Z/p elementary abelian extension K ′|K of K, the corresponding k′ :=K ′ ∩ k
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etc. and the resulting canonical surjective projections

pr′K : Gal(K ′|K)→Gal(k′|k), pr′′K : Gal(K ′′|K)→Gal(k′′|k).

Lemma 2. In the above context, let s′ : Gal(k′|k)→Gal(K ′|K) be a liftable section of pr′K
and let M ⊂K ′ be the fixed field of im(s′) in K ′. Then for any elements a, b ∈ k× and the
corresponding p-cyclic k-algebras Ak(a, b) and AM (a, b), we have that Ak(a, b) is trivial in Br(k)
if and only if AM (a, b) is trivial in Br(M).

D. Hilbert decomposition in elementary Z/p abelian extensions
Let K be a field of characteristic not equal to p that contains µp. Let v be a valuation of K and
let v′ be some prolongation of v to K ′. Let Vv′ , Tv′ and Zv′ with Vv′ ⊆ Tv′ ⊆ Zv′ be, respectively,
the ramification, inertia and decomposition groups of v′|v in Gal(K ′|K). We remark that because
Gal(K ′|K) is commutative, the groups Vv′ , Tv′ and Zv′ depend only on v; therefore we will simply
denote them by Vv, Tv and Zv. Finally, we denote by KZ ⊆KT ⊆KV the corresponding fixed
fields in K ′.

Lemma 3. With the above notation, the following statements hold.

(1) Let Uv := 1 + p2mv. Then KZ contains p
√
Uv and we have KZ =K[ p

√
Uv ], provided that p is

a v-unit. In particular, if w1 and w2 are independent valuations of K, then Zw1 ∩ Zw2 = {1}.
(2) If p 6= char(Kv), then Vv = {1} and K ′v′ = (Kv)′, and hence Gv := Zv/Tv = Gal(Kv′|Kv).

If p= char(Kv), then Vv = Tv, and the residue field K ′v′ contains (Kv)1/p and the maximal
Z/p elementary abelian extension of Kv.

(3) Let L :=Kh
v be the Henselization of K with respect to v. Then L′ = LK ′ is a maximal Z/p

elementary extension of L. Therefore we have Gal(L′|L)∼= Zv canonically.

Proof. (1) Everything is clear, except maybe the assertion concerning the independent valuations
w1 and w2. To prove this, consider an arbitrary x 6= 0. Since w1 and w2 are independent, there
exists y 6= 0 which is arbitrarily w1-close to 1 and arbitrarily w2-close to x. More precisely,
there exists y 6= 0 such that, first, w1(1− y)> 2w1(p) and, second, w2(x− y)> 2w2(p) + w2(x)
or, equivalently, w2(1− y/x)> 2w2(p). But then, by the first assertion of the lemma, we have
p
√
y ∈KZw1 and p

√
y/x ∈KZw2 , hence p

√
x ∈KZw2KZw1 . Since KZw2KZw1 = (K ′)Zw2∩Zw1 and

x ∈K× was arbitrary, we get K ′ ⊆ (K ′)Zw2∩Zw1 . Therefore Zw2 ∩ Zw1 = 1 as claimed.
(2) If p 6= char(Kv), then everything is clear by Kummer theory and general valuation theory.

If p= char(Kv) and p 6= char(K), it follows that char(K) = 0. Recall that by Artin–Schreier
theory, the maximal Z/p elementary abelian extension of Kv is generated by the roots of all the
Artin–Schreier polynomials Y p − Y − a, with a ∈Kv. We show that every such polynomial has
a root in the residue field of some Z/p cyclic extension K[α] with αp = u for some u ∈K. Indeed,
by the general non-sense of Kummer theory versus Artin–Schreier theory, one has the following.

Let Xp − u ∈ Ov[X] be some Kummer polynomial over K. We note that λ := ζp − 1 ∈K,
as µp ⊂K, and recall that p=

∏
0<µ<p(1− ζ

µ
p ). Since 1− ζµp =−λ(1 + · · · ζµ−1

p ) and thus,
in particular, (1 + · · · ζµ−1

p )≡ µ (mod λ), we finally get p≡ λp−1(p− 1)!≡−λp−1 (mod λp),
because (p− 1)!≡−1 (mod p) by Wilson’s theorem. Hence, upon setting X := λX0 + 1 and
u := λpu0 + 1, the equation Xp = u is equivalent to the equation Xp

0 −X0 + λf(X0) = u0, where
f(X0) ∈ Ov[X0] is an explicitly computable polynomial. Therefore, if ℘= Frob− id is the Artin–
Schreier operator and u0 ∈Kv\℘(Kv), then v is totally inert in Ku :=K[p

√
u ]. And, if w is the

unique prolongation of v to Ku, then the residue field of w is Kuw = (Kv)[β] with βp − β = u0.
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By reversing the process above, we can see that each Artin–Schreier extension of Kv is
obtained by reducing a properly chosen Kummer Z/p extension of K.

(3) First, if v has rank one, then K is dense in L :=Kh
v . Hence, given û ∈ OL, there exists

u ∈ OK such that û= u(1 + η) in Kh with vh(η)> 2vh(p). But then 1 + η is a pth power in Kh

by Hensel’s lemma, and hence the roots of Xp − u and the roots of Xp − û generate the same
field extension of Kh. To treat the general case, one uses induction on the rank of the valuation
v and then ‘takes limits’. 2

E. Elementary Z/p abelian extensions of Henselian fields

In this subsection, we will prove a technical result concerning elementary Z/p abelian extensions
of Henselian fields. The context is as follows. Let L be a Henselian field with respect to a
valuation w. Suppose that char(L) = 0 and char(Lw) = p > 0, and that µp ⊂ L. Further, let
L′ = L[ p

√
L×] be the maximal elementary Z/p abelian extension of L and Gal(L′|L) := Gal(L′|L)

its Galois group. Since w is Henselian, w has a unique prolongation to L′, which we again denote
by w.

Lemma 4. In the above context, suppose that w is a rank-one valuation. Let Λ|L be a sub-
extension of L′|L such that L′|Λ is a finite extension. Then the following hold.

(1) L′w | Λw is finite, and Λw contains (Lw)1/p.

(2) If Lw is not finite, or if wL 6≈ Z, then for every u ∈ L there exists t ∈ L× which satisfies
Lt := L[ p

√
t ]⊆ Λ and w(u) ∈ p · wLt ⊆ p · w(Λ). Hence wL⊆ p · wΛ.

(3) In particular, if wL 6⊆ p · wΛ, then wL≈ Z and Lw is finite.

Proof. The proof is inspired by [Pop88, Korollar 2.7] and uses in an essential way [Pop88,
Lemma 2.6]. Let O and m be, respectively, the valuation ring and valuation ideal of w. Then,
by [Pop88, Lemma 2.6], one has exact sequences of the form

1→O×/p→ L×/p→ w(L)/p→ 1 and 1→ (1 + m)/p→O×/p→ (Lw)×/p→ 1. (∗)

By Kummer theory (note that µp ⊂ L by hypothesis), one has Λ = L[ p
√

∆] for a subgroup ∆⊂ L×
such that ∆ contains the pth powers of all the elements of L× and L×/∆ is canonically Pontrjagin
dual (hence non-canonically isomorphic) to Gal(L′|Λ). In particular, L×/∆ = (L×/p)/(∆/p) is a
finite elementary Z/p abelian group. Hence, from the above exact sequences (∗) it follows that
upon setting ∆0 := ∆ ∩ O× and ∆1 := ∆ ∩ (1 + m) we have that (1 + m)/∆1 and O×/∆0 are
finite groups; moreover, if ∆w denotes the image of ∆0 in Lw×, then Lw×/∆w is a finite group.

(1) First, if Lw is finite, then Lw is perfect and thus there is nothing to prove. Now suppose
that Lw is infinite. Then since Lw×/∆w is finite, it follows that ∆w is infinite too. Hence, for
every a ∈ Lw, there exist x 6= y in ∆w such that a− x, a− y 6= 0 and (a− x)∆w = (a− y)∆w.
Equivalently, there exists z ∈∆w such that a− x= z(a− y) and hence a= (x− yz)/(1− z). On
the other hand, since x, y, z ∈∆w, one has x1/p, y1/p, x1/p ∈ (∆w)1/p ⊂ Λw and thus a1/p ∈ Λw.
Since a was arbitrary, we get (Lw)1/p ⊆ Λw as claimed.

(2) From the discussion above it follows that (1 + m)/∆1 is finite. Let 1 + aj , 1 6 j 6 n, be
representatives for (1 + m)/∆1.

Case (i). w is not discrete on L. Then for every u ∈ L× there exists some u1 ∈ L× such
that 0<w(uup1)<w(p), w(aj) for all j = 1, . . . n. Since 1 + uup1 ∈ 1 + m, there exists j and
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some t ∈∆1 such that

1 + uup1 = t(1 + aj).

Set t= 1 + a. Since 0<w(uup1)<w(p), w(aj), it immediately follows from the ultra-metric
triangle inequality that w(uup1) = w(a). On the other hand, since t ∈∆, one has t= θp for
some θ ∈ Λ, i.e. Lt := L[ p

√
t ] = L[θ]⊆ Λ. Hence 1 + a= θp and, upon setting θ = 1 + b, one gets

1 + a= (1 + b)p. From this we obtain w(b)> 0. Since w(a) = w(uup1)<w(p) and 1 + a= (1 + b)p,
the ultra-metric triangle inequality implies that w(a) = w(bp) in wLt. Thus one has

w(u) + pw(u1) = w(uup1) = w(a) = p · w(b),

and hence w(u) = pw(b)− pw(u1) ∈ p · wLt as claimed.

Case (ii). w is discrete on L. Suppose that Lw is not finite. Let m and O, with m⊂O ⊂ L, be
the valuation ideal and valuation ring of w in L, respectively. Since L contains µp and p > 2, it
follows that we have the inclusions (1 + m)p ⊆ (1 + mp)⊆ 1 + m2. After choosing a uniformizing
parameter π of O, one gets in the usual way an isomorphism of groups

φ : (1 + m)/(1 + m2)→ Lw+, 1 + xπ 7→ x (mod m).

Hence (1 + m)/(1 + m)p is infinite, because it has as its homomorphic image the infinite
group (1 + m)/(1 + m2)∼= Lw+. Next, recall that (1 + m)/∆1 is a finite group. Therefore
φ(1 + m)/φ(∆1) = Lw+/φ(∆1) is finite too. Hence there exist (infinitely many) elements t :=
1 + a ∈∆1 with a ∈ πO×. For any such t ∈∆1, we have t= θp for some θ ∈ Λ; hence we have, as
above, Lt = L[θ]. Setting θ := 1 + b, we have 1 + a= (1 + b)p. Equivalently,

a=
p−1∑
i=1

(
p

i

)
bi + bp = pbε+ bp

for some w-unit ε ∈ Λ. Since π divides p in O, one has w(p b ε)>w(π), and therefore w(π) =
w(a) = w(bp) = p · w(b) in wΛ. Since wL= Z w(π), it follows that w(u)⊆ p · wLt, as claimed. 2

F. Inertial cohomology

In this subsection, we recall a well-known result concerning the cohomology of the maximal
inert extension of a Henselian field (which goes back to Witt). The situation is as follows.
Let L be a Henselian field with respect to a valuation w, let L1|L be a finite unramified Galois
extension, and let G := Gal(L1|L) be the Galois group of L1|L. Let OL ⊂OL1 and mL ⊂mL1

be the corresponding valuation rings and valuation ideals, respectively. As remarked in [Pop88,
Lemma 2.2], the group of principal units 1 + mL1 is G-cohomologically trivial, and there exists
an exact sequence of cohomology groups

0→H2(G, L1w
×)→H2(G, L×1 )→H1(G, (Q⊗ wL)/wL)→ 0,

so that we have an exact sequence of the form

0→ Br(L1w|Lw)→ Br(L1|L)→Hom(G, (Q⊗ wL)/wL)→ 0. (†)

We also remark that if M |L is some algebraic extension, linearly disjoint from L1, say, and
M1 =ML1 is the compositum (in some fixed algebraic closure), then the above exact sequence
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gives rise to a commutative diagram of the form

0 // Br(L1w|Lw)

res

��

// Br(L1|L)

res

��

// Hom(G, (Q⊗ wL)/wL)

res

��

// 0

0 // Br(M1w|Mw) // Br(M1|M) // Hom(G, (Q⊗ wM)/wM) // 0

where the left two vertical maps are the canonical restriction maps and the rightmost one is
induced by the canonical embedding wL ↪→ wM . We will use these observations to prove the
following result.

Lemma 5. Let L be Henselian with respect to a rank-one valuation w and satisfy the conditions
that char(L) = 0, µp ⊂ L and char(Lw) = p > 0. Let L1|L be a p-cyclic unramified sub-extension
of L′|L, so that G∼= Z/p, and let Λ|L be a sub-extension of L′|L such that L′|Λ is finite and Λ|L
and L1|L are linearly disjoint. Suppose that the restriction map

res : Br(L1|L)→ Br(Λ1|Λ)⊆ Br(Λ)

is non-trivial. Then wL≈ Z and Lw|Fp is a finite extension, i.e. L is a discrete-valued field with
finite residue field of characteristic p.

Proof. By way of contradiction, suppose that the conclusion of the lemma does not hold.

Since G= Gal(L1|L) has order p, it follows that L1 = L[ p
√
a ] for some a ∈ L, and

that Br(L1|L) consists of cyclic algebras of index p of the form AL(a, u) with u ∈ L×. In
particular, Br(L1|L) is a torsion group of exponent p. Further, since L1w|Lw is also cyclic of
degree p, it follows that Br(L1w|Lw) is generated by cyclic algebras of index p and, moreover,
every such algebra from Br(L1w|Lw) is also split by some purely inseparable extension of degree p
of Lw. Therefore, the restriction map Br(L1w|Lw) res−→Br(Lw1/p) is trivial. On the other hand,
by Lemma 4(1), we have Lw1/p ⊆ Λw. Hence the restriction map

Br(L1w|Lw) res−→Br(Λ1w|Λw)⊆ Br(Λw) (∗)

is trivial. Therefore, if AL(a, u) ∈ Br(L1|L) has non-trivial image in Br(Λ1|Λ), then by the exact
sequence (†) and the above diagram applied with M := Λ, we get that AL(a, u) does not lie in
the image of Br(L1w|Lw) in Br(L1|L). Equivalently, AL(a, u) is ramified, i.e. w(u) is non-trivial
in wL/p. Since we have assumed that the conclusion of Lemma 5 does not hold, by Lemma 4(2)
there exists Lt := L[ p

√
t ]⊆ Λ with t ∈ L× such that w(u) ∈ p · wLt. But then, by the fundamental

(in)equality, we have

p= [Lt : L] > [Ltw : Lw] · (wLt : wL) > [Ltw : Lw] · p > p.

Therefore, the above inequalities are actually equalities, and [Ltw : Lw] = 1, i.e. Ltw = Lw. Also,
Lt,1w = L1w, where Lt,1 := LtL1 is the compositum of Lt and L1 inside Λ1.

Hence, from the above commutative diagram applied to M := Lt, it follows that the image
ALt(a, u) of AL(a, u) in Br(Lt,1|Lt) actually lies in Br(Lt,1w|Ltw) = Br(L1w|Lw). But then the
image of ALt(a, u) in Br(Λ1|Λ) actually lies in the image of Br(Lt,1w|Ltw) = Br(L1w|Lw) in
Br(Λ1w|Λw). On the other hand, the image of Br(L1w|Lw) in Br(Λ1w|Λw) is trivial by the
discussion around (∗) above. Therefore AΛ(a, u) is trivial in Br(Λ1|Λ), which is a contradiction. 2
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G. Gal(k′1|k1) and Br(k1)
Let k|Qp be a finite extension with µp ⊂ k. Let k1|k be an arbitrary (not necessarily Galois
and not necessarily finite) algebraic extension and let [k1 : k] denote its degree (as a super-
natural number). As usual, let k′1|k1 be a maximal Z/p elementary extension of k1 and
Gal(k′1|k1) := Gal(k′1|k1) its Galois group.

Lemma 6. In the above context, the following hold.

(1) The restriction map pBr(k)→ Br(k1) is injective if and only if [k1 : k] is not divisible by p.

(2) Suppose that (p, [k1 : k]) = 1. Then Gal(k′1|k1)∼= (Z/p)ek1
+2, where ek1 := [k1 : Qp].

Proof. (1) After identifying Br(k) with Q/Z via the invariant invk : Br(k)→Q/Z, the restriction
Br(k)→ Br(k1) becomes multiplication by [k1 : k]. Hence pBr(k)→ Br(k1) is injective if and only
if [k1 : k] is not divisible by p.

(2) If k1|k is finite, then the assertion follows from local class field theory. Furthermore, the
canonical projection Gal(k′1|k1)→Gal(k′|k) is surjective, as [k1 : k] is prime to p. Finally, by
taking limits over all the finite sub-extensions ki|k of k1|k, the assertion follows. 2

H. p-adic valuations and formally p-adic fields
We recall a few basic facts about p-adic valuations and (formally) p-adically closed fields; see
[AK66, PR85] for more details.

(1) A valuation v of a field k is called (formally) p-adic if the residue field kv is a finite field
Fq with q = pfv and the value group vk has a minimal positive element 1v such that v(p) = ev · 1v
for some natural number ev > 0. The number dv := evfv is called the p-adic rank (or degree) of
the p-adic valuation v. Note that a field k carrying a p-adic valuation v must necessarily have
char(k) = 0, as v(p) 6=∞, and char(kv) = p.

(2) Let v be a p-adic valuation of k with valuation ring Ov. Then O1 :=O[1/p] is the valuation
ring of the unique maximal proper coarsening v1 of v, which is called the canonical coarsening
of v. Note that upon setting k0 := kv1 and v0 = v/v1, the corresponding valuation on k0, we have
that v0 is a p-adic valuation of k0 with ev0 = ev and fv0 = fv; hence dv0 = dv and, moreover, v0

is a discrete valuation of k0. In particular, the following properties hold.

(a) v has rank one if and only if v1 is the trivial valuation, and this is true if and only if v = v0.

(b) Giving a p-adic valuation v of a field k of p-adic rank dv = evfv is equivalent to giving a
place p of k with values in a finite extension l of Qp such that the residue field kp of p is
dense in l and l|Qp has ramification index ev and residual degree fv.

(c) If vi < v is a strict coarsening of v, then vi 6 v1 and the quotient valuation v/vi on the residue
field kvi is a p-adic valuation with ev/vi

= ev, fv/vi
= fv and thus dv/vi

= dv. (Actually,
(kvi)(vi/v1)∼= kv1 and (kvi)(vi/v)∼= kv canonically.)

(3) Let v be a p-adic valuation of k and l|k a finite field extension, and denote by w|v the
prolongations of v to l. Then all the w are p-adic valuations. Moreover, the fundamental equality
holds: [l : k] =

∑
w|v e(w|v)f(w|v), where e(w|v) and f(w|v) are, respectively, the ramification

index and the residual degree of w|v. Further, if w1 is the canonical coarsening of w and w0 =
w/w1 is the canonical quotient on the residue field lw1, then by general decomposition theory of
valuations one has e(w|v) = e(w1|v1)e(w0|v0) and f(w|v) = f(w0|v0); moreover, ew = ev e(w0|v0)
and fw = fv f(w|v), thus dw = dve(w0|v0)f(w|v).
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(4) A field k is called (formally) p-adically closed if k carries a p-adic valuation v such that
for every finite extension l|k one has that if v has a prolongation w to l with dw = dv, then l = k.
There is a characterization of the p-adically closed fields as follows. For a field k endowed with
a p-adic valuation v and canonical coarsening v1, the following are equivalent:

(i) k is p-adically closed with respect to v;

(ii) v is Henselian and v1k is divisible (possibly trivial);

(iii) v1 is Henselian and v1k is divisible (possibly trivial), and the residue field k0 := kv1 is
relatively algebraically closed in its completion k̂0 (which is itself a finite extension of Qp).

We also note that if k is p-adically closed with respect to some p-adic valuation v, then the
valuation ring of v is completely determined by k. In particular, for every field k there exists
at most one valuation v (up to equivalence of valuations) such that k is p-adically closed with
respect to v.

(5) For every field k endowed with a p-adic valuation v, there exist p-adic closures k̃ and ṽ
such that dṽ = dv. Moreover, the space of the isomorphy classes of p-adic closures of k and v

has a concrete description as follows. Let v1 be the canonical coarsening of v and k̂0|Qp the
completion of the residue field of k0 = kv1. Then there exists a canonical exact sequence of
the form 1→ Iv1 −→Dv

pr−→G
k̂0 → 1, and the space of isomorphy classes of p-adic closures of k

and v is in bijection with the space of sections of pr and thus with H1
cont(Gk̂0 , Iv1).

(6) If L is p-adically closed with respect to the p-adic valuation w and l ⊆ L is a subfield which
is relatively closed in L, then l is p-adically closed with respect to v := w|l and v and w have equal
p-adic ranks; also, L and l are elementarily equivalent. Therefore, the elementary equivalence
class of a p-adically closed field k is determined by both the absolute subfield kabs := k ∩Q of k
and the completion k̂0 = k̂abs. Note that the p-adic valuation of kabs is discrete and that kabs

is actually the relative algebraic closure of Q in k0 := kv1. Further, L= Ll = LQ. Therefore, if
L|l is an extension of p-adically closed fields of the same rank, then the canonical projection
GL→Gl is an isomorphism.

(7) Finally, let (L, w)|(l, v) be an extension of p-adically closed fields with dw = dv. Let k|l
be some Galois extension, and set K := Lk. Then, using the notation from the introduction, the
following canonical projections are isomorphisms:

pr′L : Gal(K ′|L)→Gal(k′|l), pr′′L : Gal(K ′′|L)→Gal(k′′|l). (†)

Remark 7. Let l,v be a finite field extension of Qp, and let L= κ(Y ) be the function field
of a complete smooth curve Y → l. Let s :Gl→GL be a section of prL :GL→Gl, and let L̃
be the fixed field of im(s) in L. Then L= L̃l = L̃lQ = L̃Q, and GL̃→Gl→Glabs are all
isomorphisms. Hence L̃ is p-adically closed by [Pop88, assertion E.11] and elementarily equivalent
to labs, and hence to l, by paragraph (6) above; moreover, if w̃ is the valuation of L̃, then
dw̃ = dv and v = w̃|l. Thus w := w̃|L is a p-adic valuation of L with dw = dv and w|l = v. Hence,
by statement (2)(b) above, the canonical coarsening w1 of w defines an l-rational place of L|l,
and thus an l-rational point y ∈ Y (l), such that im(s) is contained in a decomposition group Dy

above y. Therefore, recalling that distinct decomposition groups above l-places of L|l have trivial
intersection (by a theorem of F. K. Schmidt), it follows that y and Dy are uniquely determined
by im(s). This proves the birational p-adic section conjecture for Y → l; see [Koe05] for more
details.
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I. A local–global principle for the Brauer group
Here we recall the following result, which was proved in [Pop88, Theorem 4.5] and uses in an
essential way the results of Tate [Tat59], Roquette [Roq66] and Lichtenbaum [Lic69].

Fact. Let k be a p-adically closed field, and let M |k be a field extension of transcendence degree
tr.deg(M |k) 6 1. Further, let w|v denote the prolongations of the p-adic valuation v of k to M ,
and for each w let Mh

w be a Henselization of M with respect to w. Then the following canonical
exact sequence of Brauer groups is exact:

0→ Br(M)→
∏
w|v

Br(Mh
w).

We will use a special form of the above fact which reads as follows. Let w be a prolongation
of v to M and let Ow and mw be its valuation ring and valuation ideal, respectively. Further, let
Ow1 :=Ow[1/p] be the coarsening of Ow obtained by inverting the prime number p, and denote
by w1 the corresponding coarsening of w. Then w1 is a prolongation to M of the canonical
coarsening v1 of v. Setting M0 :=Mw1 and w0 := w/w1, it follows from general valuation theory
that M0|k0 is a field extension with tr.deg(M0|k0) 6 1 and that w0 is a prolongation of v0 to M0.
For every prolongation w|v, the following are equivalent:

(i) w0 is a rank one valuation;

(ii) the minimal prime ideal of Ow which contains the rational prime number p is the valuation
ideal mw.

In particular, for every prolongation w|v of v to M there exists a unique coarsening w̃ such
that w̃ is a prolongation of v to M and w̃ satisfies the equivalent conditions (i) and (ii) above.
Indeed, for any given w|v, let m̃ be the minimal prime ideal of Ow which contains the prime
number p. Then, by general valuation theory, the localization Õ := (Ow)m̃ is a valuation ring
with valuation ideal m̃, and its valuation w̃ is the unique coarsening of w satisfying the equivalent
conditions (i) and (ii) above.

Fact 8. Let k be a p-adically closed field, and let M |k be a field extension of transcendence
degree tr.deg(M |k) 6 1. Let W be the set of all the prolongations w|v of v to M that satisfy the
equivalent conditions (i) and (ii) above. Then the following canonical exact sequence of Brauer
groups is exact:

0→ Br(M)→
∏
w∈W

Br(Mh
w).

Proof. For a non-trivial division algebra A over M , let w|v be a prolongation such that, writing
Mh
w for the Henselization of M with respect to w, one has AMh

w
6= 0 in Br(Mh

w). Now let w̃ be
the unique coarsening of w such that w̃ ∈W. Then, since w̃ is a coarsening of w, it follows that
Mh
w contains a Henselization Mh

w̃ of M with respect to w̃. On the other hand, since Mh
w̃ ⊆Mh

w

and AMh
w
6= 0 in Br(Mh

w), we have that AMh
w̃
6= 0 in Br(Mh

w̃). 2

3. Proof of Theorem B

To prove assertion (1), let K̃, w̃ be a p-adic closure of K, w, and let k̃, ṽ be the relative algebraic
closure of k in K̃ endowed with the restriction of w̃ to k̃. Then dṽ = dw̃ = dw. Since dv = dw by
hypothesis, we get dṽ = dv and hence k̃ = k. We conclude by applying relation (†) from § 2-H.,
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paragraph (7), with l := k and L := K̃, and taking into account the fact that the isomorphism
Gal(K̃ ′′|K̃)→Gal(k′′|k) factors through Gal(K ′′|K)→Gal(k′′|k) and thus gives rise to a liftable
section of Gal(K ′|K)→Gal(k′|k).

To prove assertion (2), let s′ : Gal(k′|k)→Gal(K ′|K) be a liftable section and let M ⊂K ′
be the fixed field of im(s′). Consider a, b ∈ k such that k1 := k[ p

√
a] is the unique unramified

extension of degree p of k and the p-cyclic algebra Ak(a, b) is non-trivial in Br(k) or, equivalently,
χa ∪ χb 6= 0 in H2(Gk, Z/p). Then, by Lemma 2, AM (a, b) is non-trivial in Br(M). Hence, from
Fact 8, it follows that there exists some prolongation w ∈W of v to M such that, writing Λ :=Mh

w

for the Henselization of M with respect to w, one has AΛ(a, b) 6= 0 in Br(Λ). With an abuse of
notation, we will write w for the Henselian prolongation of w to Λ and so on.

For w as above, let L :=Kh
w ⊆ Λ denote the (unique) Henselization of K with respect to

(the restriction of) w which is contained in Λ. Then the compositum LM ⊆ Λ is Henselian with
respect to w, hence we must have LM = Λ. Note that L′ =K ′L by Lemma 3(3), and K ′|M
is finite because im(s′) is finite and M = (K ′)im(s′). We conclude that L′ = LK ′ is finite over
Λ = LM ; also, AΛ(a, b) 6= 0 in Br(Λ) implies AL(a, b) 6= 0 in Br(L), as L⊂ Λ.

Lemma 9. The valuation w is a p-adic valuation of L.

Proof. As in the discussion above, let w1 and v1 be, respectively, the canonical coarsenings of w
and v, i.e. the valuations with valuation rings Ow[1/p] and Ov[1/p], respectively. We denote the
corresponding residue fields by k0 := kv1, L0 := Lw1 and Λ0 := Λw1; recall also that v0 := v/v1 on
k0 and w0 := w/w1 on L0 and Λ0 are rank-one valuations (since w ∈W). Note that the following
hold.

(a) w1 prolongs v1 to L and Λ, and w0 prolongs v0 to L0 and Λ0, as w prolongs v to L.
(b) w1 and v1, as well as w0 and v0, are Henselian because w and v are.
(c) L′w1|Lw1 is the maximal Z/p elementary abelian extension of L0 = Lw1 by Lemma 3(2),

hence L′w1 equals the maximal Z/p elementary abelian extension L′w1 = L′0 of L0.
(d) Further, since L′|Λ is finite by the discussion above, it follows that L′w1|Λw1 is finite by

the fundamental inequality. Since L′w1 = L′0 and Λw1 = Λ0, we get that L′0|Λ0 is finite.

Recall the v-unramified extension k1 := k[ p
√
a] with Gal(k1|k) =:G defined above. We set

Λ1 := Λk1 and remark that Λ1|Λ is a w-unramified cyclic extension with Galois group canonically
isomorphic to G. Moreover, since k1|k is v-unramified, k1|k is also v1-unramified, as v1 is a
coarsening of v. Correspondingly, L1|L is w1-unramified. Let k01 := k1v1 and Λ01 := Λ1w1 be the
corresponding residue fields. Observe that k01|k0 is a v0-unramified cyclic extension with Galois
group canonically isomorphic to G; correspondingly, Λ01|Λ0 is a w0-unramified cyclic extension
with Galois group canonically isomorphic to G.

We next consider the resulting commutative diagram, shown below, of Brauer/cohomology
groups deduced from the extension of valued fields (Λ, w1)|(k, v1) and the corresponding residue
fields, as discussed in §§ 1 and 2-F.

0 // Br(k01|k0)

res

��

// Br(k1|k)

res

��

// Hom(G, (Q⊗ v1k)/v1k)

res

��

// 0

0 // Br(Λ01|Λ0) // Br(Λ1|Λ) // Hom(G, (Q⊗ w1Λ)/w1Λ) // 0

We recall that v1k is divisible, hence Q⊗ v1k = v1k and therefore (Q⊗ v1k)/v1k = (0). Thus
we deduce that Br(k01|k0)→ Br(Λ01|Λ0)⊆ Br(Λ0) is non-trivial.
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Now let us set L1 := Lk1 and write L01 := L1w1. Then, reasoning as above, we get that L1|L is
w-unramified and hence w1-unramified. Furthermore, L01|L0 is a w0-unramified extension with
Galois group canonically isomorphic to G, and it is obvious that Br(k01|k0)→ Br(Λ0) factors
through Br(L01|L0). Therefore Br(L01|L0)→ Br(Λ0) is non-trivial.

By Lemma 5 applied to L0 endowed with the Henselian rank-one valuation w0, the w0-
unramified extension L01|L0 and the extension Λ0|L0 such that L′0|Λ0 is finite, we get that w0 is
discrete and has finite residue field (of characteristic p, as w0 prolongs v0). Equivalently, w is a
(Henselian) p-adic valuation of L, as claimed. 2

Lemma 10. The p-adic valuation w from Lemma 9 has p-adic rank equal to the p-adic rank of v
and satisfies im(s′)⊆ Zw.

Proof. The proof is a refinement of the arguments in the proof of the previous lemma. As
remarked there, the canonical restriction map

res : Br(k01|k0)→ Br(L01|L0)→ Br(Λ0)

is non-trivial. Since completion does not change the inertial cohomology, without loss of generality
we can replace k0 ⊆ L0 ⊆ Λ0 by the corresponding sequence of completions k̂0 ⊆ L̂0 ⊆ Λ̂0, all of
which are finite extensions of Qp, and thus deduce that

res : Br(k̂01|k̂0)→ Br(L̂01|L̂0)→ Br(Λ̂0)

is non-trivial. But then, from Lemma 6, it follows that [Λ̂0 : k̂0] is prime to p and therefore
[Λ0 : k0] = [Λ̂0 : k̂0] is prime to p. Hence, from [Λ0 : k0] = [Λ0 : L0] · [L0 : k0] it follows that both
[L0 : k0] and [Λ0 : L0] are prime to p. On the other hand, Λ0|L0 is a sub-extension of the Z/p
elementary abelian extension L′0|L0. Thus, finally, Λ0 = L0.

Now recall that M = (K ′)im(s′) is the fixed field of im(s′) = s′(Gal(k′|k)) in K ′; furthermore,
L′ = LK ′ and Λ =ML inside L′, by the discussion at the beginning of the proof. From this we
deduce the following sequence of inequalities:

[k′ : k] = |Gal(k′|k)|= [K ′ :M ] > [LK ′ : LM ] = [L′ : Λ]. (∗)
Moreover, because k is p-adically closed, and hence prk : Gal(k′|k)→Gal(k′0|k0) is an
isomorphism, one has [k′ : k] = [k′0 : k0], and by the fundamental inequality we have [L′ : Λ] >
[L′w1 : Λw1]. On the other hand, we have L′w1 = L′0 and Λw1 := Λ0, and Λ0 = L0 by the remarks
above. Thus the above sequences of inequalities can be extended as follows:

[k′0 : k0] = [k′ : k] = [K ′ :M ] > [LK ′ : LM ] = [L′ : Λ] > [L′w1 : Λw1] = [L′0 : L0]. (∗∗)

Next, observe that by Lemma 6(2) we have [k′0 : k0] = pek0 , where ek0 := [k̂0 : Qp], and
[L′0 : L0] = peL0 , with eL0 := [L̂0 : Qp]. Hence the inequality (∗∗) above implies ek0 > eL0 . On the
other hand, k0 ⊆ L0 implies ek0 6 eL0 . Hence ek0 = eL0 and k̂0 = L̂0. Equivalently, w is a p-adic
valuation having p-adic rank equal to

dw = [L̂0 : Qp] = [k̂0 : Qp] = dv

and hence equal to the p-adic rank of v. Moreover, because of this, all the inequalities in the
formulas (∗) and (∗∗) above are actually equalities. Therefore [K ′ :M ] = [LK ′ : LM ], and
the restriction map Gal(L′|L) = Gal(L′|L)→ Zw ⊂Gal(K ′|K), which maps Gal(L′|L) isomor-
phically onto Zw by the fact that L′ =K ′L, defines an isomorphism

Gal(L′|Λ)→Gal(K ′|M) = s′(Gal(k′|k)).

Equivalently, im(s′)⊆ Zw, as claimed. 2
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Coming back to the proof of Theorem B, we have the following. Let M ⊆K ′ be the fixed
field of im(s′) in K ′; then there exists a p-adic valuation w of M such that w prolongs v to M
and has p-adic rank dw equal to the p-adic rank dv of v; moreover, im(s′) is contained in the
decomposition group Zw of w in Gal(K ′|K).

Remark 11. The precise structure of Zw can be deduced as follows. First, let w1 be the
canonical coarsening of w and let Tw1 and Zw1 with Tw1 ⊂ Zw1 be, respectively, the inertia and
decomposition groups above w1 in Gal(K ′|K). Then Zw = Zw1 , and pr′K : Gal(K ′|K)→Gal(k′|k)
gives rise to an exact sequence

1→ Tw1 → Zw1

pr′
K−→Gal(k′|k)→ 1

such that s′(Gal(k′|k))⊆ Zw1 = Zw is a complement of Tw1 . If Tw1 is non-trivial, then Tw1
∼= µp

as a Gal(k′|k)-module, and thus Tw1
∼= Z/p non-canonically as a Gal(k′|k)-module.

Lemma 12. The p-adic valuation w from Lemma 10, which satisfies im(s′)⊆ Zw, is unique.

Proof. Consider p-adic valuations w1 and w2 such that im(s′)⊂ Zwi for i= 1, 2. We claim
that w1 = w2. Indeed, let w be the maximal common coarsening of w1 and w2. By way of
contradiction, suppose that w < w1, w2. Then the valuations w1/w and w2/w are independent
p-adic valuations on Kw, both of which prolong the p-adic valuation of the p-adically closed
field kw. Further, from Lemma 3(2), it follows that K ′w is the maximal Z/p elementary abelian
extension of Kw; moreover, since im(s′)⊂ Zwi for i= 1, 2, general decomposition theory for
valuations gives that s′w(Gal(k′|k))⊂ Zwi/w for i= 1, 2. On the other hand, by the construction
of w, we have that w1/w and w2/w are independent valuations of Kw. However, since w1/w
and w2/w are independent, it follows from Lemma 3(2) that Zw1/w ∩ Zw2/w is trivial. This is a
contradiction, because im(s′w)⊂ Zwi/w for i= 1, 2. 2

The proof of Theorem B is thus complete.

4. Proof of Theorem A

The following stronger assertion holds (from which Theorem A follows immediately).

Theorem 13. Let k|Qp be a finite extension containing the pth roots of unity, and let k0 ⊆ k
be a subfield which is relatively algebraically closed in k. Let X0 be a complete smooth curve
over k0, and let K0 = k0(X) be the function field of X0.

(1) Every k-rational point x ∈X0 gives rise to a bouquet of conjugacy classes of liftable sections

s′x :G′k0 →G
′
K0

above x.

(2) Let s′ :G′k0 →G
′
K0

be a liftable section. Then there exists a unique k-rational point x ∈X0

such that s′ equals one of the sections s′x mentioned above.

Proof. (1) Let v be the valuation of k. Notice that, by § 2-H.(b), there exists a bijection from the
p-adic valuations w of κ(X0) with dw = dv to the k-rational points x of X0 which sends each w
to the center x of the canonical coarsening w1 on X =X0 ×k0 k. We conclude by applying
Theorem B(1).

(2) Since k0 ⊆ k is relatively algebraically closed, k0 is p-adically closed. Let v be the valuation
of k and of all subfields of k. Since k0 is p-adically closed, we can apply Theorem B and get that
for every section s′ :G′k0 →G

′
K0

, there exists a unique p-adic valuation w of K0 which prolongs v
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to K0 and has p-adic rank equal to the p-adic rank of v, such that s′ is a section above w. Let
w1 be the canonical coarsening of v. Then we have the following two cases.

Case 1. The valuation w1 is trivial.

Then w is a discrete valuation of K that prolongs v to K and has the same residue field and
same value group as v. Equivalently, the completions k̂0 and K̂0 are equal, and hence equal to k.
Therefore w is uniquely determined by the embedding ıw : (K0, w) ↪→ (k, v). In geometric terms,
ıw defines a k-rational point x of X0 and so on.

Case 2. The valuation w1 is not trivial.

In this case w1 is a k0-rational place of K0, hence it defines a k0-rational point x0 of X0, and
hence a k-rational point x of X0, and so forth. 2

5. Proof of Theorem B0

First, the proof of assertion (1) is identical to the proof of Theorem B(1), so we omit it. As for
assertion (2), let s′L : Gal(k′|l)→Gal(K ′|L) be a liftable section of the canonical projection pr′L :
Gal(K ′|L)→Gal(k′|l). Then the restriction of s′L to Gal(k′|k)⊆Gal(k′|l) gives rise to a liftable
section s′ : Gal(k′|k)→Gal(K ′|K) of pr′K : Gal(K ′|K)→Gal(k′|k). Hence, by Theorem B, there
exists a unique p-adic valuation w1 of K which prolongs the p-adic valuation vk of k to K and
has dw1 = dvk

and s′ = sw1 in the usual way. Let w = w1|L be the restriction of w1 to L. Then w
prolongs the valuation v of l to L. We claim that w1 is the unique prolongation of w to K.
Indeed, let w2 := w1 ◦ σ0 with σ0 ∈Gal(k|l) be a further prolongation of w to K. If (wi)′ is a
prolongation of wi to K ′ for i= 1, 2 and σ ∈ im(s′L) is a preimage of σ0, then (w2)′ := (w1)′ ◦ σ
is a prolongation of w2 to K ′. Therefore, if Zw1 ⊂Gal(K ′|K) is the decomposition group above
w1, then Zw2 := σZw1σ−1 is the decomposition group above w2. On the other hand, im(s′)⊆ Zw1

by Theorem B (or, more precisely, by Lemma 10 in the proof of Theorem B). Since σ ∈ im(s′L)
and Gal(k′|k) is a normal subgroup of Gal(k′|l), we have that im(s′) is normal in im(s′L), and
it follows that σ(im(s′))σ−1 = im(s′). Hence im(s′)⊆ Zw1 ∩ Zw2 . But then, by Theorem B (or,
more precisely, by Lemma 12 in the proof of Theorem B), we must have w1 = w2. Equivalently,
im(s′L) is contained in Zw ⊂Gal(K ′|L). So we finally conclude that dw = dv as claimed.

6. Proof of Theorem A0

The following stronger assertion holds (from which Theorem A0 follows immediately).

Theorem 14. Let l|Qp be a finite extension. Let l0 ⊂ l be a relatively algebraically closed
subfield and k0|l0 a finite Galois extension with µp ⊂ k0. Let Y0 be a complete smooth
geometrically integral curve over l0. Let L0 = κ(Y0) be the function field of Y0, and let K0 = L0k0.

(1) Every l-rational point y ∈ Y0 gives rise to a bouquet of conjugacy classes of liftable sections
s′y : Gal(k′0|l0)→Gal(K ′0|L0) above y.

(2) Let s′ : Gal(k′0|l0)→Gal(K ′0|L0) be a liftable section. Then there exists a unique l-rational
point y ∈ Y0(l) such that s′ equals one of the sections s′y mentioned above.

Proof. The proof is identical to the proof of Theorem A above, the only difference being that
one uses Theorem B0 instead of Theorem B. 2
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