

COMPOSITIO MATHEMATICA

On the birational p-adic section conjecture

Florian Pop

Compositio Math. 146 (2010), 621-637.

 ${\rm doi:} 10.1112/S0010437X09004436$

On the birational p-adic section conjecture

Florian Pop

Abstract

In this article we introduce and prove a \mathbb{Z}/p meta-abelian form of the birational p-adic section conjecture for curves. This is a much stronger result than the usual p-adic birational section conjecture for curves, and makes an effective p-adic section conjecture for curves quite plausible.

1. Introduction

Let $X \to k$ be a complete geometrically integral smooth curve over a field k. Recall that Grothendieck's 'section conjecture', which evolved from his *Esquisse d'un Programme* of 1983 (see [Gro98a]) and *Letter to Faltings* of 1984 (see [Gro98b]), predicts that under certain 'anabelian hypotheses' π_1 gives rise to a bijection between the k-rational points of X, which are actually the sections of $X \to k$, and the (conjugacy classes) of sections of $\pi_1(X) \to \pi_1(k)$.

The aim of this article is to formulate and prove a very 'minimalistic' birational variant of this conjecture in the case where k is a finite field extension of \mathbb{Q}_p .

To begin with, let k be an arbitrary base field and K|k the function field of a complete geometrically integral smooth curve $X \to k$. Let $\tilde{K}|K$ be some Galois extension, and let $\operatorname{Gal}(\tilde{K}|K)$ denote its Galois group. Further, let $\tilde{k} := \overline{k} \cap \tilde{K}$ be the 'constants' of \tilde{K} , and consider the resulting canonical exact sequence

$$1 \to \operatorname{Gal}(\tilde{K}|K\tilde{k}) \longrightarrow \operatorname{Gal}(\tilde{K}|K) \xrightarrow{\tilde{\operatorname{pr}}_K} \operatorname{Gal}(\tilde{k}|k) \to 1.$$

Let $\tilde{X} \to X$ be the normalization of X in the field extension $K \hookrightarrow \tilde{K}$. For $x \in X$ and $\tilde{x} \in \tilde{X}$ above x, let T_x and Z_x , with $T_x \subseteq Z_x$, be the inertia and decomposition groups of $\tilde{x}|x$, respectively, and let $G_x := \operatorname{Aut}(\kappa(\tilde{x})|\kappa(x))$ be the residual automorphism group. By decomposition theory, one has a canonical exact sequence

$$1 \to T_x \to Z_x \to G_x \to 1. \tag{*}$$

Suppose next that x is k-rational, i.e. $\kappa(x) = k$. Since $\tilde{k} \subset \kappa(\tilde{x})$, the projection $Z_x \xrightarrow{\tilde{\mathrm{pr}}_K} \operatorname{Gal}(\tilde{k}|k)$ gives rise to a canonical surjective homomorphism $G_x \to \operatorname{Gal}(\tilde{k}|k)$, which in general is not injective. Nevertheless, if $\tilde{k} = \kappa(\tilde{x})$, then $G_x \to \operatorname{Gal}(\tilde{k}|k)$ is an isomorphism. Hence, if the exact sequence (*) splits, then $\tilde{\mathrm{pr}}_K$ has sections $\tilde{s}_x : \operatorname{Gal}(\tilde{k}|k) \to Z_x \subset \operatorname{Gal}(\tilde{K}|K)$, called sections above x; also, notice that the conjugacy classes of the sections \tilde{s}_x above x build a 'bouquet' which is in canonical bijection with the (non-commutative) continuous cohomology pointed set $H^1_{\operatorname{cont}}(\operatorname{Gal}(\tilde{k}|k), T_x)$ defined via the split exact sequence (*).

Received 27 July 2008, accepted in final form 9 June 2009, published online 18 March 2010. 2000 Mathematics Subject Classification 11G, 14G (primary), 12E30 (secondary).

Keywords: anabelian geometry, (étale) fundamental groups, p-adically closed fields, local—global principles for Brauer groups, rational points, valuations, Hilbert decomposition theory.

This work was supported by NSF grants DMS-0401056 and DMS-0801144.

This journal is © Foundation Compositio Mathematica 2010.

Note that if $\operatorname{char}(k) = 0$, then T_x is $\operatorname{Gal}(\tilde{k}|k)$ -isomorphic to a quotient of $\widehat{\mathbb{Z}}(1)$ and thus abelian; hence $\operatorname{H}^1_{\operatorname{cont}}(\operatorname{Gal}(\tilde{k}|k), T_x)$ is a group. Furthermore, if $\tilde{K} = K^{\operatorname{s}}$ and $\tilde{k} = k^{\operatorname{s}}$ are separable closures of K and k, then $G_x = \operatorname{Gal}(k^{\operatorname{s}}|k)$ and (*) is split, and thus sections above x exist; moreover, if $\operatorname{char}(k) = 0$, then $T_x \cong \widehat{\mathbb{Z}}(1)$ as G_k -modules, and hence $\operatorname{H}^1_{\operatorname{cont}}(G_k, T_x) \cong \widehat{k^\times}$ via Kummer theory.

If v is an arbitrary valuation of K and \tilde{v} is a prolongation of v to \tilde{K} , then we denote by T_v and Z_v , with $T_v \subseteq Z_v$, the inertia and decomposition groups of $\tilde{v}|v$, respectively, and by $G_v = Z_v/T_v$ the residual automorphism group. If $\tilde{s}_v : \operatorname{Gal}(\tilde{k}|k) \to Z_v \subseteq \operatorname{Gal}(\tilde{K}|K)$ is a section of $\tilde{\operatorname{pr}}_K$, then we say that \tilde{s}_v is a section above v.

Next, let p be a fixed prime number. We denote by K'|K a maximal \mathbb{Z}/p elementary abelian extension of K and by K'' a maximal \mathbb{Z}/p elementary abelian extension of K'. Then K''|K is a Galois extension, which we shall call the maximal \mathbb{Z}/p elementary meta-abelian extension of K. Note that $k' := \overline{k} \cap K'$ and $k'' := \overline{k} \cap K''$ are, respectively, the maximal \mathbb{Z}/p elementary abelian extension and the maximal \mathbb{Z}/p elementary meta-abelian extension of k. We further consider the canonical surjective projections

$$\operatorname{pr}_K':\operatorname{Gal}(K'|K) \to \operatorname{Gal}(k'|k), \quad \operatorname{pr}_K'':\operatorname{Gal}(K''|K) \to \operatorname{Gal}(k''|k).$$

We will say that a section $s' : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ of pr'_K is *liftable* if there exists a section $s'' : \operatorname{Gal}(k''|k) \to \operatorname{Gal}(K''|K)$ of pr''_K which lifts s' to $\operatorname{Gal}(k''|k)$.

Note that if the pth roots of unity μ_p are contained in k and hence in K, then by Kummer theory we have $K' = K[\sqrt[p]{K}]$ and $K'' = K'[\sqrt[p]{K'}]$, and similarly for k.

From now on, suppose in the above context that k is a finite extension of \mathbb{Q}_p . Then the promised 'minimalistic' form of the birational p-adic section conjecture is the following.

THEOREM A. In the above notation, suppose that $\mu_p \subset k$. Then the following hold.

- (1) Every k-rational point $x \in X$ gives rise to a bouquet of conjugacy classes of liftable sections $s'_x : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ above x, which is in bijection with $\operatorname{H}^1(\operatorname{Gal}(k'|k), \mathbb{Z}/p(1))$.
- (2) Let $s' : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ be a liftable section. Then there exists a unique k-rational point $x \in X$ such that s' equals one of the sections s'_x defined above.

Actually, one can reformulate the question addressed by Theorem A in terms of p-adic valuation and obtain the following stronger result. See § 2-H. for definitions, notation and a few facts on p-adically closed fields and p-adic valuations v (for example, the p-adic rank d_v of v), and see [AK66, PR85] for proofs.

THEOREM B. Let k be a p-adically closed field with p-adic valuation v, and suppose that $\mu_p \subset k$. Let K|k be a field extension with transcendence degree tr.deg(K|k) = 1. Then the following hold.

- (1) Let w be a p-adic valuation of K with $d_w = d_v$. Then w prolongs v to K and gives rise to a bouquet of conjugacy classes of liftable sections $s'_w : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ above w.
- (2) Let $s' : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ be a liftable section. Then there exists a unique p-adic valuation w of K such that $d_w = d_v$, and $s' = s'_w$ for some s'_w as above.

Remarks.

(1) First, observe that the above assertions do not hold if $\mu_p \not\subset k$. Indeed, if $\mu_p \not\subset k$, then the maximal pro-p quotient $G_k(p)$ of G_k is a pro-p free group on $[k:\mathbb{Q}_p]+1$ generators; see, e.g., [NSW08, Theorem 7.5.11]. From this it follows that all the sections $s': \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ of pr'_K are liftable. Thus, for X with X(k) empty, we have that pr'_K has liftable

- sections but that none of these originate from k-rational points of X. (Actually, the same holds for all curves X as above, even when X(k) is non-empty.)
- (2) Nevertheless, in the case where μ_p is not contained in the base field, assertions similar to Theorems A and B hold in the following form. Let $l|\mathbb{Q}_p$ be some finite extension and $Y \to l$ a complete geometrically integral smooth curve with function field $L = \kappa(Y)$. Let k|l be a finite Galois extension with $\mu_p \subset k$. Setting K := Lk, consider the field extensions $K'|K \hookrightarrow K''|K$ and $k'|k \hookrightarrow k''|k$ as above. Then $k' = K' \cap \overline{l}$ and $k'' = K'' \cap \overline{l}$; moreover, K'|L and K''|L, as well as k'|l and k''|l, are Galois extensions too, and one gets surjective canonical projections

$$\operatorname{pr}'_L : \operatorname{Gal}(K'|L) \to \operatorname{Gal}(k'|l), \quad \operatorname{pr}''_L : \operatorname{Gal}(K''|L) \to \operatorname{Gal}(k''|l).$$

As above, we will say that a section $s'_L : \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ of pr'_L is $\operatorname{liftable}$ if there exists a section $s''_L : \operatorname{Gal}(k''|l) \to \operatorname{Gal}(K''|L)$ of pr''_L which lifts s'_L . Then one has the following extensions of Theorems A and B.

Theorem A^0 . With the above notation and hypothesis, the following hold.

- (1) Every l-rational point $y \in Y$ gives rise to a bouquet of conjugacy classes of liftable sections $s'_n : \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ above y, which is in bijection with $\operatorname{H}^1(\operatorname{Gal}(k'|l), \mathbb{Z}/p(1))$.
- (2) Let $s'_L: \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ be a liftable section. Then there exists a unique l-rational point $y \in Y$ such that s'_L equals one of the sections s'_y defined above.

THEOREM B⁰. Let l be a p-adically closed field with p-adic valuation v, and let L|l be a field extension with transcendence degree $\operatorname{tr.deg}(L|l) = 1$. Then, in the above notation, the following hold.

- (1) Let w be a p-adic valuation of L with $d_w = d_v$. Then w prolongs v to L and gives rise to a bouquet of conjugacy classes of liftable sections $s'_w : \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ above w.
- (2) Let $s'_L : \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ be a liftable section. Then there exists a unique p-adic valuation w of L such that $d_w = d_v$, and s'_L equals one of the sections s'_w as above.

Notice that Theorem A^0 obviously implies the full Galois birational p-adic section conjecture, but not vice versa; see Koenigsmann [Koe05] for a proof of the latter (among other things), as well as Remark 7 in this paper.

Indeed, for given $Y \to l$ with function field $L = \kappa(Y)$ as above, let $s: G_l \to G_L$ be a section of the canonical projection $G_L \to G_l$.

- (a) Consider finite field extensions $L_i|L$ with $\operatorname{im}(s) \subset G_{L_i}$, and let $Y_i \to l$ be a complete smooth curve with function field $L_i = \kappa(Y_i)$. Notice that $Y_i \to l$ is geometrically integral.
- (b) Consider finite Galois extensions $k_i|l$ with $\mu_p \subset k_i$, and set $K_i := L_i k_i$. Let $\phi'_i : G_l \to \operatorname{Gal}(k'_i|l)$ and $\psi'_i : G_{L_i} \to \operatorname{Gal}(K'_i|L_i)$ be the canonical projections.

Then s gives rise functorially (in L_i and k_i) to liftable sections $s_i': \operatorname{Gal}(k_i'|l) \to \operatorname{Gal}(K_i'|L_i)$ of the canonical projection $\operatorname{pr}_i': \operatorname{Gal}(K_i'|L_i) \to \operatorname{Gal}(k_i'|l)$ such that for $k_i \subseteq k_j$ and $L_i \subseteq L_j$, and thus for $K_i \subseteq K_j$, one has $s_i' = \operatorname{pr}_{ji} \circ s_j'$ where $\operatorname{pr}_{ji}: \operatorname{Gal}(K_j'|L_j) \to \operatorname{Gal}(K_i'|L_i)$ is the canonical projection. By Theorem A^0 , there exists a unique l-rational point $y_i \in Y_i(l)$ such that $s_i' = s_{y_i}'$ in the usual way; and since $s_i' = \operatorname{pr}_{ji} \circ s_j'$, the uniqueness of $y_i \in Y_i(l)$ implies that the canonical morphism $Y_j \to Y_i$ maps $y_j \in Y_j(l)$ to $y_i \in Y_i(l)$ and that $s_{y_i}' = \operatorname{pr}_{ji} \circ s_{y_j}'$. We conclude from this that if $y \in Y(l)$ is the common image of all the points $y_i \in Y_i(l)$ in Y(l), then one has $s = \varprojlim_i s_i' = \varprojlim_i s_{y_i}' = s_y$.

As an application of the results and techniques developed here, one can prove the following fact concerning the p-adic section conjecture for curves. Let $k|\mathbb{Q}_p$ be a finite extension and $X \to k$ a hyperbolic curve. Then there exists a finite effectively computable family of finite geometrically \mathbb{Z}/p elementary abelian (ramified) covers $\varphi_i: X_i \to X$, $i \in I$, satisfying:

- (i) $\bigcup_i \varphi_i(X_i(k)) = X(k)$, i.e. every k-rational point of X 'survives' in at least one of the covers $X_i \to X$:
- (ii) a section $s: G_k \to \pi_1(X)$ can be lifted to a section $s_i: G_k \to \pi_1(X_i)$ for some $i \in I$ if and only if s arises from a k-rational point $x \in X(k)$ in the manner described above.

The details of the proof will be given later.

With regard to the proofs of the above theorems, the main technical point is a generalization of the Tate–Roquette–Lichtenbaum local–global principle for Brauer groups of function fields of curves over p-adically closed fields, as introduced and studied in [Pop88]. As a result of this generalization, one is led to analyze the cohomological behavior of \mathbb{Z}/p elementary abelian extension of Henselizations of the function fields under consideration.

2. Generalities

A. \mathbb{Z}/p derived series and quotients

Let G be a profinite group. We denote by G^i the derived \mathbb{Z}/p series of G; hence, by definition, we have $G^1 := G$ and $G^{i+1} := [G^i, G^i](G^i)^p$ for i > 0. We will further set $\overline{G}^i := G^1/G^{i+1}$ for i > 0. Hence, in particular, $\overline{G}' := G^1/G^2$ is the maximal \mathbb{Z}/p elementary quotient of G, and $\overline{G}'' := G^1/G^3$ is the maximal \mathbb{Z}/p elementary meta-abelian quotient of G, i.e. the maximal quotient of G which is an extension of \overline{G}' by some \mathbb{Z}/p elementary abelian extension.

One can check without difficulty that mapping every profinite group G to \overline{G}^i , for i > 0, defines a functor from the category of all profinite groups onto the category of all pro-p groups whose derived \mathbb{Z}/p series has length no greater than i. In particular, if $\operatorname{pr}: G \to H$ is a (surjective) morphism of profinite groups, then the following hold:

- (1) pr gives rise canonically to a (surjective) morphism $\operatorname{pr}^i : \overline{G}^i \to \overline{H}^i$;
- (2) every section $s: H \to G$ of $\operatorname{pr}: G \to H$ gives rise to a section $s^i: \overline{H}^i \to \overline{G}^i$ of pr^i .

Finally, in the above context, we say that a section $s': \overline{H}' \to \overline{G}'$ of pr' is *liftable* if there exists a section $s'': \overline{H}'' \to \overline{G}''$ of pr'' which reduces to s' or, equivalently, lifts s'.

B. Cohomology and sections

Let G be a profinite group. We endow \mathbb{Z}/p with the trivial G-action and let $\mathrm{H}^n(G,\mathbb{Z}/p)$ be the cohomology groups of G with values in \mathbb{Z}/p . Then, in the notation of the previous subsection, for all i > 0 we have

$$\mathrm{H}^1(G,\mathbb{Z}/p)=\mathrm{Hom}(G,\mathbb{Z}/p)=\mathrm{Hom}(\overline{G}^{\,i},\mathbb{Z}/p)=\mathrm{H}^1(\overline{G}^{\,i},\mathbb{Z}/p),$$

and for every i the cup product gives rise to a canonical pairing

$$\operatorname{Hom}(\overline{G}^{i}, \mathbb{Z}/p) \times \operatorname{Hom}(\overline{G}^{i}, \mathbb{Z}/p) = \operatorname{H}^{1}(\overline{G}^{i}, \mathbb{Z}/p) \times \operatorname{H}^{1}(\overline{G}^{i}, \mathbb{Z}/p) \xrightarrow{\cup^{i}} \operatorname{H}^{2}(\overline{G}^{i}, \mathbb{Z}/p).$$

Next, let $\operatorname{pr}: G \to H$ be a quotient of G, and let $\operatorname{pr}': \overline{G}' \to \overline{H}'$ and $\operatorname{pr}'': \overline{G}'' \to \overline{H}''$ be the corresponding surjective projections as introduced in the previous subsection.

LEMMA 1. In the above notation, let $s': \overline{H}' \to \overline{G}'$ be a liftable section of $\operatorname{pr}': \overline{G}' \to \overline{H}'$ and let $\Gamma \subseteq G$ be the preimage of $s'(\overline{H}') \subseteq \overline{G}'$ under the canonical projection $G \to \overline{G}'$. Then, for characters $\chi_H, \psi_H \in \operatorname{Hom}(H, \mathbb{Z}/p)$ and the induced characters $\chi_{\Gamma}, \psi_{\Gamma} \in \operatorname{Hom}(\Gamma, \mathbb{Z}/p)$, the following are equivalent:

- (i) $\chi_H \cup \psi_H = 0$ in $H^2(\overline{H}'', \mathbb{Z}/p)$;
- (ii) $\chi_H \cup \psi_H = 0$ in $H^2(H, \mathbb{Z}/p)$;
- (iii) $\chi_{\Gamma} \cup \psi_{\Gamma} = 0$ in $H^2(\Gamma, \mathbb{Z}/p)$.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) follow from taking the inflation maps coming from the surjective group homomorphisms $\Gamma \to H \to \overline{H}''$. One proves (iii) \Rightarrow (i) as follows. Suppose that $\chi_{\Gamma} \cup \psi_{\Gamma} = \delta(\varphi)$ is the co-boundary of some map $\varphi : \Gamma \to \mathbb{Z}/p$. We claim that φ factors through the canonical projection $\Gamma \to \overline{H}''$. Indeed, $\chi_{\Gamma} \cup \psi_{\Gamma} = \delta(\varphi)$ means that

$$(\chi_{\Gamma} \cup \psi_{\Gamma})(g,h) = g \, \varphi(h) - \varphi(gh) + \varphi(g) = \varphi(h) - \varphi(gh) + \varphi(g) \quad \text{for all } g,h \in \Gamma,$$

where the last equality holds by virtue of the fact that G, and hence Γ , acts trivially on \mathbb{Z}/p . Now, if g or h lies in $G^2 \subset \Gamma$, then we have $(\chi_{\Gamma} \cup \psi_{\Gamma})(g,h) = 0$. Equivalently, if g or h lies in $G^2 \subset \Gamma$, then $\varphi(g) - \varphi(gh) + \varphi(h) = 0$ and thus, in particular, the restriction of φ to G^2 is a group homomorphism to \mathbb{Z}/p . Hence the restriction of φ to $G^3 = [G^2, G^2](G^2)^p$ is trivial and, finally, φ factors through $\Gamma/G^3 \subset \overline{G}''$. Therefore, $\chi_G \cup \psi_G = 0$ in $H^2(\Gamma/G^3, \mathbb{Z}/p)$. Now let $s'' : \overline{H}'' \to \overline{G}''$ be a lifting of the section s', and observe that $s''(\overline{H}'') \subseteq \Gamma/G^3$. Then the restriction of $\chi_G \cup \psi_G = 0$ to $s''(\overline{H}'') \subseteq \Gamma/G^3$ is trivial too, i.e. $\chi_H \cup \psi_H = 0$ in $H^2(s''(\overline{H}''), \mathbb{Z}/p)$. Thus, finally, $\chi_H \cup \psi_H = 0$ in $H^2(\overline{H}'', \mathbb{Z}/p)$, as claimed.

C. Basics from Galois cohomology

Let K be an arbitrary field of characteristic other than p, and let G_K be its absolute Galois group. Further, let G_K^i and \overline{G}_K^i be, respectively, the derived \mathbb{Z}/p series and quotients of G_K . We recall the following fundamental facts.

(a) By Kummer theory, one has a canonical isomorphism $K^{\times}/p = \mathrm{H}^1(G_K, \mu_p)$. In particular, if $\mu_p \subset K$, then the absolute Galois group G_K acts trivially on μ_p ; hence, upon choosing some identification $i: \mu_p \to \mathbb{Z}/p$ of trivial G_K modules, we get

$$K^{\times}/p = \mathrm{H}^1(G_K, \mu_p) = \mathrm{Hom}(\mathrm{Gal}(K'|K), \mu_p) \xrightarrow{\imath} \mathrm{Hom}(\mathrm{Gal}(K'|K), \mathbb{Z}/p).$$

(b) Let ${}_p\mathrm{Br}(K)$ denote the p-torsion subgroup of $\mathrm{Br}(K)$. Then ${}_p\mathrm{Br}(K)=\mathrm{H}^2(G_K,\mu_p)$ canonically. Hence, if $\mu_p\subset K$, then $\imath:\mu_p\to\mathbb{Z}/p$ gives rise to an isomorphism

$$_{p}\mathrm{Br}(K) = \mathrm{H}^{2}(G_{K}, \mu_{p}) \xrightarrow{\imath} \mathrm{H}^{2}(G_{K}, \mathbb{Z}/p).$$

(c) Consider the cup product $K^{\times}/p \otimes K^{\times}/p \stackrel{\cup}{\longrightarrow} \mathrm{H}^2(G_K, \mu_p \otimes \mu_p)$, $(a, b) \mapsto \chi_a \cup \chi_b$, which is actually surjective by the Merkurjev–Suslin theorem. If $\mu_p \subset K$, then the isomorphism $i: \mu_p \to \mathbb{Z}/p$ gives rise to a surjective morphism

$$K^{\times}/p \otimes K^{\times}/p \xrightarrow{\cup} H^2(G_K, \mathbb{Z}/p), \quad (a, b) \mapsto \chi_a \cup \chi_b.$$

Combining these observations with Lemma 1 above, we deduce the following result. Let K|k be a regular field extension, and suppose that $\operatorname{char}(k) \neq p$ and $\mu_p \subset k$. As in the Introduction, we consider a maximal \mathbb{Z}/p elementary abelian extension K'|K of K, the corresponding $k' := K' \cap \overline{k}$

etc. and the resulting canonical surjective projections

$$\operatorname{pr}_K':\operatorname{Gal}(K'|K) \to \operatorname{Gal}(k'|k), \quad \operatorname{pr}_K'':\operatorname{Gal}(K''|K) \to \operatorname{Gal}(k''|k).$$

LEMMA 2. In the above context, let $s' : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ be a liftable section of pr'_K and let $M \subset K'$ be the fixed field of $\operatorname{im}(s')$ in K'. Then for any elements $a, b \in k^{\times}$ and the corresponding p-cyclic k-algebras $A_k(a,b)$ and $A_M(a,b)$, we have that $A_k(a,b)$ is trivial in $\operatorname{Br}(k)$ if and only if $A_M(a,b)$ is trivial in $\operatorname{Br}(M)$.

D. Hilbert decomposition in elementary \mathbb{Z}/p abelian extensions

Let K be a field of characteristic not equal to p that contains μ_p . Let v be a valuation of K and let v' be some prolongation of v to K'. Let $V_{v'}$, $T_{v'}$ and $Z_{v'}$ with $V_{v'} \subseteq T_{v'} \subseteq Z_{v'}$ be, respectively, the ramification, inertia and decomposition groups of v'|v in $\operatorname{Gal}(K'|K)$. We remark that because $\operatorname{Gal}(K'|K)$ is commutative, the groups $V_{v'}$, $T_{v'}$ and $Z_{v'}$ depend only on v; therefore we will simply denote them by V_v , T_v and Z_v . Finally, we denote by $K^Z \subseteq K^T \subseteq K^V$ the corresponding fixed fields in K'.

LEMMA 3. With the above notation, the following statements hold.

- (1) Let $U^v := 1 + p^2 \mathfrak{m}_v$. Then K^Z contains $\sqrt[p]{U^v}$ and we have $K^Z = K[\sqrt[p]{U^v}]$, provided that p is a v-unit. In particular, if w_1 and w_2 are independent valuations of K, then $Z_{w_1} \cap Z_{w_2} = \{1\}$.
- (2) If $p \neq \operatorname{char}(Kv)$, then $V_v = \{1\}$ and K'v' = (Kv)', and hence $G_v := Z_v/T_v = \operatorname{Gal}(Kv'|Kv)$. If $p = \operatorname{char}(Kv)$, then $V_v = T_v$, and the residue field K'v' contains $(Kv)^{1/p}$ and the maximal \mathbb{Z}/p elementary abelian extension of Kv.
- (3) Let $L := K_v^h$ be the Henselization of K with respect to v. Then L' = LK' is a maximal \mathbb{Z}/p elementary extension of L. Therefore we have $\operatorname{Gal}(L'|L) \cong Z_v$ canonically.
- Proof. (1) Everything is clear, except maybe the assertion concerning the independent valuations w_1 and w_2 . To prove this, consider an arbitrary $x \neq 0$. Since w_1 and w_2 are independent, there exists $y \neq 0$ which is arbitrarily w_1 -close to 1 and arbitrarily w_2 -close to x. More precisely, there exists $y \neq 0$ such that, first, $w_1(1-y) > 2w_1(p)$ and, second, $w_2(x-y) > 2w_2(p) + w_2(x)$ or, equivalently, $w_2(1-y/x) > 2w_2(p)$. But then, by the first assertion of the lemma, we have $\sqrt[p]{y} \in K^{Z_{w_1}}$ and $\sqrt[p]{y/x} \in K^{Z_{w_2}}$, hence $\sqrt[p]{x} \in K^{Z_{w_2}} K^{Z_{w_1}}$. Since $K^{Z_{w_2}} K^{Z_{w_1}} = (K')^{Z_{w_2} \cap Z_{w_1}}$ and $x \in K'$ was arbitrary, we get $K' \subseteq (K')^{Z_{w_2} \cap Z_{w_1}}$. Therefore $Z_{w_2} \cap Z_{w_1} = 1$ as claimed.
- (2) If $p \neq \operatorname{char}(Kv)$, then everything is clear by Kummer theory and general valuation theory. If $p = \operatorname{char}(Kv)$ and $p \neq \operatorname{char}(K)$, it follows that $\operatorname{char}(K) = 0$. Recall that by Artin–Schreier theory, the maximal \mathbb{Z}/p elementary abelian extension of Kv is generated by the roots of all the Artin–Schreier polynomials $Y^p Y \overline{a}$, with $\overline{a} \in Kv$. We show that every such polynomial has a root in the residue field of some \mathbb{Z}/p cyclic extension $K[\alpha]$ with $\alpha^p = u$ for some $u \in K$. Indeed, by the general non-sense of Kummer theory versus Artin–Schreier theory, one has the following.

Let $X^p - u \in \mathcal{O}_v[X]$ be some Kummer polynomial over K. We note that $\lambda := \zeta_p - 1 \in K$, as $\mu_p \subset K$, and recall that $p = \prod_{0 < \mu < p} (1 - \zeta_p^{\mu})$. Since $1 - \zeta_p^{\mu} = -\lambda (1 + \cdots + \zeta_p^{\mu-1})$ and thus, in particular, $(1 + \cdots + \zeta_p^{\mu-1}) \equiv \mu \pmod{\lambda}$, we finally get $p \equiv \lambda^{p-1}(p-1)! \equiv -\lambda^{p-1} \pmod{\lambda^p}$, because $(p-1)! \equiv -1 \pmod{p}$ by Wilson's theorem. Hence, upon setting $X := \lambda X_0 + 1$ and $u := \lambda^p u_0 + 1$, the equation $X^p = u$ is equivalent to the equation $X^p_0 - X_0 + \lambda f(X_0) = u_0$, where $f(X_0) \in \mathcal{O}_v[X_0]$ is an explicitly computable polynomial. Therefore, if $\wp = \text{Frob} - \text{id}$ is the Artin–Schreier operator and $\overline{u}_0 \in Kv \setminus \wp(Kv)$, then v is totally inert in $K_u := K[\sqrt[p]{u}]$. And, if w is the unique prolongation of v to K_u , then the residue field of w is $K_u w = (Kv)[\beta]$ with $\beta^p - \beta = \overline{u}_0$.

By reversing the process above, we can see that each Artin–Schreier extension of Kv is obtained by reducing a properly chosen Kummer \mathbb{Z}/p extension of K.

(3) First, if v has rank one, then K is dense in $L := K_v^h$. Hence, given $\hat{u} \in \mathcal{O}_L$, there exists $u \in \mathcal{O}_K$ such that $\hat{u} = u(1+\eta)$ in K^h with $v^h(\eta) > 2v^h(p)$. But then $1+\eta$ is a pth power in K^h by Hensel's lemma, and hence the roots of $X^p - u$ and the roots of $X^p - \hat{u}$ generate the same field extension of K^h . To treat the general case, one uses induction on the rank of the valuation v and then 'takes limits'.

E. Elementary \mathbb{Z}/p abelian extensions of Henselian fields

In this subsection, we will prove a technical result concerning elementary \mathbb{Z}/p abelian extensions of Henselian fields. The context is as follows. Let L be a Henselian field with respect to a valuation w. Suppose that $\operatorname{char}(L) = 0$ and $\operatorname{char}(Lw) = p > 0$, and that $\mu_p \subset L$. Further, let $L' = L[\sqrt[p]{L^{\times}}]$ be the maximal elementary \mathbb{Z}/p abelian extension of L and $\operatorname{Gal}(L'|L) := \operatorname{Gal}(L'|L)$ its Galois group. Since w is Henselian, w has a unique prolongation to L', which we again denote by w.

LEMMA 4. In the above context, suppose that w is a rank-one valuation. Let $\Lambda | L$ be a sub-extension of L' | L such that $L' | \Lambda$ is a finite extension. Then the following hold.

- (1) $L'w \mid \Lambda w$ is finite, and Λw contains $(Lw)^{1/p}$.
- (2) If Lw is not finite, or if $wL \not\approx \mathbb{Z}$, then for every $u \in L$ there exists $t \in L^{\times}$ which satisfies $L_t := L[\sqrt[p]{t}] \subseteq \Lambda$ and $w(u) \in p \cdot wL_t \subseteq p \cdot w(\Lambda)$. Hence $wL \subseteq p \cdot w\Lambda$.
- (3) In particular, if $wL \not\subseteq p \cdot w\Lambda$, then $wL \approx \mathbb{Z}$ and Lw is finite.

Proof. The proof is inspired by [Pop88, Korollar 2.7] and uses in an essential way [Pop88, Lemma 2.6]. Let \mathcal{O} and \mathfrak{m} be, respectively, the valuation ring and valuation ideal of w. Then, by [Pop88, Lemma 2.6], one has exact sequences of the form

$$1 \to \mathcal{O}^\times/p \to L^\times/p \to w(L)/p \to 1 \quad \text{and} \quad 1 \to (1+\mathfrak{m})/p \to \mathcal{O}^\times/p \to (Lw)^\times/p \to 1. \tag{*}$$

By Kummer theory (note that $\mu_p \subset L$ by hypothesis), one has $\Lambda = L[\sqrt[p]{\Delta}]$ for a subgroup $\Delta \subset L^{\times}$ such that Δ contains the pth powers of all the elements of L^{\times} and L^{\times}/Δ is canonically Pontrjagin dual (hence non-canonically isomorphic) to $\operatorname{Gal}(L'|\Lambda)$. In particular, $L^{\times}/\Delta = (L^{\times}/p)/(\Delta/p)$ is a finite elementary \mathbb{Z}/p abelian group. Hence, from the above exact sequences (*) it follows that upon setting $\Delta_0 := \Delta \cap \mathcal{O}^{\times}$ and $\Delta_1 := \Delta \cap (1 + \mathfrak{m})$ we have that $(1 + \mathfrak{m})/\Delta_1$ and $\mathcal{O}^{\times}/\Delta_0$ are finite groups; moreover, if Δw denotes the image of Δ_0 in Lw^{\times} , then $Lw^{\times}/\Delta w$ is a finite group.

- (1) First, if Lw is finite, then Lw is perfect and thus there is nothing to prove. Now suppose that Lw is infinite. Then since $Lw^{\times}/\Delta w$ is finite, it follows that Δw is infinite too. Hence, for every $a \in Lw$, there exist $x \neq y$ in Δw such that a x, $a y \neq 0$ and $(a x)\Delta w = (a y)\Delta w$. Equivalently, there exists $z \in \Delta w$ such that a x = z(a y) and hence a = (x yz)/(1 z). On the other hand, since $x, y, z \in \Delta w$, one has $x^{1/p}, y^{1/p}, x^{1/p} \in (\Delta w)^{1/p} \subset \Lambda w$ and thus $a^{1/p} \in \Lambda w$. Since a was arbitrary, we get $(Lw)^{1/p} \subseteq \Lambda w$ as claimed.
- (2) From the discussion above it follows that $(1 + \mathfrak{m})/\Delta_1$ is finite. Let $1 + a_j$, $1 \leq j \leq n$, be representatives for $(1 + \mathfrak{m})/\Delta_1$.
- Case (i). w is not discrete on L. Then for every $u \in L^{\times}$ there exists some $u_1 \in L^{\times}$ such that $0 < w(uu_1^p) < w(p), w(a_j)$ for all $j = 1, \ldots n$. Since $1 + uu_1^p \in 1 + \mathfrak{m}$, there exists j and

some $t \in \Delta_1$ such that

$$1 + uu_1^p = t(1 + a_j).$$

Set t = 1 + a. Since $0 < w(uu_1^p) < w(p), w(a_j)$, it immediately follows from the ultra-metric triangle inequality that $w(uu_1^p) = w(a)$. On the other hand, since $t \in \Delta$, one has $t = \theta^p$ for some $\theta \in \Lambda$, i.e. $L_t := L[\sqrt[p]{t}] = L[\theta] \subseteq \Lambda$. Hence $1 + a = \theta^p$ and, upon setting $\theta = 1 + b$, one gets $1 + a = (1 + b)^p$. From this we obtain w(b) > 0. Since $w(a) = w(uu_1^p) < w(p)$ and $1 + a = (1 + b)^p$, the ultra-metric triangle inequality implies that $w(a) = w(b^p)$ in wL_t . Thus one has

$$w(u) + pw(u_1) = w(uu_1^p) = w(a) = p \cdot w(b),$$

and hence $w(u) = pw(b) - pw(u_1) \in p \cdot wL_t$ as claimed.

Case (ii). w is discrete on L. Suppose that Lw is not finite. Let \mathfrak{m} and \mathcal{O} , with $\mathfrak{m} \subset \mathcal{O} \subset L$, be the valuation ideal and valuation ring of w in L, respectively. Since L contains μ_p and $p \geqslant 2$, it follows that we have the inclusions $(1 + \mathfrak{m})^p \subseteq (1 + \mathfrak{m}^p) \subseteq 1 + \mathfrak{m}^2$. After choosing a uniformizing parameter π of \mathcal{O} , one gets in the usual way an isomorphism of groups

$$\phi: (1+\mathfrak{m})/(1+\mathfrak{m}^2) \to Lw^+, \quad 1+x\pi \mapsto x \pmod{\mathfrak{m}}.$$

Hence $(1+\mathfrak{m})/(1+\mathfrak{m})^p$ is infinite, because it has as its homomorphic image the infinite group $(1+\mathfrak{m})/(1+\mathfrak{m}^2) \cong Lw^+$. Next, recall that $(1+\mathfrak{m})/\Delta_1$ is a finite group. Therefore $\phi(1+\mathfrak{m})/\phi(\Delta_1) = Lw^+/\phi(\Delta_1)$ is finite too. Hence there exist (infinitely many) elements $t := 1+a \in \Delta_1$ with $a \in \pi \mathcal{O}^{\times}$. For any such $t \in \Delta_1$, we have $t = \theta^p$ for some $\theta \in \Lambda$; hence we have, as above, $L_t = L[\theta]$. Setting $\theta := 1+b$, we have $1+a = (1+b)^p$. Equivalently,

$$a = \sum_{i=1}^{p-1} \binom{p}{i} b^i + b^p = pb\epsilon + b^p$$

for some w-unit $\epsilon \in \Lambda$. Since π divides p in \mathcal{O} , one has $w(p \, b \, \epsilon) > w(\pi)$, and therefore $w(\pi) = w(a) = w(b^p) = p \cdot w(b)$ in $w\Lambda$. Since $wL = \mathbb{Z} w(\pi)$, it follows that $w(u) \subseteq p \cdot wL_t$, as claimed. \square

F. Inertial cohomology

In this subsection, we recall a well-known result concerning the cohomology of the maximal inert extension of a Henselian field (which goes back to Witt). The situation is as follows. Let L be a Henselian field with respect to a valuation w, let $L_1|L$ be a finite unramified Galois extension, and let $G := \operatorname{Gal}(L_1|L)$ be the Galois group of $L_1|L$. Let $\mathcal{O}_L \subset \mathcal{O}_{L_1}$ and $\mathfrak{m}_L \subset \mathfrak{m}_{L_1}$ be the corresponding valuation rings and valuation ideals, respectively. As remarked in [Pop88, Lemma 2.2], the group of principal units $1 + \mathfrak{m}_{L_1}$ is G-cohomologically trivial, and there exists an exact sequence of cohomology groups

$$0 \to \mathrm{H}^2(G, L_1 w^\times) \to \mathrm{H}^2(G, L_1^\times) \to \mathrm{H}^1(G, (\mathbb{Q} \otimes wL)/wL) \to 0,$$

so that we have an exact sequence of the form

$$0 \to \operatorname{Br}(L_1 w | L w) \to \operatorname{Br}(L_1 | L) \to \operatorname{Hom}(G, (\mathbb{Q} \otimes w L) / w L) \to 0. \tag{\dagger}$$

We also remark that if M|L is some algebraic extension, linearly disjoint from L_1 , say, and $M_1 = ML_1$ is the compositum (in some fixed algebraic closure), then the above exact sequence

gives rise to a commutative diagram of the form

$$0 \longrightarrow \operatorname{Br}(L_1w|Lw) \longrightarrow \operatorname{Br}(L_1|L) \longrightarrow \operatorname{Hom}(G, (\mathbb{Q} \otimes wL)/wL) \longrightarrow 0$$

$$\downarrow^{\operatorname{res}} \qquad \qquad \downarrow^{\operatorname{res}}$$

$$0 \longrightarrow \operatorname{Br}(M_1w|Mw) \longrightarrow \operatorname{Br}(M_1|M) \longrightarrow \operatorname{Hom}(G, (\mathbb{Q} \otimes wM)/wM) \longrightarrow 0$$

where the left two vertical maps are the canonical restriction maps and the rightmost one is induced by the canonical embedding $wL \hookrightarrow wM$. We will use these observations to prove the following result.

LEMMA 5. Let L be Henselian with respect to a rank-one valuation w and satisfy the conditions that $\operatorname{char}(L) = 0$, $\mu_p \subset L$ and $\operatorname{char}(Lw) = p > 0$. Let $L_1|L$ be a p-cyclic unramified sub-extension of L'|L, so that $G \cong \mathbb{Z}/p$, and let $\Lambda|L$ be a sub-extension of L'|L such that $L'|\Lambda$ is finite and $\Lambda|L$ and $L_1|L$ are linearly disjoint. Suppose that the restriction map

res :
$$Br(L_1|L) \to Br(\Lambda_1|\Lambda) \subseteq Br(\Lambda)$$

is non-trivial. Then $wL \approx \mathbb{Z}$ and $Lw|\mathbb{F}_p$ is a finite extension, i.e. L is a discrete-valued field with finite residue field of characteristic p.

Proof. By way of contradiction, suppose that the conclusion of the lemma does not hold.

Since $G = \operatorname{Gal}(L_1|L)$ has order p, it follows that $L_1 = L[\sqrt[p]{a}]$ for some $a \in L$, and that $\operatorname{Br}(L_1|L)$ consists of cyclic algebras of index p of the form $A_L(a,u)$ with $u \in L^{\times}$. In particular, $\operatorname{Br}(L_1|L)$ is a torsion group of exponent p. Further, since $L_1w|Lw$ is also cyclic of degree p, it follows that $\operatorname{Br}(L_1w|Lw)$ is generated by cyclic algebras of index p and, moreover, every such algebra from $\operatorname{Br}(L_1w|Lw)$ is also split by some purely inseparable extension of degree p of Lw. Therefore, the restriction map $\operatorname{Br}(L_1w|Lw) \xrightarrow{\operatorname{res}} \operatorname{Br}(Lw^{1/p})$ is trivial. On the other hand, by Lemma 4(1), we have $Lw^{1/p} \subseteq \Lambda w$. Hence the restriction map

$$\operatorname{Br}(L_1 w | L w) \xrightarrow{\operatorname{res}} \operatorname{Br}(\Lambda_1 w | \Lambda w) \subseteq \operatorname{Br}(\Lambda w)$$
 (*)

is trivial. Therefore, if $A_L(a, u) \in \operatorname{Br}(L_1|L)$ has non-trivial image in $\operatorname{Br}(\Lambda_1|\Lambda)$, then by the exact sequence (†) and the above diagram applied with $M := \Lambda$, we get that $A_L(a, u)$ does not lie in the image of $\operatorname{Br}(L_1w|Lw)$ in $\operatorname{Br}(L_1|L)$. Equivalently, $A_L(a, u)$ is ramified, i.e. w(u) is non-trivial in wL/p. Since we have assumed that the conclusion of Lemma 5 does not hold, by Lemma 4(2) there exists $L_t := L[\sqrt[p]{t}] \subseteq \Lambda$ with $t \in L^{\times}$ such that $w(u) \in p \cdot wL_t$. But then, by the fundamental (in)equality, we have

$$p = [L_t : L] \geqslant [L_t w : Lw] \cdot (wL_t : wL) \geqslant [L_t w : Lw] \cdot p \geqslant p.$$

Therefore, the above inequalities are actually equalities, and $[L_t w : Lw] = 1$, i.e. $L_t w = Lw$. Also, $L_{t,1} w = L_1 w$, where $L_{t,1} := L_t L_1$ is the compositum of L_t and L_1 inside Λ_1 .

Hence, from the above commutative diagram applied to $M := L_t$, it follows that the image $A_{L_t}(a, u)$ of $A_L(a, u)$ in $\operatorname{Br}(L_{t,1}|L_t)$ actually lies in $\operatorname{Br}(L_{t,1}w|L_tw) = \operatorname{Br}(L_1w|Lw)$. But then the image of $A_{L_t}(a, u)$ in $\operatorname{Br}(\Lambda_1|\Lambda)$ actually lies in the image of $\operatorname{Br}(L_{t,1}w|L_tw) = \operatorname{Br}(L_1w|Lw)$ in $\operatorname{Br}(\Lambda_1w|\Lambda w)$. On the other hand, the image of $\operatorname{Br}(L_1w|Lw)$ in $\operatorname{Br}(\Lambda_1w|\Lambda w)$ is trivial by the discussion around (*) above. Therefore $A_{\Lambda}(a, u)$ is trivial in $\operatorname{Br}(\Lambda_1|\Lambda)$, which is a contradiction. \square

G. $Gal(k'_1|k_1)$ and $Br(k_1)$

Let $k|\mathbb{Q}_p$ be a finite extension with $\mu_p \subset k$. Let $k_1|k$ be an arbitrary (not necessarily Galois and not necessarily finite) algebraic extension and let $[k_1:k]$ denote its degree (as a supernatural number). As usual, let $k'_1|k_1$ be a maximal \mathbb{Z}/p elementary extension of k_1 and $\operatorname{Gal}(k'_1|k_1) := \operatorname{Gal}(k'_1|k_1)$ its Galois group.

LEMMA 6. In the above context, the following hold.

- (1) The restriction map $_{p}\operatorname{Br}(k) \to \operatorname{Br}(k_{1})$ is injective if and only if $[k_{1}:k]$ is not divisible by p.
- (2) Suppose that $(p, [k_1 : k]) = 1$. Then $Gal(k'_1 | k_1) \cong (\mathbb{Z}/p)^{e_{k_1} + 2}$, where $e_{k_1} := [k_1 : \mathbb{Q}_p]$.
- *Proof.* (1) After identifying Br(k) with \mathbb{Q}/\mathbb{Z} via the invariant $inv_k : Br(k) \to \mathbb{Q}/\mathbb{Z}$, the restriction $Br(k) \to Br(k_1)$ becomes multiplication by $[k_1 : k]$. Hence ${}_pBr(k) \to Br(k_1)$ is injective if and only if $[k_1 : k]$ is not divisible by p.
- (2) If $k_1|k$ is finite, then the assertion follows from local class field theory. Furthermore, the canonical projection $\operatorname{Gal}(k'_1|k_1) \to \operatorname{Gal}(k'|k)$ is surjective, as $[k_1:k]$ is prime to p. Finally, by taking limits over all the finite sub-extensions $k_i|k$ of $k_1|k$, the assertion follows.

H. p-adic valuations and formally p-adic fields

We recall a few basic facts about p-adic valuations and (formally) p-adically closed fields; see [AK66, PR85] for more details.

- (1) A valuation v of a field k is called (formally) p-adic if the residue field kv is a finite field \mathbb{F}_q with $q = p^{f_v}$ and the value group vk has a minimal positive element 1_v such that $v(p) = e_v \cdot 1_v$ for some natural number $e_v > 0$. The number $d_v := e_v f_v$ is called the p-adic rank (or degree) of the p-adic valuation v. Note that a field k carrying a p-adic valuation v must necessarily have $\operatorname{char}(k) = 0$, as $v(p) \neq \infty$, and $\operatorname{char}(kv) = p$.
- (2) Let v be a p-adic valuation of k with valuation ring \mathcal{O}_v . Then $\mathcal{O}_1 := \mathcal{O}[1/p]$ is the valuation ring of the unique maximal proper coarsening v_1 of v, which is called the *canonical coarsening* of v. Note that upon setting $k^0 := kv_1$ and $v_0 = v/v_1$, the corresponding valuation on k^0 , we have that v_0 is a p-adic valuation of k^0 with $e_{v_0} = e_v$ and $f_{v_0} = f_v$; hence $d_{v_0} = d_v$ and, moreover, v_0 is a discrete valuation of k^0 . In particular, the following properties hold.
- (a) v has rank one if and only if v_1 is the trivial valuation, and this is true if and only if $v = v_0$.
- (b) Giving a p-adic valuation v of a field k of p-adic rank $d_v = e_v f_v$ is equivalent to giving a place \mathfrak{p} of k with values in a finite extension l of \mathbb{Q}_p such that the residue field $k\mathfrak{p}$ of \mathfrak{p} is dense in l and $l|\mathbb{Q}_p$ has ramification index e_v and residual degree f_v .
- (c) If $v_i < v$ is a strict coarsening of v, then $v_i \le v_1$ and the quotient valuation v/v_i on the residue field kv_i is a p-adic valuation with $e_{v/v_i} = e_v$, $f_{v/v_i} = f_v$ and thus $d_{v/v_i} = d_v$. (Actually, $(kv_i)(v_i/v_1) \cong kv_1$ and $(kv_i)(v_i/v) \cong kv$ canonically.)
- (3) Let v be a p-adic valuation of k and l|k a finite field extension, and denote by w|v the prolongations of v to l. Then all the w are p-adic valuations. Moreover, the fundamental equality holds: $[l:k] = \sum_{w|v} e(w|v) f(w|v)$, where e(w|v) and f(w|v) are, respectively, the ramification index and the residual degree of w|v. Further, if w_1 is the canonical coarsening of w and $w_0 = w/w_1$ is the canonical quotient on the residue field lw_1 , then by general decomposition theory of valuations one has $e(w|v) = e(w_1|v_1)e(w_0|v_0)$ and $f(w|v) = f(w_0|v_0)$; moreover, $e_w = e_v e(w_0|v_0)$ and $f_w = f_v f(w|v)$, thus $d_w = d_v e(w_0|v_0) f(w|v)$.

- (4) A field k is called (formally) p-adically closed if k carries a p-adic valuation v such that for every finite extension l|k one has that if v has a prolongation w to l with $d_w = d_v$, then l = k. There is a characterization of the p-adically closed fields as follows. For a field k endowed with a p-adic valuation v and canonical coarsening v_1 , the following are equivalent:
 - (i) k is p-adically closed with respect to v;
- (ii) v is Henselian and v_1k is divisible (possibly trivial);
- (iii) v_1 is Henselian and v_1k is divisible (possibly trivial), and the residue field $k^0 := kv_1$ is relatively algebraically closed in its completion $\widehat{k^0}$ (which is itself a finite extension of \mathbb{Q}_p).

We also note that if k is p-adically closed with respect to some p-adic valuation v, then the valuation ring of v is completely determined by k. In particular, for every field k there exists at most one valuation v (up to equivalence of valuations) such that k is p-adically closed with respect to v.

- (5) For every field k endowed with a p-adic valuation v, there exist p-adic closures \tilde{k} and \tilde{v} such that $d_{\tilde{v}} = d_v$. Moreover, the space of the isomorphy classes of p-adic closures of k and v has a concrete description as follows. Let v_1 be the canonical coarsening of v and $k^0|\mathbb{Q}_p$ the completion of the residue field of $k^0 = kv_1$. Then there exists a canonical exact sequence of the form $1 \to I_{v_1} \longrightarrow D_v \xrightarrow{\operatorname{pr}} G_{\widehat{k^0}} \to 1$, and the space of isomorphy classes of p-adic closures of k and v is in bijection with the space of sections of p and thus with $H^1_{\operatorname{cont}}(G_{\widehat{k^0}}, I_{v_1})$.
- (6) If L is p-adically closed with respect to the p-adic valuation w and $l \subseteq L$ is a subfield which is relatively closed in L, then l is p-adically closed with respect to $v := w|_l$ and v and w have equal p-adic ranks; also, L and l are elementarily equivalent. Therefore, the elementary equivalence class of a p-adically closed field k is determined by both the absolute subfield $k^{\text{abs}} := k \cap \overline{\mathbb{Q}}$ of k and the completion $k^{0} = k^{\widehat{\text{abs}}}$. Note that the p-adic valuation of k^{abs} is discrete and that k^{abs} is actually the relative algebraic closure of \mathbb{Q} in $k^{0} := kv_{1}$. Further, $\overline{L} = L\overline{l} = L\overline{\mathbb{Q}}$. Therefore, if L|l is an extension of p-adically closed fields of the same rank, then the canonical projection $G_{L} \to G_{l}$ is an isomorphism.
- (7) Finally, let (L, w)|(l, v) be an extension of p-adically closed fields with $d_w = d_v$. Let k|l be some Galois extension, and set K := Lk. Then, using the notation from the introduction, the following canonical projections are isomorphisms:

$$\operatorname{pr}_L':\operatorname{Gal}(K'|L)\to\operatorname{Gal}(k'|l),\quad \operatorname{pr}_L'':\operatorname{Gal}(K''|L)\to\operatorname{Gal}(k''|l). \tag{\dagger}$$

I. A local–global principle for the Brauer group

Here we recall the following result, which was proved in [Pop88, Theorem 4.5] and uses in an essential way the results of Tate [Tat59], Roquette [Roq66] and Lichtenbaum [Lic69].

FACT. Let k be a p-adically closed field, and let M|k be a field extension of transcendence degree $\operatorname{tr.deg}(M|k) \leqslant 1$. Further, let w|v denote the prolongations of the p-adic valuation v of k to M, and for each w let M_w^h be a Henselization of M with respect to w. Then the following canonical exact sequence of Brauer groups is exact:

$$0 o \operatorname{Br}(M) o \prod_{w|v} \operatorname{Br}(M_w^{\operatorname{h}}).$$

We will use a special form of the above fact which reads as follows. Let w be a prolongation of v to M and let \mathcal{O}_w and \mathfrak{m}_w be its valuation ring and valuation ideal, respectively. Further, let $\mathcal{O}_{w_1} := \mathcal{O}_w[1/p]$ be the coarsening of \mathcal{O}_w obtained by inverting the prime number p, and denote by w_1 the corresponding coarsening of w. Then w_1 is a prolongation to M of the canonical coarsening v_1 of v. Setting $M_0 := Mw_1$ and $w_0 := w/w_1$, it follows from general valuation theory that $M_0|k_0$ is a field extension with $\operatorname{tr.deg}(M_0|k_0) \leqslant 1$ and that w_0 is a prolongation of v_0 to M_0 . For every prolongation w|v, the following are equivalent:

- (i) w_0 is a rank one valuation;
- (ii) the minimal prime ideal of \mathcal{O}_w which contains the rational prime number p is the valuation ideal \mathfrak{m}_w .

In particular, for every prolongation w|v of v to M there exists a unique coarsening \tilde{w} such that \tilde{w} is a prolongation of v to M and \tilde{w} satisfies the equivalent conditions (i) and (ii) above. Indeed, for any given w|v, let $\tilde{\mathfrak{m}}$ be the minimal prime ideal of \mathcal{O}_w which contains the prime number p. Then, by general valuation theory, the localization $\tilde{\mathcal{O}} := (\mathcal{O}_w)_{\tilde{\mathfrak{m}}}$ is a valuation ring with valuation ideal $\tilde{\mathfrak{m}}$, and its valuation \tilde{w} is the unique coarsening of w satisfying the equivalent conditions (i) and (ii) above.

FACT 8. Let k be a p-adically closed field, and let M|k be a field extension of transcendence degree $\operatorname{tr.deg}(M|k) \leq 1$. Let \mathcal{W} be the set of all the prolongations w|v of v to M that satisfy the equivalent conditions (i) and (ii) above. Then the following canonical exact sequence of Brauer groups is exact:

$$0 \to \operatorname{Br}(M) \to \prod_{w \in \mathcal{W}} \operatorname{Br}(M_w^{\operatorname{h}}).$$

Proof. For a non-trivial division algebra A over M, let w|v be a prolongation such that, writing $M_w^{\rm h}$ for the Henselization of M with respect to w, one has $A_{M_w^{\rm h}} \neq 0$ in ${\rm Br}(M_w^{\rm h})$. Now let $\tilde w$ be the unique coarsening of w such that $\tilde w \in \mathcal W$. Then, since $\tilde w$ is a coarsening of w, it follows that $M_w^{\rm h}$ contains a Henselization $M_{\tilde w}^{\rm h}$ of M with respect to $\tilde w$. On the other hand, since $M_{\tilde w}^{\rm h} \subseteq M_w^{\rm h}$ and $A_{M_w^{\rm h}} \neq 0$ in ${\rm Br}(M_w^{\rm h})$, we have that $A_{M_w^{\rm h}} \neq 0$ in ${\rm Br}(M_{\tilde w}^{\rm h})$.

3. Proof of Theorem B

To prove assertion (1), let \tilde{K} , \tilde{w} be a p-adic closure of K, w, and let \tilde{k} , \tilde{v} be the relative algebraic closure of k in \tilde{K} endowed with the restriction of \tilde{w} to \tilde{k} . Then $d_{\tilde{v}} = d_{\tilde{w}} = d_{w}$. Since $d_{v} = d_{w}$ by hypothesis, we get $d_{\tilde{v}} = d_{v}$ and hence $\tilde{k} = k$. We conclude by applying relation (†) from § 2-H.,

paragraph (7), with l := k and $L := \tilde{K}$, and taking into account the fact that the isomorphism $\operatorname{Gal}(\tilde{K}''|\tilde{K}) \to \operatorname{Gal}(k''|k)$ factors through $\operatorname{Gal}(K''|K) \to \operatorname{Gal}(k''|k)$ and thus gives rise to a liftable section of $\operatorname{Gal}(K'|K) \to \operatorname{Gal}(k''|k)$.

To prove assertion (2), let $s' : \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ be a liftable section and let $M \subset K'$ be the fixed field of $\operatorname{im}(s')$. Consider $a, b \in k$ such that $k_1 := k[\sqrt[p]{a}]$ is the unique unramified extension of degree p of k and the p-cyclic algebra $A_k(a, b)$ is non-trivial in $\operatorname{Br}(k)$ or, equivalently, $\chi_a \cup \chi_b \neq 0$ in $\operatorname{H}^2(G_k, \mathbb{Z}/p)$. Then, by Lemma 2, $A_M(a, b)$ is non-trivial in $\operatorname{Br}(M)$. Hence, from Fact 8, it follows that there exists some prolongation $w \in \mathcal{W}$ of v to M such that, writing $\Lambda := M_w^h$ for the Henselization of M with respect to w, one has $A_\Lambda(a, b) \neq 0$ in $\operatorname{Br}(\Lambda)$. With an abuse of notation, we will write w for the Henselian prolongation of w to Λ and so on.

For w as above, let $L := K_w^h \subseteq \Lambda$ denote the (unique) Henselization of K with respect to (the restriction of) w which is contained in Λ . Then the compositum $LM \subseteq \Lambda$ is Henselian with respect to w, hence we must have $LM = \Lambda$. Note that L' = K'L by Lemma 3(3), and K'|M is finite because $\operatorname{im}(s')$ is finite and $M = (K')^{\operatorname{im}(s')}$. We conclude that L' = LK' is finite over $\Lambda = LM$; also, $A_{\Lambda}(a, b) \neq 0$ in $\operatorname{Br}(\Lambda)$ implies $A_{L}(a, b) \neq 0$ in $\operatorname{Br}(L)$, as $L \subset \Lambda$.

Lemma 9. The valuation w is a p-adic valuation of L.

Proof. As in the discussion above, let w_1 and v_1 be, respectively, the canonical coarsenings of w and v, i.e. the valuations with valuation rings $\mathcal{O}_w[1/p]$ and $\mathcal{O}_v[1/p]$, respectively. We denote the corresponding residue fields by $k_0 := kv_1$, $L_0 := Lw_1$ and $\Lambda_0 := \Lambda w_1$; recall also that $v_0 := v/v_1$ on k_0 and $w_0 := w/w_1$ on k_0 and k_0 are rank-one valuations (since $w \in \mathcal{W}$). Note that the following hold.

- (a) w_1 prolongs v_1 to L and Λ , and w_0 prolongs v_0 to L_0 and Λ_0 , as w prolongs v to L.
- (b) w_1 and v_1 , as well as w_0 and v_0 , are Henselian because w and v are.
- (c) $L'w_1|Lw_1$ is the maximal \mathbb{Z}/p elementary abelian extension of $L_0 = Lw_1$ by Lemma 3(2), hence $L'w_1$ equals the maximal \mathbb{Z}/p elementary abelian extension $L'w_1 = L'_0$ of L_0 .
- (d) Further, since $L'|\Lambda$ is finite by the discussion above, it follows that $L'w_1|\Lambda w_1$ is finite by the fundamental inequality. Since $L'w_1 = L'_0$ and $\Lambda w_1 = \Lambda_0$, we get that $L'_0|\Lambda_0$ is finite.

Recall the v-unramified extension $k_1 := k[\sqrt[q]{a}]$ with $\operatorname{Gal}(k_1|k) =: G$ defined above. We set $\Lambda_1 := \Lambda k_1$ and remark that $\Lambda_1|\Lambda$ is a w-unramified cyclic extension with Galois group canonically isomorphic to G. Moreover, since $k_1|k$ is v-unramified, $k_1|k$ is also v_1 -unramified, as v_1 is a coarsening of v. Correspondingly, $L_1|L$ is w_1 -unramified. Let $k_{01} := k_1 v_1$ and $\Lambda_{01} := \Lambda_1 w_1$ be the corresponding residue fields. Observe that $k_{01}|k_0$ is a v_0 -unramified cyclic extension with Galois group canonically isomorphic to G; correspondingly, $\Lambda_{01}|\Lambda_0$ is a w_0 -unramified cyclic extension with Galois group canonically isomorphic to G.

We next consider the resulting commutative diagram, shown below, of Brauer/cohomology groups deduced from the extension of valued fields $(\Lambda, w_1)|(k, v_1)$ and the corresponding residue fields, as discussed in §§ 1 and 2-F.

$$0 \longrightarrow \operatorname{Br}(k_{01}|k_0) \longrightarrow \operatorname{Br}(k_1|k) \longrightarrow \operatorname{Hom}(G, (\mathbb{Q} \otimes v_1k)/v_1k) \longrightarrow 0$$

$$\downarrow^{\operatorname{res}} \qquad \qquad \downarrow^{\operatorname{res}}$$

$$0 \longrightarrow \operatorname{Br}(\Lambda_{01}|\Lambda_0) \longrightarrow \operatorname{Br}(\Lambda_1|\Lambda) \longrightarrow \operatorname{Hom}(G, (\mathbb{Q} \otimes w_1\Lambda)/w_1\Lambda) \longrightarrow 0$$

We recall that v_1k is divisible, hence $\mathbb{Q} \otimes v_1k = v_1k$ and therefore $(\mathbb{Q} \otimes v_1k)/v_1k = (0)$. Thus we deduce that $\operatorname{Br}(k_{01}|k_0) \to \operatorname{Br}(\Lambda_{01}|\Lambda_0) \subseteq \operatorname{Br}(\Lambda_0)$ is non-trivial.

Now let us set $L_1 := Lk_1$ and write $L_{01} := L_1w_1$. Then, reasoning as above, we get that $L_1|L$ is w-unramified and hence w_1 -unramified. Furthermore, $L_{01}|L_0$ is a w_0 -unramified extension with Galois group canonically isomorphic to G, and it is obvious that $\operatorname{Br}(k_{01}|k_0) \to \operatorname{Br}(\Lambda_0)$ factors through $\operatorname{Br}(L_{01}|L_0)$. Therefore $\operatorname{Br}(L_{01}|L_0) \to \operatorname{Br}(\Lambda_0)$ is non-trivial.

By Lemma 5 applied to L_0 endowed with the Henselian rank-one valuation w_0 , the w_0 -unramified extension $L_{01}|L_0$ and the extension $\Lambda_0|L_0$ such that $L'_0|\Lambda_0$ is finite, we get that w_0 is discrete and has finite residue field (of characteristic p, as w_0 prolongs v_0). Equivalently, w is a (Henselian) p-adic valuation of L, as claimed.

LEMMA 10. The p-adic valuation w from Lemma 9 has p-adic rank equal to the p-adic rank of v and satisfies $\operatorname{im}(s') \subseteq Z_w$.

Proof. The proof is a refinement of the arguments in the proof of the previous lemma. As remarked there, the canonical restriction map

res :
$$\operatorname{Br}(k_{01}|k_0) \to \operatorname{Br}(L_{01}|L_0) \to \operatorname{Br}(\Lambda_0)$$

is non-trivial. Since completion does not change the inertial cohomology, without loss of generality we can replace $k_0 \subseteq L_0 \subseteq \Lambda_0$ by the corresponding sequence of completions $\hat{k}_0 \subseteq \hat{L}_0 \subseteq \hat{\Lambda}_0$, all of which are finite extensions of \mathbb{Q}_p , and thus deduce that

res:
$$\operatorname{Br}(\hat{k}_{01}|\hat{k}_0) \to \operatorname{Br}(\hat{L}_{01}|\hat{L}_0) \to \operatorname{Br}(\hat{\Lambda}_0)$$

is non-trivial. But then, from Lemma 6, it follows that $[\hat{\Lambda}_0 : \hat{k}_0]$ is prime to p and therefore $[\Lambda_0 : k_0] = [\hat{\Lambda}_0 : \hat{k}_0]$ is prime to p. Hence, from $[\Lambda_0 : k_0] = [\Lambda_0 : L_0] \cdot [L_0 : k_0]$ it follows that both $[L_0 : k_0]$ and $[\Lambda_0 : L_0]$ are prime to p. On the other hand, $\Lambda_0 | L_0$ is a sub-extension of the \mathbb{Z}/p elementary abelian extension $L'_0 | L_0$. Thus, finally, $\Lambda_0 = L_0$.

Now recall that $M = (K')^{\operatorname{im}(s')}$ is the fixed field of $\operatorname{im}(s') = s'(\operatorname{Gal}(k'|k))$ in K'; furthermore, L' = LK' and $\Lambda = ML$ inside L', by the discussion at the beginning of the proof. From this we deduce the following sequence of inequalities:

$$[k':k] = |Gal(k'|k)| = [K':M] \ge [LK':LM] = [L':\Lambda].$$
 (*)

Moreover, because k is p-adically closed, and hence $\operatorname{pr}_k:\operatorname{Gal}(k'|k)\to\operatorname{Gal}(k'_0|k_0)$ is an isomorphism, one has $[k':k]=[k'_0:k_0]$, and by the fundamental inequality we have $[L':\Lambda]\geqslant [L'w_1:\Lambda w_1]$. On the other hand, we have $L'w_1=L'_0$ and $\Lambda w_1:=\Lambda_0$, and $\Lambda_0=L_0$ by the remarks above. Thus the above sequences of inequalities can be extended as follows:

$$[k_0':k_0] = [k':k] = [K':M] \geqslant [LK':LM] = [L':\Lambda] \geqslant [L'w_1:\Lambda w_1] = [L_0':L_0]. \tag{**}$$

Next, observe that by Lemma 6(2) we have $[k'_0:k_0] = p^{e_{k_0}}$, where $e_{k_0} := [\hat{k}_0:\mathbb{Q}_p]$, and $[L'_0:L_0] = p^{e_{L_0}}$, with $e_{L_0} := [\hat{L}_0:\mathbb{Q}_p]$. Hence the inequality (**) above implies $e_{k_0} \ge e_{L_0}$. On the other hand, $k_0 \subseteq L_0$ implies $e_{k_0} \le e_{L_0}$. Hence $e_{k_0} = e_{L_0}$ and $\hat{k}_0 = \hat{L}_0$. Equivalently, w is a p-adic valuation having p-adic rank equal to

$$d_w = [\hat{L}_0 : \mathbb{Q}_p] = [\hat{k}_0 : \mathbb{Q}_p] = d_v$$

and hence equal to the p-adic rank of v. Moreover, because of this, all the inequalities in the formulas (*) and (**) above are actually equalities. Therefore [K':M] = [LK':LM], and the restriction map $\operatorname{Gal}(L'|L) = \operatorname{Gal}(L'|L) \to Z_w \subset \operatorname{Gal}(K'|K)$, which maps $\operatorname{Gal}(L'|L)$ isomorphically onto Z_w by the fact that L' = K'L, defines an isomorphism

$$\operatorname{Gal}(L'|\Lambda) \to \operatorname{Gal}(K'|M) = s'(\operatorname{Gal}(k'|k)).$$

Equivalently, $\operatorname{im}(s') \subseteq Z_w$, as claimed.

Coming back to the proof of Theorem B, we have the following. Let $M \subseteq K'$ be the fixed field of $\operatorname{im}(s')$ in K'; then there exists a p-adic valuation w of M such that w prolongs v to M and has p-adic rank d_w equal to the p-adic rank d_v of v; moreover, $\operatorname{im}(s')$ is contained in the decomposition group Z_w of w in $\operatorname{Gal}(K'|K)$.

Remark 11. The precise structure of Z_w can be deduced as follows. First, let w_1 be the canonical coarsening of w and let T_{w_1} and Z_{w_1} with $T_{w_1} \subset Z_{w_1}$ be, respectively, the inertia and decomposition groups above w_1 in $\operatorname{Gal}(K'|K)$. Then $Z_w = Z_{w_1}$, and $\operatorname{pr}'_K : \operatorname{Gal}(K'|K) \to \operatorname{Gal}(k'|k)$ gives rise to an exact sequence

$$1 \to T_{w_1} \to Z_{w_1} \xrightarrow{\operatorname{pr}'_K} \operatorname{Gal}(k'|k) \to 1$$

such that $s'(\operatorname{Gal}(k'|k)) \subseteq Z_{w_1} = Z_w$ is a complement of T_{w_1} . If T_{w_1} is non-trivial, then $T_{w_1} \cong \mu_p$ as a $\operatorname{Gal}(k'|k)$ -module, and thus $T_{w_1} \cong \mathbb{Z}/p$ non-canonically as a $\operatorname{Gal}(k'|k)$ -module.

LEMMA 12. The p-adic valuation w from Lemma 10, which satisfies $\operatorname{im}(s') \subseteq Z_w$, is unique.

Proof. Consider p-adic valuations w^1 and w^2 such that $\operatorname{im}(s') \subset Z_{w^i}$ for i=1,2. We claim that $w^1=w^2$. Indeed, let w be the maximal common coarsening of w^1 and w^2 . By way of contradiction, suppose that $w < w^1, w^2$. Then the valuations w^1/w and w^2/w are independent p-adic valuations on Kw, both of which prolong the p-adic valuation of the p-adically closed field kw. Further, from Lemma 3(2), it follows that K'w is the maximal \mathbb{Z}/p elementary abelian extension of Kw; moreover, since $\operatorname{im}(s') \subset Z_{w^i}$ for i=1,2, general decomposition theory for valuations gives that $s'_w(\operatorname{Gal}(k'|k)) \subset Z_{w^i/w}$ for i=1,2. On the other hand, by the construction of w, we have that w^1/w and w^2/w are independent valuations of Kw. However, since w^1/w and w^2/w are independent, it follows from Lemma 3(2) that $Z_{w^1/w} \cap Z_{w^2/w}$ is trivial. This is a contradiction, because $\operatorname{im}(s'_w) \subset Z_{w^i/w}$ for i=1,2.

The proof of Theorem B is thus complete.

4. Proof of Theorem A

The following stronger assertion holds (from which Theorem A follows immediately).

THEOREM 13. Let $k|\mathbb{Q}_p$ be a finite extension containing the pth roots of unity, and let $k_0 \subseteq k$ be a subfield which is relatively algebraically closed in k. Let X_0 be a complete smooth curve over k_0 , and let $K_0 = k_0(X)$ be the function field of X_0 .

- (1) Every k-rational point $x \in X_0$ gives rise to a bouquet of conjugacy classes of liftable sections $s'_x : \overline{G}'_{K_0} \to \overline{G}'_{K_0}$ above x.
- (2) Let $s': \overline{G}'_{k_0} \to \overline{G}'_{K_0}$ be a liftable section. Then there exists a unique k-rational point $x \in X_0$ such that s' equals one of the sections s'_x mentioned above.

Proof. (1) Let v be the valuation of k. Notice that, by § 2-H.(b), there exists a bijection from the p-adic valuations w of $\kappa(X_0)$ with $d_w = d_v$ to the k-rational points x of X_0 which sends each w to the center x of the canonical coarsening w_1 on $X = X_0 \times_{k_0} k$. We conclude by applying Theorem B(1).

(2) Since $k_0 \subseteq k$ is relatively algebraically closed, k_0 is p-adically closed. Let v be the valuation of k and of all subfields of k. Since k_0 is p-adically closed, we can apply Theorem B and get that for every section $s' : \overline{G}'_{k_0} \to \overline{G}'_{K_0}$, there exists a unique p-adic valuation w of K_0 which prolongs v

to K_0 and has p-adic rank equal to the p-adic rank of v, such that s' is a section above w. Let w_1 be the canonical coarsening of v. Then we have the following two cases.

Case 1. The valuation w_1 is trivial.

Then w is a discrete valuation of K that prolongs v to K and has the same residue field and same value group as v. Equivalently, the completions \hat{k}_0 and \hat{K}_0 are equal, and hence equal to k. Therefore w is uniquely determined by the embedding $i_w:(K_0,w)\hookrightarrow(k,v)$. In geometric terms, i_w defines a k-rational point x of X_0 and so on.

Case 2. The valuation w_1 is not trivial.

In this case w_1 is a k_0 -rational place of K_0 , hence it defines a k_0 -rational point x_0 of X_0 , and hence a k-rational point x of X_0 , and so forth.

5. Proof of Theorem B⁰

First, the proof of assertion (1) is identical to the proof of Theorem B(1), so we omit it. As for assertion (2), let $s'_L : \operatorname{Gal}(k'|l) \to \operatorname{Gal}(K'|L)$ be a liftable section of the canonical projection $\operatorname{pr}'_L :$ $\operatorname{Gal}(K'|L) \to \operatorname{Gal}(\bar{k}'|l)$. Then the restriction of s'_L to $\operatorname{Gal}(k'|k) \subseteq \operatorname{Gal}(k'|l)$ gives rise to a liftable section $s': \operatorname{Gal}(k'|k) \to \operatorname{Gal}(K'|K)$ of $\operatorname{pr}_K': \operatorname{Gal}(\bar{K'}|K) \to \operatorname{Gal}(k'|k)$. Hence, by Theorem B, there exists a unique p-adic valuation w^1 of K which prolongs the p-adic valuation v_k of K and has $d_{w^1} = d_{v_k}$ and $s' = s_{w^1}$ in the usual way. Let $w = w^1|_L$ be the restriction of w^1 to L. Then wprolongs the valuation v of l to L. We claim that w^1 is the unique prolongation of w to K. Indeed, let $w^2 := w^1 \circ \sigma_0$ with $\sigma_0 \in \operatorname{Gal}(k|l)$ be a further prolongation of w to K. If $(w^i)'$ is a prolongation of w^i to K' for i=1,2 and $\sigma \in \operatorname{im}(s'_L)$ is a preimage of σ_0 , then $(w^2)':=(w^1)'\circ\sigma$ is a prolongation of w^2 to K'. Therefore, if $Z_{w^1} \subset \operatorname{Gal}(K'|K)$ is the decomposition group above w^1 , then $Z_{w^2} := \sigma Z_{w^1} \sigma^{-1}$ is the decomposition group above w^2 . On the other hand, $\operatorname{im}(s') \subseteq Z_{w^1}$ by Theorem B (or, more precisely, by Lemma 10 in the proof of Theorem B). Since $\sigma \in \operatorname{im}(s'_L)$ and Gal(k'|k) is a normal subgroup of Gal(k'|l), we have that im(s') is normal in $im(s'_L)$, and it follows that $\sigma(\operatorname{im}(s'))\sigma^{-1}=\operatorname{im}(s')$. Hence $\operatorname{im}(s')\subseteq Z_{w^1}\cap Z_{w^2}$. But then, by Theorem B (or, more precisely, by Lemma 12 in the proof of Theorem B), we must have $w^1 = w^2$. Equivalently, $\operatorname{im}(s'_L)$ is contained in $Z_w \subset \operatorname{Gal}(K'|L)$. So we finally conclude that $d_w = d_v$ as claimed.

6. Proof of Theorem A^0

The following stronger assertion holds (from which Theorem A⁰ follows immediately).

THEOREM 14. Let $l|\mathbb{Q}_p$ be a finite extension. Let $l_0 \subset l$ be a relatively algebraically closed subfield and $k_0|l_0$ a finite Galois extension with $\mu_p \subset k_0$. Let Y_0 be a complete smooth geometrically integral curve over l_0 . Let $L_0 = \kappa(Y_0)$ be the function field of Y_0 , and let $K_0 = L_0 k_0$.

- (1) Every l-rational point $y \in Y_0$ gives rise to a bouquet of conjugacy classes of liftable sections $s'_y : \operatorname{Gal}(k'_0|l_0) \to \operatorname{Gal}(K'_0|l_0)$ above y.
- (2) Let $s' : \operatorname{Gal}(k'_0|l_0) \to \operatorname{Gal}(K'_0|L_0)$ be a liftable section. Then there exists a unique l-rational point $y \in Y_0(l)$ such that s' equals one of the sections s'_u mentioned above.

Proof. The proof is identical to the proof of Theorem A above, the only difference being that one uses Theorem B^0 instead of Theorem B.

ACKNOWLEDGEMENTS

I would like to thank, among others, J.-L. Colliot-Thélène, D. Harbater, J. Ellenberg, M. Kim, H. Nakamura, M. Saidi, J. Stix, T. Szamuely and A. Tamagawa for stimulating discussions concerning the section conjecture.

References

- AK66 J. Ax and S. Kochen, *Diophantine problems over local fields: III. Decidable fields*, Ann. of Math. (2) **83** (1966), 437–456.
- Fal98 G. Faltings, Curves and their fundamental groups (following Grothendieck, Tamagawa and Mochizuki), Astérisque 252 (1998), 131–150, Exposé 840.
- Gro98a A. Grothendieck, Letter to Faltings (June 1983), in Geometric Galois actions 1, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998), 5–48. See SL98 below.
- Gro98b A. Grothendieck, Esquisse d'un programme (1984), in Geometric Galois actions 1, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998), 49–58. See SL98 below.
- Koe05 J. Koenigsmann, On the 'section conjecture' in anabelian geometry, J. Reine Angew. Math. **588** (2005), 221–235.
- Lic69 S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120–136.
- NSW08 J. Neukirch, A. Schmidt and K. Wingberg, *Cohomology of number fields*, Grundlehren der mathematischen Wissenschaften, vol. 323, second edition (Springer, Berlin, 2008).
- Pop88 F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145–175.
- PR85 A. Prestel and P. Roquette, Formally p-adic fields, Lecture Notes in Mathematics, vol. 1050 (Springer, Berlin, 1985).
- Roq66 P. Roquette, Splitting of algebras by function fields of one variable, Nagoya Math. J. 27 (1966), 625–642.
- SL98 L. Schneps and P. Lochak (eds), *Geometric Galois actions 1*, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998).
- Ser65 J.-P. Serre, *Cohomologie galoisienne*, Lecture Notes in Mathematics, vol. 5 (Springer, Berlin, 1965).
- Sza04 T. Szamuely, Groupes de Galois de corps de type fini, Astérisque 294 (2004), 403-431.
- Tat59 J. Tate, Cohomology of abelian varieties over p-adic fields, Notes by Serge Lang, Princeton University (May 1959).

Florian Pop pop@math.upenn.edu

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA