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ABSTRACT

In this article we introduce and prove a Z/p meta-abelian form of the birational
p-adic section conjecture for curves. This is a much stronger result than the usual p-adic
birational section conjecture for curves, and makes an effective p-adic section conjecture
for curves quite plausible.

1. Introduction

Let X — k be a complete geometrically integral smooth curve over a field k. Recall that
Grothendieck’s ‘section conjecture’, which evolved from his Fsquisse d’un Programme of 1983
(see [Gro98a]) and Letter to Faltings of 1984 (see [Gro98b]), predicts that under certain ‘anabelian
hypotheses’ w1 gives rise to a bijection between the k-rational points of X, which are actually
the sections of X — k, and the (conjugacy classes) of sections of 7 (X) — 71 (k).

The aim of this article is to formulate and prove a very ‘minimalistic’ birational variant of
this conjecture in the case where k is a finite field extension of Q.

To begin with, let k be an arbitrary base field and K|k the function field of a complete
geometrically integral smooth curve X — k. Let K |K be some Galois extension, and let
Cal(K|K) denote its Galois group. Further, let k := kN K be the ‘constants’ of K, and consider
the resulting canonical exact sequence

1 — Gal(K|Kk) — Gal(K|K) ™% Gal(k|k) — 1.

Let X — X be the normalization of X in the field extension K < K. For x € X and 7€ X
above x, let T, and Z,, with T, C Z,., be the inertia and decomposition groups of Z|z, respectively,
and let G, := Aut(x(Z)|k(z)) be the residual automorphism group. By decomposition theory, one
has a canonical exact sequence

1-T,—Z, -G, — 1. (*)

Suppose next that x is k-rational, i.c. k(z) = k. Since k C x(&), the projection Z, =% Gal(k|k)
gives rise to a canonical surjective homomorphism G, — Gal(k|k), which in general is not
injective. Nevertheless, if k= r(Z), then G, — Gal(k|k) is an isomorphism. Hence, if the
exact sequence (x) splits, then prj has sections 3, : Gal(k|k) — Z, C Gal(K|K), called sections
above x; also, notice that the conjugacy classes of the sections s, above z build a ‘bouquet’
which is in canonical bijection with the (non-commutative) continuous cohomology pointed set
H! . (Gal(k|k), T,;) defined via the split exact sequence ().
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Note that if char(k) = 0, then T}, is Gal(k|k)-isomorphic to a quotient of 2(1) and thus abelian;
hence H._ . (Gal(k|k), T}) is a group. Furthermore, if K = K® and k = k* are separable closures
of K and k, then G, = Gal(k®|k) and (x) is split, and thus sections above x exist; moreover, if
char(k) =0, then T, = Z(l) as Gj-modules, and hence H} (G, T)) = kX via Kummer theory.

If v is an arbitrary valuation of K and ¥ is a prolongation of v to K, then we denote by T,
and Z,, with T, C Z,, the inertia and decomposition groups of o|v, respectively, and by
Gy, = Z,/T, the residual automorphism group. If 3, : Gal(k|k) — Z, C Gal(K|K) is a section
of pry, then we say that 3, is a section above v.

Next, let p be a fixed prime number. We denote by K’|K a maximal Z/p elementary abelian
extension of K and by K" a maximal Z/p elementary abelian extension of K’. Then K”|K is a
Galois extension, which we shall call the maximal Z/p elementary meta-abelian extension of K.
Note that &’ := kN K’ and k” := kN K" are, respectively, the maximal Z/p elementary abelian
extension and the maximal Z/p elementary meta-abelian extension of k. We further consider the
canonical surjective projections

prx : Gal(K'|K) — Gal(K'|k), prf : Gal(K"|K) — Gal(k"|k).
We will say that a section s : Gal(k'|k) — Gal(K'|K) of pr is liftable if there exists a section
s : Gal(k"|k) — Gal(K"|K) of pr/, which lifts s’ to Gal(k"|k).
Note that if the pth roots of unity p, are contained in k& and hence in K, then by Kummer
theory we have K’ = K[V/K | and K" = K'[v/K'], and similarly for k.

From now on, suppose in the above context that %k is a finite extension of Q,. Then the
promised ‘minimalistic’ form of the birational p-adic section conjecture is the following.

THEOREM A. In the above notation, suppose that u, C k. Then the following hold.
(1) Every k-rational point « € X gives rise to a bouquet of conjugacy classes of liftable sections
s' . Gal(k'|k) — Gal(K'|K) above x, which is in bijection with H'(Gal(k'|k), Z/p(1)).

(2) Let s': Gal(k'|k) — Gal(K'|K) be a liftable section. Then there exists a unique k-rational
point x € X such that s’ equals one of the sections s}, defined above.

Actually, one can reformulate the question addressed by Theorem A in terms of p-adic
valuation and obtain the following stronger result. See §2-H. for definitions, notation and a
few facts on p-adically closed fields and p-adic valuations v (for example, the p-adic rank d,
of v), and see [AK66, PR85] for proofs.

THEOREM B. Let k be a p-adically closed field with p-adic valuation v, and suppose that j, C k.
Let K |k be a field extension with transcendence degree tr.deg(K|k) = 1. Then the following hold.

(1) Let w be a p-adic valuation of K with d,, = d,. Then w prolongs v to K and gives rise to
a bouquet of conjugacy classes of liftable sections s}, : Gal(k'|k) — Gal(K'|K) above w.

(2) Let s :Gal(k'|k) — Gal(K'|K) be a liftable section. Then there exists a unique p-adic
valuation w of K such that d,, = d,,, and s’ = s/, for some s, as above.

Remarks.

(1) First, observe that the above assertions do not hold if y, ¢ k. Indeed, if y, ¢ k, then the
maximal pro-p quotient G (p) of Gy, is a pro-p free group on [k: Q] + 1 generators; see,
e.g., [NSW08, Theorem 7.5.11]. From this it follows that all the sections s’ : Gal(k'|k) —
Gal(K'|K) of pr are liftable. Thus, for X with X (k) empty, we have that pr’; has liftable
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sections but that none of these originate from k-rational points of X. (Actually, the same
holds for all curves X as above, even when X (k) is non-empty.)

(2) Nevertheless, in the case where p, is not contained in the base field, assertions similar to
Theorems A and B hold in the following form. Let [|Q,, be some finite extension and Y — [ a
complete geometrically integral smooth curve with function field L = x(Y"). Let k|l be a finite
Galois extension with p, C k. Setting K := Lk, consider the field extensions K'|K — K"|K
and k'|k — k"|k as above. Then k' = K' N[ and k" = K" N I; moreover, K'|L and K"|L, as
well as k|l and k”|l, are Galois extensions too, and one gets surjective canonical projections

pr; : Gal(K'|L) — Gal(K'|l), pr] :Gal(K"|L) — Gal(k"|l).

As above, we will say that a section s} : Gal(k'|l) — Gal(K'|L) of pr’; is liftable if there exists a
section s7 : Gal(k”|l) — Gal(K"|L) of pr] which lifts s’ . Then one has the following extensions
of Theorems A and B.

TueoreM A, With the above notation and hypothesis, the following hold.

(1) Every l-rational point y € Y gives rise to a bouquet of conjugacy classes of liftable sections
s), - Gal(K|l) — Gal(K'|L) above y, which is in bijection with H'(Gal(k'|l), Z/p(1)).

(2) Let s} : Gal(k'|l) — Gal(K'|L) be a liftable section. Then there exists a unique l-rational
point y € Y such that s’ equals one of the sections s; defined above.

THEOREM B. Let | be a p-adically closed field with p-adic valuation v, and let L|l be a field

extension with transcendence degree tr.deg(L|l) = 1. Then, in the above notation, the following
hold.

(1) Let w be a p-adic valuation of L with d,, = d,. Then w prolongs v to L and gives rise to a
bouquet of conjugacy classes of liftable sections s., : Gal(k'|l) — Gal(K'|L) above w.

(2) Let s} :Gal(k'|l) — Gal(K'|L) be a liftable section. Then there exists a unique p-adic
valuation w of L such that d, = d,, and s; equals one of the sections s, as above.

Notice that Theorem A° obviously implies the full Galois birational p-adic section conjecture,
but not vice versa; see Koenigsmann [Koe05] for a proof of the latter (among other things), as
well as Remark 7 in this paper.

Indeed, for given Y — [ with function field L = k(Y") as above, let s: G; — G, be a section
of the canonical projection G — Gj.

(a) Consider finite field extensions L;|L with im(s) C G, and let Y; — [ be a complete smooth
curve with function field L; = k(Y;). Notice that Y; — [ is geometrically integral.

(b) Consider finite Galois extensions k; |l with p1,, C k;, and set K; := L;k;. Let ¢, : G; — Gal(k,|l)
and ¢ : G, — Gal(K[|L;) be the canonical projections.

Then s gives rise functorially (in L; and k;) to liftable sections s : Gal(k.|l) — Gal(K|L;)
of the canonical projection pr/ : Gal(K}|L;) — Gal(k}|l) such that for k; C k; and L; C L;, and
thus for K; C Kj, one has s; = prj; o s where prj; : Gal(K}|L;) — Gal(Kj|L;) is the canonical
projection. By Theorem A, there exists a unique I-rational point y; € Y;() such that s = sgﬁ in
the usual way; and since s} = pr;; o s;-, the uniqueness of y; € Y;(1) implies that the canonical
morphism Y; —Y; maps y; € Y;(l) to y; €Y;(l) and that s =pr;os, . We conclude from
this that if y € Y(I) is the common image of all the points y; € Y;(I) in Y (I), then one has
s=lim s;=lim s; =s,.

3 K3
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As an application of the results and techniques developed here, one can prove the following
fact concerning the p-adic section conjecture for curves. Let k|Q,, be a finite extension and X — k
a hyperbolic curve. Then there exists a finite effectively computable family of finite geometrically
Z/p elementary abelian (ramified) covers ¢; : X; — X, i € I, satisfying:

(i) U; vi(Xi(k)) = X (k), i.e. every k-rational point of X ‘survives’ in at least one of the covers
X, — X,
(ii) a section s: Gy — m1(X) can be lifted to a section s; : G — 71 (X;) for some i € I if and
only if s arises from a k-rational point € X (k) in the manner described above.
The details of the proof will be given later.

With regard to the proofs of the above theorems, the main technical point is a generalization
of the Tate-Roquette—Lichtenbaum local—global principle for Brauer groups of function fields of
curves over p-adically closed fields, as introduced and studied in [Pop88]. As a result of this
generalization, one is led to analyze the cohomological behavior of Z/p elementary abelian
extension of Henselizations of the function fields under consideration.

2. Generalities

A. Z/p derived series and quotients

Let G be a profinite group. We denote by G* the derived Z/p series of G; hence, by definition, we
have G! := G and Gt =[G, G)(GY)P for i > 0. We will further set G :=G'/G**! for i > 0.
Hence, in particular, G =Gt /G? is the maximal Z/p elementary quotient of G, and G =Gt /G3
is the maximal Z/p elementary meta-abelian quotient of G, i.e. the maximal quotient of G
which is an extension of G' by some Z/p elementary abelian extension.

One can check without difficulty that mapping every profinite group G to G', for i > 0,
defines a functor from the category of all profinite groups onto the category of all pro-p groups
whose derived Z/p series has length no greater than i. In particular, if pr: G — H is a (surjective)
morphism of profinite groups, then the following hold:

(1) pr gives rise canonically to a (surjective) morphism pr’ .G = Fi;
(2) every section s: H — G of pr: G — H gives rise to a section s : H — G of pr'.
Finally, in the above context, we say that a section s’ : H -G of pr’ is liftable if there exists

a section s : H' — G of pr’ which reduces to s’ or, equivalently, lifts s'.

B. Cohomology and sections

Let G be a profinite group. We endow Z/p with the trivial G-action and let H"(G, Z/p) be the
cohomology groups of G with values in Z/p. Then, in the notation of the previous subsection,
for all ¢ > 0 we have

H'(G, Z/p) = Hom(G. Z/p) = Hom(G ", Z/p) = H'(G", Z/p),
and for every ¢ the cup product gives rise to a canonical pairing
Hom(G', Z/p) x Hom(G', Z/p) = H'(G", Z/p) x H'(G", Z/p) L HA(G", Z/p).

Next, let pr: G — H be a quotient of G, and let pr': G — H and pr”: G — H' be the
corresponding surjective projections as introduced in the previous subsection.
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LEMMA 1. In the above notation, let s': H — G be a liftable section of pr' : G — H and let
I’ C G be the preimage of s' (ﬁ,) C G under the canonical projection G — G.T hen, for characters
X, Yy € Hom(H,Z/p) and the induced characters xr,¢r € Hom(T',Z/p), the following are
equivalent:

(i) xg uvg=0in HQ(FN, Z/p);
(i) xg vy =0 in H2(H, Z/p);
(iii) xr uyr =0 in H3(T, Z/p).

Proof. The implications (i) = (ii) and (ii) = (iii) follow from taking the inflation maps coming
from the surjective group homomorphisms I' — H — H' . One proves (iii) = (i) as follows.
Suppose that xr ut¢r =0(p) is the co-boundary of some map ¢:I' — Z/p. We claim that ¢
factors through the canonical projection I' — "' Indeed, xr u¢r = d(¢) means that

(xr u¥r)(g, h) =g p(h) — (gh) + ¢(g) = p(h) — ©(gh) + ©(g) forall g,heT,

where the last equality holds by virtue of the fact that G, and hence T, acts trivially on Z/p.
Now, if g or h lies in G? C T, then we have (xr utr)(g, h) = 0. Equivalently, if g or A lies in
G? C T, then p(g) — ¢(gh) + (k) = 0 and thus, in particular, the restriction of ¢ to G? is a group
homomorphism to Z/p. Hence the restriction of ¢ to G® = [G?, G?](G?)P is trivial and, finally, ¢
factors through I'/G3 € G". Therefore, Y& U g = 0 in HX(T'/G3,Z/p). Now let 8" : H — G be
a lifting of the section s, and observe that s”(H' ) C I'/G3. Then the restriction of & U g =0 to
s”(ﬁﬂ) CT'/G3 is trivial too, i.e. xg Uty =0 in Hz(s”(ﬁu), Z/p). Thus, finally, xg vty =0 in
H? (ﬁ/,, Z/p), as claimed. O

C. Basics from Galois cohomology
Let K be an arbitrary field of characteristic other than p, and let Gx be its absolute Galois

group. Further, let GZ'K and é;{ be, respectively, the derived Z/p series and quotients of Gx. We
recall the following fundamental facts.

(a) By Kummer theory, one has a canonical isomorphism K* /p =H! (G, ). In particular,
if u, C K, then the absolute Galois group Gk acts trivially on u,; hence, upon choosing
some identification ¢ : y, — Z/p of trivial G modules, we get

K*/p= HI(GK, pp) = Hom(Gal(K'|K), u,) — Hom(Gal(K'|K), Z/p).

(b) Let ,Br(K) denote the p-torsion subgroup of Br(K). Then ,Br(K)=H?*(Gk, pp)
canonically. Hence, if p, C K, then ¢: 1, — Z/p gives rise to an isomorphism

JBr(K) = (G, ) — H2(G, Z/p).

(c) Consider the cup product K*/p ® K*/p—>H2(Gk, ity ® pip), (a,b) — Xa U Xp, Which is
actually surjective by the Merkurjev—Suslin theorem. If p, C K, then the isomorphism
v pip — Z/p gives rise to a surjective morphism

K*/p® K*/p—-H*(Gk,Z/p), (a,b)— Xa UXe-

Combining these observations with Lemma 1 above, we deduce the following result. Let K|k
be a regular field extension, and suppose that char(k) # p and p, C k. As in the Introduction, we
consider a maximal Z/p elementary abelian extension K'|K of K, the corresponding k' := K' Nk
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etc. and the resulting canonical surjective projections
pr : Gal(K'|K) — Gal(k'|k), pr:Gal(K"|K)— Gal(k"|k).

LEMMA 2. In the above context, let s’ : Gal(k'|k) — Gal(K'|K) be a liftable section of pr',
and let M C K' be the fixed field of im(s’) in K'. Then for any elements a,b € k* and the
corresponding p-cyclic k-algebras Ay (a, b) and Aps(a,b), we have that Ag(a, b) is trivial in Br(k)
if and only if Aps(a, b) is trivial in Br(M).

D. Hilbert decomposition in elementary Z/p abelian extensions

Let K be a field of characteristic not equal to p that contains y,. Let v be a valuation of K and
let v" be some prolongation of v to K'. Let V,, T,y and Z,, with V,, C T, C Z,s be, respectively,
the ramification, inertia and decomposition groups of v’|v in Gal(K’|K). We remark that because
Gal(K'|K) is commutative, the groups V., T,y and Z,» depend only on v; therefore we will simply
denote them by V,, T, and Z,. Finally, we denote by K4 C K7 C KV the corresponding fixed
fields in K.

LEmMA 3. With the above notation, the following statements hold.

(1) Let U?:=1+ p*m,. Then KZ contains VU and we have K% = K[V/U" ], provided that p is
a v-unit. In particular, if w; and wy are independent valuations of K, then Z,,, N Z,,, = {1}.

(2) If p # char(Kv), then V,, = {1} and K'v' = (Kv)', and hence G, := Z, /T, = Gal(Kv'|Kv).
If p = char(Kv), then V,, = T, and the residue field K'v' contains (Kv)'/? and the maximal
Z/p elementary abelian extension of Kv.

(3) Let L := K be the Henselization of K with respect to v. Then L' = LK’ is a maximal Z/p
elementary extension of L. Therefore we have Gal(L'|L) = Z,, canonically.

Proof. (1) Everything is clear, except maybe the assertion concerning the independent valuations
wiy and ws. To prove this, consider an arbitrary x # 0. Since w; and ws are independent, there
exists y #0 which is arbitrarily wi-close to 1 and arbitrarily we-close to x. More precisely,
there exists y # 0 such that, first, w1 (1 — y) > 2w;(p) and, second, wa(x — y) > 2wa(p) + wa(z)
or, equivalently, wy(1 — y/x) > 2ws(p). But then, by the first assertion of the lemma, we have
9y € K% and {/y/x € K%w2, hence y/a € K%z K%, Since KZw:K%w1 = (K')%w2"%w1 and
r € K* was arbitrary, we get K’ C (K')?w2"%wv1, Therefore Zy, N Zy, =1 as claimed.

(2) If p # char(Kw), then everything is clear by Kummer theory and general valuation theory.
If p=char(Kv) and p # char(K), it follows that char(K)=0. Recall that by Artin-Schreier
theory, the maximal Z/p elementary abelian extension of Kv is generated by the roots of all the
Artin—Schreier polynomials Y? — Y — @, with @ € Kv. We show that every such polynomial has
a root in the residue field of some Z/p cyclic extension K [a] with of = for some u € K. Indeed,
by the general non-sense of Kummer theory versus Artin—Schreier theory, one has the following.

Let XP —u e O,[X] be some Kummer polynomial over K. We note that A\:=(, — 1€ K,
as pp C K, and recall that p=[],_,,(1—¢). Since 1 —(=—-A(1+--- 471y and thus,
in particular, (14---¢4") =p(mod ), we finally get p=AP~1(p—1)!=— "1 (mod \?),
because (p —1)!=—1 (mod p) by Wilson’s theorem. Hence, upon setting X := XXy + 1 and
u := Mug + 1, the equation X? = u is equivalent to the equation Xg — Xo+ Af(Xo) = up, where
f(Xo) € Oy[Xo] is an explicitly computable polynomial. Therefore, if ¢ = Frob — id is the Artin—
Schreier operator and U € Kv\p(Kv), then v is totally inert in K, := K/« ]. And, if w is the
unique prolongation of v to K, then the residue field of w is K,w = (Kv)[3] with 7 — 8 =1y.
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By reversing the process above, we can see that each Artin—Schreier extension of Kwv is
obtained by reducing a properly chosen Kummer Z/p extension of K.

(3) First, if v has rank one, then K is dense in L := K. Hence, given @ € O, there exists
u € Ok such that @ = u(1 +7n) in K" with v"(n) > 20"(p). But then 1 + 7 is a pth power in K"
by Hensel’s lemma, and hence the roots of XP — u and the roots of X? — o generate the same
field extension of K. To treat the general case, one uses induction on the rank of the valuation
v and then ‘takes limits’. O

E. Elementary Z/p abelian extensions of Henselian fields

In this subsection, we will prove a technical result concerning elementary Z/p abelian extensions
of Henselian fields. The context is as follows. Let L be a Henselian field with respect to a
valuation w. Suppose that char(L) =0 and char(Lw)=p >0, and that p, C L. Further, let
L' = L[V/L*] be the maximal elementary Z/p abelian extension of L and Gal(L'/|L) := Gal(L'|L)
its Galois group. Since w is Henselian, w has a unique prolongation to L', which we again denote
by w.

LEMMA 4. In the above context, suppose that w is a rank-one valuation. Let A|L be a sub-
extension of L'|L such that L'|A is a finite extension. Then the following hold.

(1) L'w | Aw is finite, and Aw contains (Lw)'/?.

(2) If Lw is not finite, or if wL % 7Z, then for every u € L there exists t € L* which satisfies
Ly:=L[Yt] CA and w(u) €p-wL; Cp-w(A). Hence wL C p - wA.

(3) In particular, if wL € p - wA, then wL ~Z and Lw is finite.

Proof. The proof is inspired by [Pop88, Korollar 2.7] and uses in an essential way [Pop88,
Lemma 2.6]. Let O and m be, respectively, the valuation ring and valuation ideal of w. Then,
by [Pop88, Lemma 2.6], one has exact sequences of the form

1= 0%p—L¥p—w(L)/p—1 and 1—1+m)/p—0p—(Luw)fp—1 (5

By Kummer theory (note that y1, C L by hypothesis), one has A = L[/A] for a subgroup A C L*
such that A contains the pth powers of all the elements of L* and L*/A is canonically Pontrjagin
dual (hence non-canonically isomorphic) to Gal(L'|A). In particular, L*/A = (L*/p)/(A/p) is a
finite elementary Z/p abelian group. Hence, from the above exact sequences (x) it follows that
upon setting Ag:=ANO* and A;:=AN(1+m) we have that (1+m)/A; and O*/Aq are
finite groups; moreover, if Aw denotes the image of Ay in Lw*, then Lw*/Aw is a finite group.

(1) First, if Lw is finite, then Lw is perfect and thus there is nothing to prove. Now suppose
that Lw is infinite. Then since Lw>*/Aw is finite, it follows that Aw is infinite too. Hence, for
every a € Lw, there exist x #y in Aw such that a — z,a —y #0 and (a — ) Aw = (a — y)Aw.
Equivalently, there exists z € Aw such that a — x = z(a — y) and hence a = (x — yz)/(1 — 2). On
the other hand, since z,y, z € Aw, one has z'/?, y/?, 21/P ¢ (Aw)'/? € Aw and thus a'/? € Aw.
Since a was arbitrary, we get (Lw)'/? C Aw as claimed.

(2) From the discussion above it follows that (1 4+m)/A; is finite. Let 1 +a;, 1 <j <n, be
representatives for (1 +m)/A;.

Case (i). w is not discrete on L. Then for every w € L* there exists some u; € L* such
that 0 < w(uul) <w(p), w(a;) for all j=1,...n. Since 1+ uul €1+ m, there exists j and
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some t € A7 such that

1+ uul =¢(1+ a;).
Set t =1+ a. Since 0 <w(uul) <w(p), w(a;), it immediately follows from the ultra-metric
triangle inequality that w(uu}) =w(a). On the other hand, since ¢t € A, one has t =6 for
some 0 € A, i.e. Ly := L[V/t] = L[] C A. Hence 1+ a = 6P and, upon setting § = 1 + b, one gets
1+ a=(1+ b)P. From this we obtain w(b) > 0. Since w(a) = w(uu}) < w(p) and 1 + a = (1 + b)?,
the ultra-metric triangle inequality implies that w(a) = w(b?) in wL;. Thus one has

w(w) + puur) = w(uu?) = w(a) = p- w(d),

and hence w(u) = pw(b) — pw(u1) € p- wL; as claimed.

Case (ii). w is discrete on L. Suppose that Lw is not finite. Let m and O, with m C O C L, be
the valuation ideal and valuation ring of w in L, respectively. Since L contains p, and p > 2, it
follows that we have the inclusions (1 4+m)? C (1 +m?) C 1 +m?2. After choosing a uniformizing
parameter w of O, one gets in the usual way an isomorphism of groups

¢:(1+m)/(1+m?) — Lw", 1+ a7~z (modm).

Hence (1+m)/(1+m)? is infinite, because it has as its homomorphic image the infinite
group (14+m)/(1+m?)= Lwt. Next, recall that (1 +m)/A; is a finite group. Therefore
d(1+m)/p(A1) = Lwt /$(Aq) is finite too. Hence there exist (infinitely many) elements ¢ :=
14+ a€ Ay with a € 7O*. For any such ¢ € A1, we have t = 0P for some 6 € A; hence we have, as
above, Ly = L[0]. Setting 6 := 1 + b, we have 1 + a = (1 + b)?. Equivalently,

p—1

azz (i,))bi—l-bp:pbe-i-bp

=1

for some w-unit € € A. Since 7 divides p in O, one has w(pbe) > w(w), and therefore w(mw) =
w(a) =w(b?) =p-w(b) in wA. Since wL = Z w(n), it follows that w(u) C p - wL;, as claimed. O

F. Inertial cohomology

In this subsection, we recall a well-known result concerning the cohomology of the maximal
inert extension of a Henselian field (which goes back to Witt). The situation is as follows.
Let L be a Henselian field with respect to a valuation w, let L1|L be a finite unramified Galois
extension, and let G := Gal(L1|L) be the Galois group of L;i|L. Let O C O, and my C my,
be the corresponding valuation rings and valuation ideals, respectively. As remarked in [Pop88,
Lemma 2.2], the group of principal units 1 + my, is G-cohomologically trivial, and there exists
an exact sequence of cohomology groups

0 — H*(G, Liw™) — H*(G, L) — HYG, (Q® wL)/wL) — 0,
so that we have an exact sequence of the form

0 — Br(Lyw|Lw) — Br(L1|L) — Hom(G, (Q ® wL)/wL) — 0. ()

We also remark that if M|L is some algebraic extension, linearly disjoint from L;, say, and
M, = ML, is the compositum (in some fixed algebraic closure), then the above exact sequence
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gives rise to a commutative diagram of the form

0 — Br(Ljw|Lw) — Br(L;|L) Hom(G, (Q®@wL)/wL) —0

i res l res \L res

0 — Br(Mijw|Mw) — Br(M;|M) — Hom(G, (Q ® wM)/wM) ——0

where the left two vertical maps are the canonical restriction maps and the rightmost one is
induced by the canonical embedding wL — wM. We will use these observations to prove the
following result.

LEMMA 5. Let L be Henselian with respect to a rank-one valuation w and satisfy the conditions
that char(L) =0, p, C L and char(Lw) =p > 0. Let Li|L be a p-cyclic unramified sub-extension
of L'|L, so that G 2 Z/p, and let A|L be a sub-extension of L'|L such that L'|A is finite and A|L
and L1|L are linearly disjoint. Suppose that the restriction map

res: Br(L;i|L) — Br(A1]|A) € Br(A)

is non-trivial. Then wL ~7Z and Lw|F, is a finite extension, i.e. L is a discrete-valued field with
finite residue field of characteristic p.

Proof. By way of contradiction, suppose that the conclusion of the lemma does not hold.

Since G =Gal(L1|L) has order p, it follows that L;=L[¢a] for some a€ L, and
that Br(Li|L) consists of cyclic algebras of index p of the form Ar(a,u) with we L*. In
particular, Br(Lq|L) is a torsion group of exponent p. Further, since Liw|Lw is also cyclic of
degree p, it follows that Br(Ljw|Lw) is generated by cyclic algebras of index p and, moreover,
every such algebra from Br(Lw|Lw) is also split by some purely inseparable extension of degree p
of Lw. Therefore, the restriction map Br(Ljw|Lw) 2% Br(Lw'/P) is trivial. On the other hand,
by Lemma 4(1), we have Lw'/? C Aw. Hence the restriction map

Br(Liw|Lw) == Br(Ajw|Aw) C Br(Aw) (%)

is trivial. Therefore, if Ar(a,u) € Br(L1|L) has non-trivial image in Br(A;|A), then by the exact
sequence (1) and the above diagram applied with M := A, we get that Ap(a,u) does not lie in
the image of Br(Ljw|Lw) in Br(L;|L). Equivalently, A (a, u) is ramified, i.e. w(u) is non-trivial
in wL/p. Since we have assumed that the conclusion of Lemma 5 does not hold, by Lemma 4(2)
there exists Ly := L[/t ] C A with ¢t € L* such that w(u) € p - wL;. But then, by the fundamental
(in)equality, we have

p=|[L;: L] > [Lyw: Lw] - (wLy : wL) > [Lyw : Lw] - p > p.
Therefore, the above inequalities are actually equalities, and [Lyw : Lw] =1, i.e. Lyw = Lw. Also,
Li1w = Liw, where L; 1 := LyLy is the compositum of L; and L; inside Aj.

Hence, from the above commutative diagram applied to M := L;, it follows that the image
Ar,(a,u) of Ap(a,u) in Br(L:1|L:) actually lies in Br(Ls jw|Liw) = Br(Ljw|Lw). But then the
image of Ar,(a,u) in Br(A;|A) actually lies in the image of Br(L; w|L;w) = Br(Ljw|Lw) in
Br(Ajw|Aw). On the other hand, the image of Br(Ljw|Lw) in Br(Ajw|Aw) is trivial by the
discussion around (*) above. Therefore A (a, u) is trivial in Br(A;|A), which is a contradiction. O
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G. Gal(k}|k1) and Br(k;)
Let k|Q, be a finite extension with p, C k. Let ki|k be an arbitrary (not necessarily Galois
and not necessarily finite) algebraic extension and let [k : k] denote its degree (as a super-

natural number). As usual, let kj|k; be a maximal Z/p elementary extension of k; and
Gal(ky|k1) := Gal(k]|k1) its Galois group.

LEMMA 6. In the above context, the following hold.

(1) The restriction map ,Br(k) — Br(k;) is injective if and only if [k; : k] is not divisible by p.
(2) Suppose that (p, [k1 : k]) = 1. Then Gal(k}|k1) = (Z/p)®1 72, where e, := [k1 : Q).

Proof. (1) After identifying Br(k) with Q/Z via the invariant invy, : Br(k) — Q/Z, the restriction
Br(k) — Br(k1) becomes multiplication by [k; : k]. Hence ,Br(k) — Br(k;) is injective if and only
if [k1 : k] is not divisible by p.

(2) If kq|k is finite, then the assertion follows from local class field theory. Furthermore, the
canonical projection Gal(k]|k1) — Gal(k'|k) is surjective, as [k; : k] is prime to p. Finally, by
taking limits over all the finite sub-extensions k;|k of ki |k, the assertion follows. O

H. p-adic valuations and formally p-adic fields

We recall a few basic facts about p-adic valuations and (formally) p-adically closed fields; see
[AK66, PR85] for more details.

(1) A valuation v of a field k is called (formally) p-adic if the residue field kv is a finite field
F, with ¢ = p/* and the value group vk has a minimal positive element 1, such that v(p) = e, - 1,
for some natural number e, > 0. The number d, := e, f, is called the p-adic rank (or degree) of
the p-adic valuation v. Note that a field k£ carrying a p-adic valuation v must necessarily have
char(k) =0, as v(p) # oo, and char(kv) = p.

(2) Let v be a p-adic valuation of k with valuation ring O,. Then O := O[1/p] is the valuation
ring of the unique maximal proper coarsening vy of v, which is called the canonical coarsening
of v. Note that upon setting k° := kv; and vy = v/v1, the corresponding valuation on k°, we have
that vg is a p-adic valuation of k* with e,, = e, and f,, = fo; hence d,, = d, and, moreover, v
is a discrete valuation of k. In particular, the following properties hold.

(a) v has rank one if and only if v; is the trivial valuation, and this is true if and only if v = vy.

(b) Giving a p-adic valuation v of a field k of p-adic rank d, = e, f, is equivalent to giving a
place p of k with values in a finite extension [ of @, such that the residue field kp of p is
dense in [ and [|Q), has ramification index e, and residual degree f,.

(¢) Ifv; < wisastrict coarsening of v, then v; < v; and the quotient valuation v/v; on the residue
field kv; is a p-adic valuation with e,/, = ey, fy/u, = fo and thus d,,, =d,. (Actually,
(kv;)(vi/v1) = kvy and (kv;)(v;/v) = kv canonically.)

(3) Let v be a p-adic valuation of k and I|k a finite field extension, and denote by w|v the
prolongations of v to [. Then all the w are p-adic valuations. Moreover, the fundamental equality
holds: [I: k] =3_,,, e(w|v) f(w[v), where e(w|v) and f(w|v) are, respectively, the ramification
index and the residual degree of w|v. Further, if w; is the canonical coarsening of w and wy =
w/w is the canonical quotient on the residue field lw;, then by general decomposition theory of
valuations one has e(w|v) = e(wi|v1)e(wp|vg) and f(w|v) = f(wp|vp); moreover, e,, = e, e(wp|vg)
and fw = fv f(w]v), thus dw = dve(w0|00)f(w|v)‘
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(4) A field k is called (formally) p-adically closed if k carries a p-adic valuation v such that
for every finite extension [|k one has that if v has a prolongation w to [ with d,, = d,, then [ = k.
There is a characterization of the p-adically closed fields as follows. For a field k endowed with
a p-adic valuation v and canonical coarsening v, the following are equivalent:

(i) k is p-adically closed with respect to v;
(ii) v is Henselian and vk is divisible (possibly trivial);

(iii) v; is Henselian and vk is divisible (possibly trivial), and the residue field k° := kv, is
relatively algebraically closed in its completion k9 (which is itself a finite extension of Qy).

We also note that if k is p-adically closed with respect to some p-adic valuation v, then the
valuation ring of v is completely determined by k. In particular, for every field k there exists
at most one valuation v (up to equivalence of valuations) such that k is p-adically closed with
respect to v.

(5) For every field k endowed with a p-adic valuation v, there exist p-adic closures k and o
such that dz = d,. Moreover, the space of the isomorphy classes of p-adic closures ofA k and v
has a concrete description as follows. Let v; be the canonical coarsening of v and k°|Q, the
completion of the residue field of k° = kv;. Then there exists a canonical exact sequence of
the form 1 — I,, — D, LN G@ — 1, and the space of isomorphy classes of p-adic closures of &k

and v is in bijection with the space of sections of pr and thus with Héont(G@, I,).

(6) If L is p-adically closed with respect to the p-adic valuation w and [ C L is a subfield which
is relatively closed in L, then [ is p-adically closed with respect to v := w|; and v and w have equal
p-adic ranks; also, L and [ are elementarily equivalent. Therefore, the elementary equivalence
class of a p-adically closed /ﬁ\eld k is determined by both the absolute subfield k**s := kN Q of k
and the completion IO = kabs. Note that the p-adic valuation of k2P% is discrete and that k2Ps
is actually the relative algebraic closure of Q in k° := kv;. Further, L = LI = LQ. Therefore, if
L|l is an extension of p-adically closed fields of the same rank, then the canonical projection
G — G is an isomorphism.

(7) Finally, let (L, w)|(l,v) be an extension of p-adically closed fields with d,, = d,. Let k|l
be some Galois extension, and set K := Lk. Then, using the notation from the introduction, the
following canonical projections are isomorphisms:

pr} : Gal(K'|L) — Gal(K'|l), pr]:Gal(K"|L)— Gal(k"|l). (1)

Remark 7. Let l,v be a finite field extension of Q,, and let L =x(Y") be the function field
of a complete smooth curve Y —[. Let s:G; — G, be a section of pry : G — G}, and let L
be the fixed field of im(s) in L. Then L= LI=LIQ=LQ, and Gj — Gy — Glavs are all
isomorphisms. Hence L is p-adically closed by [Pop88, assertion E.11] and elementarily equivalent
to 12", and hence to I, by paragraph (6) above; moreover, if w is the valuation of L, then
dy =d, and v =w|;. Thus w:=w|f, is a p-adic valuation of L with d,, = d, and w|; = v. Hence,
by statement (2)(b) above, the canonical coarsening w; of w defines an [-rational place of L|l,
and thus an [-rational point y € Y'({), such that im(s) is contained in a decomposition group D,
above y. Therefore, recalling that distinct decomposition groups above I-places of L|l have trivial
intersection (by a theorem of F. K. Schmidt), it follows that y and D, are uniquely determined
by im(s). This proves the birational p-adic section conjecture for Y — I; see [Koe05] for more
details.
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I. A local—global principle for the Brauer group

Here we recall the following result, which was proved in [Pop88, Theorem 4.5] and uses in an
essential way the results of Tate [Tat59], Roquette [Roq66] and Lichtenbaum [Lic69].

FAcT. Let k be a p-adically closed field, and let M |k be a field extension of transcendence degree
tr.deg(M|k) < 1. Further, let w|v denote the prolongations of the p-adic valuation v of k to M,
and for each w let M be a Henselization of M with respect to w. Then the following canonical
exact sequence of Brauer groups is exact:

0— Br(M) — [ [ Br(2).

wlv

We will use a special form of the above fact which reads as follows. Let w be a prolongation
of v to M and let O,, and m,, be its valuation ring and valuation ideal, respectively. Further, let
Ouw, := Oy[1/p] be the coarsening of O,, obtained by inverting the prime number p, and denote
by wj; the corresponding coarsening of w. Then w; is a prolongation to M of the canonical
coarsening vy of v. Setting My := Mw; and wp := w /w1, it follows from general valuation theory
that My|kg is a field extension with tr.deg(My|ko) < 1 and that wy is a prolongation of vy to Mj.
For every prolongation w|v, the following are equivalent:

(i) wp is a rank one valuation;

11 the minimal rime ideal Of Ow thh contains the rational rime number 18 the aluation
p w p p \
ideal m,,.

In particular, for every prolongation w|v of v to M there exists a unique coarsening w such
that @ is a prolongation of v to M and @ satisfies the equivalent conditions (i) and (ii) above.
Indeed, for any given w|v, let m be the minimal prime ideal of O, which contains the prime
number p. Then, by general valuation theory, the localization O = (Op)m is a valuation ring
with valuation ideal m, and its valuation w is the unique coarsening of w satisfying the equivalent
conditions (i) and (ii) above.

FactT 8. Let k be a p-adically closed field, and let M|k be a field extension of transcendence
degree tr.deg(M|k) < 1. Let W be the set of all the prolongations w|v of v to M that satisfy the
equivalent conditions (i) and (ii) above. Then the following canonical exact sequence of Brauer
groups is exact:
0— Br(M)— [ Br(Mp).
wew

Proof. For a non-trivial division algebra A over M, let w|v be a prolongation such that, writing
MP for the Henselization of M with respect to w, one has App #0 in Br(M}). Now let @ be
the unique coarsening of w such that w € W. Then, since @ is a coarsening of w, it follows that
M} contains a Henselization MY of M with respect to @. On the other hand, since M2 C M}
and Apm # 0 in Br(M}), we have that AM};J #0 in Br(MR). O

3. Proof of Theorem B

To prove assertion (1), let K, be a p-adic closure of K, w, and let l;:, v be the relative algebraic
closure of k in K endowed with the restriction of W to k. Then dy = dy = dy,. Since d, = dy, by
hypothesis, we get dy = d, and hence k = k. We conclude by applying relation (}) from §2-H.,
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paragraph (7), with [ :=k and L := K, and taking into account the fact that the isomorphism
Gal(K"|K) — Gal(k"|k) factors through Gal(K”|K) — Gal(k”|k) and thus gives rise to a liftable
section of Gal(K'|K) — Gal(K'|k).

To prove assertion (2), let s': Gal(k'|k) — Gal(K'|K) be a liftable section and let M C K’
be the fixed field of im(s’). Consider a,b € k such that k; := k[¢/a] is the unique unramified
extension of degree p of k and the p-cyclic algebra Ag(a, b) is non-trivial in Br(k) or, equivalently,
Xa UXb # 0 in H3(Gy, Z/p). Then, by Lemma 2, Aj/(a,b) is non-trivial in Br(M). Hence, from
Fact 8, it follows that there exists some prolongation w € W of v to M such that, writing A := M}
for the Henselization of M with respect to w, one has Aj(a, b) # 0 in Br(A). With an abuse of
notation, we will write w for the Henselian prolongation of w to A and so on.

For w as above, let L:= K" C A denote the (unique) Henselization of K with respect to
(the restriction of) w which is contained in A. Then the compositum LM C A is Henselian with
respect to w, hence we must have LM = A. Note that L' = K'L by Lemma 3(3), and K'|M
is finite because im(s’) is finite and M = (K”)"™), We conclude that L' = LK’ is finite over
A = LM; also, Ax(a, b) # 0 in Br(A) implies Ay (a,b) #0 in Br(L), as L C A.

LEMMA 9. The valuation w is a p-adic valuation of L.

Proof. As in the discussion above, let w; and vy be, respectively, the canonical coarsenings of w
and v, i.e. the valuations with valuation rings O,[1/p] and O,[1/p], respectively. We denote the
corresponding residue fields by ko := kvy, Ly := Lw; and Ag := Aw;; recall also that vg :=v/v; on
ko and wg := w/wq on Ly and Ag are rank-one valuations (since w € W). Note that the following
hold.

(a) w; prolongs v; to L and A, and wy prolongs vy to Lo and Ag, as w prolongs v to L.

(b) w; and vy, as well as wg and vy, are Henselian because w and v are.

(¢) L'wi|Lw; is the maximal Z/p elementary abelian extension of Ly = Lw; by Lemma 3(2),
hence L'w; equals the maximal Z/p elementary abelian extension L'w; = Lj, of Ly.

(d) Further, since L'|A is finite by the discussion above, it follows that L'wi|Aw; is finite by
the fundamental inequality. Since L'w; = L{, and Aw;, = Ag, we get that L{|A is finite.

Recall the v-unramified extension k; := k[¢/a] with Gal(k1|k) =: G defined above. We set
Ay := Ak; and remark that Aj|A is a w-unramified cyclic extension with Galois group canonically
isomorphic to G. Moreover, since kj|k is v-unramified, ki|k is also vi-unramified, as v; is a
coarsening of v. Correspondingly, L1|L is wi-unramified. Let ko1 := k1v; and Agy := Ajw; be the
corresponding residue fields. Observe that ko1|ko is a vp-unramified cyclic extension with Galois
group canonically isomorphic to G; correspondingly, Ag1|Ag is a wo-unramified cyclic extension
with Galois group canonically isomorphic to G.

We next consider the resulting commutative diagram, shown below, of Brauer/cohomology

groups deduced from the extension of valued fields (A, w1)|(k, v1) and the corresponding residue
fields, as discussed in §§1 and 2-F.

00— Br(k01|k0) S Br(kl\k) E— HOIIl(G, (Q & Ulk)/vﬂf) —0

i res i res \L res

00— BI‘(A()1|A0) BI‘(A1|A)  — HOIIl(G, (Q & wlA)/wlA) —0

We recall that vik is divisible, hence Q ® v1k = v1k and therefore (Q ® v1k)/v1k = (0). Thus
we deduce that Br(ko;|ko) — Br(Ao1|Ag) € Br(Ag) is non-trivial.
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Now let us set Ly := Lk; and write Lo; := Ljw;. Then, reasoning as above, we get that L1|L is
w-unramified and hence wi-unramified. Furthermore, Lg1|Lg is a wp-unramified extension with
Galois group canonically isomorphic to G, and it is obvious that Br(ko;|ko) — Br(Ag) factors
through Br(Lg1|Lg). Therefore Br(Lg1|Lo) — Br(Ag) is non-trivial.

By Lemma 5 applied to Ly endowed with the Henselian rank-one valuation wg, the wg-
unramified extension Lo;|Lo and the extension Ag|Lg such that L{j|Ag is finite, we get that wy is
discrete and has finite residue field (of characteristic p, as wy prolongs vg). Equivalently, w is a
(Henselian) p-adic valuation of L, as claimed. O

LEMMA 10. The p-adic valuation w from Lemma 9 has p-adic rank equal to the p-adic rank of v
and satisfies im(s') C Z,,.

Proof. The proof is a refinement of the arguments in the proof of the previous lemma. As
remarked there, the canonical restriction map
res : Br(ko1|ko) — Br(Lo1|Lo) — Br(Ap)

is non-trivial. Since completion does not change the inertial cohomology, without loss of generahty
we can replace kg C Ly C Ag by the corresponding sequence of completions k:o - LO C AO, all of
which are finite extensions of Q,, and thus deduce that

res Br(];}()l“;}o) — Br(f/01|f/0) — Br(Ao)
is non-trivial. But then, from Lemma 6, it follows that [Ag : ko] is prime to p and therefore
[Ao: ko] = [Ao : ko] is prime to p. Hence, from [Ag: ko] = [Ao: Lo] - [Lo : ko] it follows that both
[Lo : ko] and [Ag: Lo] are prime to p. On the other hand, Ag|Lg is a sub-extension of the Z/p
elementary abelian extension L{|Lg. Thus, finally, Ay = Lo.

Now recall that M = (K')™(") is the fixed field of im(s') = s'(Gal(k'|k)) in K’; furthermore,
L' =LK' and A = ML inside L', by the discussion at the beginning of the proof. From this we
deduce the following sequence of inequalities:
[k': k] =|Gal(K'|k)| = [K': M] > [LK': LM] = [L": Al. (%)
Moreover, because k is p-adically closed, and hence pry: Gal(k'|k) — Gal(k)|ko) is an
isomorphism, one has [k : k] = [k : ko], and by the fundamental inequality we have [L':A] >
[L'w; : Aw;]. On the other hand, we have L'wy = L{; and Aw; := Ao, and Ag = Lo by the remarks
above. Thus the above sequences of inequalities can be extended as follows:
(kG ko) =[K k]=[K':M]>[LK': LM]=[L": A] > [L'wy : Awy] = [L{ : Lo]. ()
Next, observe that by Lemma 6(2) we have [kj: ko] = p®o, where ey, := [ko:Q,], and
[L{, : Lo) = pto, with er, :=[Lo : Qp]. Hence the inequality (T*> above implies e, > er,,. On the
other hand, kg C Lo implies ey, < er,. Hence e, =er, and ko = Lo. Equivalently, w is a p-adic
valuation having p-adic rank equal to

duw =[Lo: Qp) = [ko: Q] =

and hence equal to the p-adic rank of v. Moreover, because of this, all the inequalities in the
formulas (*) and (xx) above are actually equalities. Therefore [K': M]=[LK':LM], and
the restriction map Gal(L'|L) = Gal(L'|L) — Z,, C Gal(K'|K), which maps Gal(L'|L) isomor-
phically onto Z,, by the fact that L' = K'L, defines an isomorphism

Gal(L'|A) — Gal(K'|M) = s/ (Gal(k'|k)).

Equivalently, im(s") C Z,,, as claimed. O
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Coming back to the proof of Theorem B, we have the following. Let M C K’ be the fixed
field of im(s’) in K’; then there exists a p-adic valuation w of M such that w prolongs v to M
and has p-adic rank d,, equal to the p-adic rank d, of v; moreover, im(s’) is contained in the
decomposition group Z,, of w in Gal(K'|K).

Remark 11. The precise structure of Z,, can be deduced as follows. First, let w; be the
canonical coarsening of w and let Ty, and Z,,, with T,,, C Z,,, be, respectively, the inertia and
decomposition groups above wy in Gal(K'|K). Then Z,, = Z,,, and pr’ : Gal(K'|K) — Gal(K'|k)

gives rise to an exact sequence
1= Ty, — Zu, =5 Gal(k/|k) — 1

such that s'(Gal(k'|k)) C Z,,, = Z,, is a complement of T, . If T}, is non-trivial, then T, = pu,
as a Gal(k'|k)-module, and thus T, = Z/p non-canonically as a Gal(k'|k)-module.

LEMMA 12. The p-adic valuation w from Lemma 10, which satisfies im(s") C Z,,, is unique.

Proof. Consider p-adic valuations w' and w? such that im(s') C Z,: for i =1,2. We claim
that w! =w?. Indeed, let w be the maximal common coarsening of w' and w?. By way of
contradiction, suppose that w < w!, w?. Then the valuations w'/w and w?/w are independent
p-adic valuations on Kw, both of which prolong the p-adic valuation of the p-adically closed
field kw. Further, from Lemma 3(2), it follows that K'w is the maximal Z/p elementary abelian
extension of Kw; moreover, since im(s') C Z,,: for i =1, 2, general decomposition theory for
valuations gives that s, (Gal(k'|k)) C Zi,, for i = 1,2. On the other hand, by the construction
of w, we have that w!/w and w?/w are independent valuations of Kw. However, since w'/w
and w?/w are independent, it follows from Lemma 3(2) that Z, Jw N 22y 18 trivial. This is a
contradiction, because im(s,) C Zy /,, for i =1, 2. O

The proof of Theorem B is thus complete.

4. Proof of Theorem A

The following stronger assertion holds (from which Theorem A follows immediately).

THEOREM 13. Let k|Q, be a finite extension containing the pth roots of unity, and let ko C k
be a subfield which is relatively algebraically closed in k. Let Xy be a complete smooth curve

over ko, and let Ky = ko(X) be the function field of Xj.

(1) Every k-rational point x € X gives rise to a bouquet of conjugacy classes of liftable sections
s :é;m — é,KO above x.

(2) Let s : é;go — é’KO be a liftable section. Then there exists a unique k-rational point x € Xy
such that s’ equals one of the sections s, mentioned above.

Proof. (1) Let v be the valuation of k. Notice that, by §2-H.(b), there exists a bijection from the
p-adic valuations w of x(Xop) with d,, = d, to the k-rational points = of Xy which sends each w
to the center x of the canonical coarsening w; on X = X Xy, k. We conclude by applying
Theorem B(1).

(2) Since ko C k is relatively algebraically closed, kg is p-adically closed. Let v be the valuation
of k and of all subfields of k. Since kg is p-adically closed, we can apply Theorem B and get that
for every section s’ : é;m — élKo, there exists a unique p-adic valuation w of Ky which prolongs v
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to Ko and has p-adic rank equal to the p-adic rank of v, such that s’ is a section above w. Let
wi be the canonical coarsening of v. Then we have the following two cases.

Case 1. The valuation wy is trivial.

Then w is a discrete valuation of K that prolongs v to K and has the same residue field and
same value group as v. Equivalently, the completions ko and Kj are equal, and hence equal to k.
Therefore w is uniquely determined by the embedding #,, : (Ko, w) < (k, v). In geometric terms,
1, defines a k-rational point z of Xy and so on.

Case 2. The valuation w; is not trivial.

In this case wy is a kg-rational place of Ky, hence it defines a kg-rational point zg of Xy, and
hence a k-rational point x of Xy, and so forth. O

5. Proof of Theorem B°

First, the proof of assertion (1) is identical to the proof of Theorem B(1), so we omit it. As for
assertion (2), let s} : Gal(k|l) — Gal(K’|L) be a liftable section of the canonical projection pr’ :
Gal(K'|L) — Gal(k'|l). Then the restriction of s} to Gal(k'|k) C Gal(k'|l) gives rise to a liftable
section s : Gal(k'|k) — Gal(K'|K) of pr’y : Gal(K'|K) — Gal(k’|k). Hence, by Theorem B, there
exists a unique p-adic valuation w' of K which prolongs the p-adic valuation v, of k to K and
has d,,1 = dy, and s’ = s,,1 in the usual way. Let w = w!|}, be the restriction of w' to L. Then w
prolongs the valuation v of I to L. We claim that w! is the unique prolongation of w to K.
Indeed, let w? :=w' o gy with o9 € Gal(k|l) be a further prolongation of w to K. If (w')’ is a
prolongation of w' to K’ for i = 1,2 and o € im(s}) is a preimage of og, then (w?)":= (w')' oo
is a prolongation of w? to K’. Therefore, if Z,1 C Gal(K'|K) is the decomposition group above
wt, then Z,»2 := 07,10~ is the decomposition group above w?. On the other hand, im(s") C Z,
by Theorem B (or, more precisely, by Lemma 10 in the proof of Theorem B). Since o € im(s’)
and Gal(k'|k) is a normal subgroup of Gal(k’|l), we have that im(s’) is normal in im(s’ ), and
it follows that o(im(s"))o~! =im(s’). Hence im(s') C Z,1 N Z,2. But then, by Theorem B (or,
more precisely, by Lemma 12 in the proof of Theorem B), we must have w! = w?. Equivalently,
im(s’ ) is contained in Z,, C Gal(K'|L). So we finally conclude that d,, = d,, as claimed.

6. Proof of Theorem A°

The following stronger assertion holds (from which Theorem A follows immediately).

THEOREM 14. Let [|Q, be a finite extension. Let ly Cl be a relatively algebraically closed
subfield and kollp a finite Galois extension with p, C ko. Let Y, be a complete smooth
geometrically integral curve over ly. Let Ly = k(Yy) be the function field of Yy, and let Ko = Loky.

(1) Every l-rational point y € Y gives rise to a bouquet of conjugacy classes of liftable sections

sy, : Gal(kg|lo) — Gal(Kp|Lo) above y.

(2) Let s": Gal(kg|lo) — Gal(K()|Lo) be a liftable section. Then there exists a unique l-rational

point y € Yy(l) such that s' equals one of the sections s;, mentioned above.

Proof. The proof is identical to the proof of Theorem A above, the only difference being that
one uses Theorem BY instead of Theorem B. O
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