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Abstract

Convexity and weak closeness of the set of ¢®-superharmonic functions in a bounded Lipschitz domain
in R" is considered. By using the fact of that ®-superharmonic functions are just the solutions to an
obstacle problem and establishing some special properties of the obstacle problem, it is shown that if &
satisfies A,-condition, then the set is not convex unless ®(r) = Cr? or n = 1. Nevertheless, it is found
that the set is still weakly closed in the corresponding Orlicz-Sobolev space.
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1. Introduction

Let & (-) be a Young’s function satisfying:

(S1) @() € C'[0, +00) N C*(0, +00);

(S2) ¢(0) = d'(0) =0;

(S3) @’(-) increases strictly in [0, +00), and lim,_, ;o ®'(r) = +-00.
Denote ¢ = ®'. Let ¢ = ¢! be the inverse function of ¥ and

(1.1 Y(r) 2 /’ ¥(s)ds, YreR*=][0,+c0).
0

One can easily verify that W satisfies (S1)-(S3) too. We call (¢, ¥) a complementary
pair in Young’s sense. The well-known Young’s inequality shows that

(1.2) rs < ®(r) +¥(s), VYrseRh,

© 2003 Australian Mathematical Society 1446-7887/03 $A2.00 + 0.00
423

https://doi.org/10.1017/5144678870000820X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000820X

424 Hongwei Lou [2]

and the equality holds if and only if s = ¢(r).

In this paper, we will consider the set of ®-superharmonic functions ff(Q) (see
(3.2) in Section 3 for the definition). We will prove that, if both ® and V¥ satisfy
the A,-condition (see Lemma 2.1 (iv) in Section 2 for details), then j?f(a, b) is
convex. Consequently, it is weakly closed in W,'®(a, b) since the strong closeness
holds naturally. When n > 2, if ® satisfies A,-condition and 2 is a bounded Lipschitz
domain in Euclidean space R", then jf:’(Q) is convex if and only if ®(r) = Cr? for
some positive constant C. Nevertheless, S () is still weakly closed in W,"*(S2).
The main idea to get the results is as follows: we use the fact that J£° () is the set
of solutions for obstacle problems. From this we get many important properties of a
&-superharmonic function.

2. Preliminary properties of Orlicz spaces

In this section, we present some basic properties of Orlicz spaces. For further

information about Orlicz spaces, see [1, 4, 8].
First, let us recall the definition of Orlicz spaces L®(2), #®(2). Let Q be a

bounded domain in R". We denote

L2(Q) & {v : €2 — R measurable | 3¢ > 0, such that/ o(lvx))dx < +oo] ,
Q

equipped with the norm

[o(M2) ax <1},
n t

/ P(tlvx)|)dx < 400, Vi > O] .
Q

"v”LO(Q) = inf{t >0

and

HE(Q) 2 [v : © — R measurable

The following results can be found in [4].

LEMMA 2.1. Let ® be Young’s function satisfying (S1)~(83), and ¥ be defined by
(1.1). Then
(i) L®(RQ).is a Banach space and L*(Q) C A *(Q) € L®(Q) C L' ().
(ii) A ®() is a Banach subspace of L®(2) and # ®(Q) is separable.
(i) (AY(Q))* = L®(Q), where X* denotes the dual space of a normed linear

space X.
(iv) A®(Q) = L®(Q) if and only if ® satisfies A,-condition (that is, there exist

0, A > 0such that ®(2r) < Ad(r), forall r > p).
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(v) L*(RQ) is reflexive if and only if both ® and ¥ satisfy A,-condition; if and
only if ® satisfies A,-condition, and ® satisfies V,-condition (that is, there exist p,
I > 1 such that ®(r) < ®(r)/(2l), forall r > p).

Now, we recall the definition of Orlicz-Sobolev spaces. Denote
W E(W: Q> R|v,Dwel®Q), a=1,2,...,n},

equipped with the norm

n
lolwem = ) I1Davllo + IVl

a=1
Let W,"®(£2) be the closure of C°(2) in W"®(S2). Denote
Ivllwee@ = HVVlllie@, Y ve Wy®(Q).

Then, | - || wi-e @) is an equivalent norm to || - || wue(g) in Wow(Q). Moreover, we can
get the following properties by straightforward generalization of the proof of the same
properties for ordinary Sobolev spaces.

LEMMA 2.2. Let Q be a bounded domain, ® be Young’s function satisfying (S1)~

(S3).
(i) Suppose that u € Wol‘d’(Q). Then |u| € WJ"”(Q). Consequently, ut =
max(u, 0) € W0"°(SZ), u- = max(—u,0) € Wol‘“’(Q). Furthermore, if u,v €

W, ®(), then u A v = min(u, v) € Wy ().
(i) Suppose that QL is a Lipschitz domain. Then W,"* () = W,'' () N W-(R).

If L*(Q) is reflexive, then both W®(2) and W, ®(R) are reflexive, since they
can be looked as closed subspaces of (L®(£2))**'. In general, W*(Q) (or W, *(2))
needs not necessary to be reflexive. Moreover, we do not know if W"®(Q) (or
W, ®(R)) is the dual space of a normed space, though L®(Q) = (#¥(2))* by
Lemma 2.1 (iii). Thus, in general, a bounded series in W!®(2) needs not necessary
to have a subsequence converging weakly in W"®(2). In some cases, we do not know
if we can say weak* convergence. Nevertheless, we have:

LEMMA 2.3. Let Q be a bounded Lipschitz domain,  be Young’s function satisfying
(SD—(S3), u, be bounded in W"®(2). Then there exists a subs_equence uy,, and a
function u € W"®(Q), such that u,, — u, weakly in W' (Q), and
2.1 [¢(|Vu|)dx < liminf/ O (|Vuy, ) dx.

Q J=+0 Jo

Moreover, if u, € W(,'“’(Q)fork =1,2,...,thenu € W0"°(S2).
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PROOF. Since u, is bounded in W'®(Q), then u; and |Vu,| are bounded in L®(2)
(see Lemma 2.1 (i)). By Lemma 2.1 (ii) and (iii), L®(2) is the dual space of a
separable Banach space .#V (2). Thus, we can choose a subsequence uy, such that

uy, —> u, weakly”in L® (),
Vu, — h, weakly*in L®(Q, R") = (L*(@)".
Since (AY(2))* = L*() and (L'(R))* = L=(Q) C A (R2), we have
u, — u, weaklyin L'(S),
Vu, — h, weaklyin L'(Q, R").

Then it follows that # = Vu and
(2.2) w, > u, weaklyin W"'(Q).

Combining with u, h € L®(), we get u € W'*(Q).
To prove (2.1), without loss of generality, we can suppose that
(2.3) lim O(|Vuy (x))dx =M < +00.
j=>+00 Jo

On the other hand, by (2.2) and Mazur’s theorem (see {7, page 120]), there exist
Uy >0, 1" @, = 1, such that

km
(2.4) > amau,, — u, stronglyin W''(Q).
1=1

Thus, we can also suppose that

k

(2.5) Y amVuy,, > Vu, ae. Q.
=1

By the convexity of &, we have

(2.6) / P (
Q =

km
> o Vg, (x)
=1

km
) dx < de.l / D Vuy,, (x)|)dx.
I=1 Q@

Noting that ® > 0 and ¢ € ([0, +-00), by (2.3), (2.5)—(2.6) and Fatou’s lemma, we
get

_/‘D(IVu(X)I)dx <M,
Q
and therefore (2.1) follows.

Finally, if uy € W, ®(Q) fork = 1,2, ..., then u € W,"'(Q) by (2.2). Since we
have obtained that u € W'®(R2), we get u € W, ®(R2) by Lemma 2.2 (ii). )
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3. ®-superharmonic functions and obstacle problem

In the following sections we suppose that & satisfies A,-condition. Thus, L*(Q) =
A ®(2) by Lemma 2.1 (iv). Moreover,

r 1 1 2r
f p(s)ds = ®(r) = x¢(2r) = X_/ p(s)ds, VY re(p,+00),
0 0
where p, A > 0 are given in Lemma 2.1 (iv). Therefore
(3.1) ro(r) = ®(r) > re(r)/x, r e (p, +00),

since ¢(-) is increasing in [0, +00). Then, for any v, w € Wol"”(Q), by (3.1) and
Young’s inequality (1.2),

\%
¢ (V) ﬁZ—I - Vw| < @(IV0)|Vw] < W(p(Vv]) + &(Vuw])

= [Vvle(IVv]) — (Vo)) + ¢(IVw))
< max(pg(p), (A — DP(Vv])) + ®(Vw)).

Consequently, ¢(|Vv|)Vv - Vw/[V] is integrable in .
Now, we denote by

(3.2) QDA ve WP(R) | —Aev >0, in Q)
+

the set of all ®-superharmonic functions, where

v
Agv 2 div (¢(|Vv|)ﬁ'j—') ,

and we say that —Agv > 0 (in ), if

v
(3.3) /q)uvw)l—v—:-l Vwdx >0, Ywe W), w0, ae. Q.
Q

An element of #,°(Q) is called a ®-superharmonic function.
To study the set J#,°(£2), we consider the following obstacle problem:

PROBLEM (O). Let y be a measurable function in 2, K(y) 2ve WJ""(Q)Iv >
y, a.e. 2}. Find a u = To(y) € K(y), such that

(3.4) /<D(|Vu|)dx = inf /d>(|vv|)dx.
Q veKk(y) Jq
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One can easily check that K(y) is convex and closed in W,"®(£2). It may be empty.
When K(y) # @, the following lemma characterizes the solution of Problem (O).

LEMMA 3.1. Let 2 be a bounded Lipschitz domain, y be a measurable function,
K(y) # 0, ® satisfy (S1)~(83) and A,-condition. Then Problem (O) has a unique

solution u = Te(y). Moreover, u is characterized by the following variational
inequality:
Vu
(3.5) /(p(IVuI) -V(v—u)dx =0, VvelK(@y).
2 [Vul .

PROOF. By Lemma 2.1 (iv), L*(Q) = #®(S2). Thus,
0< f d(IVuhdx < +00, VYvekK(y).
Q
Let u;, € K(y) satisfy
3.6) kkl;nw/;dMIVukl)dx = végg)‘/f;d)(lel)dx.

Then fn P(Vulddx < C, forall k = 1,2,..., for some constant C > 0. Since
®(0) = 0 and ® is convex,

[V 1
(] dx < | ——®(|Vul)d 1.
[9 (C+1)x—_/nc+1 (Valydx <

Therefore, ||ul| wie@ < C+1,forallk =1,2,.... Thus, by Lemma 2.3, we can
suppose that u;, —> u, weakly in W''(S), for some u € W, ®(£2), and

37N /(D(IVMD dx < liminff P(|Vu])dx.
Q k—+o00 Q

On the other hand, it is easy to get u > y from u, > y. Consequently, u € K(y), and
it follows from (3.6) and (3.7) that

/¢(|Vu|)dx= inf /dD(IVvI)dx,
Q vek(y) Jo

that is, we get the existence of a solution. Since K(y) is convex and G(-) is strictly
convex, such a solution must be unique.

Finally, to prove that u = T¢(y) is characterized by (3.5), we modify the proof of
Theorem 1.2 in [3, Chapter 1].
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Let u = To(y) be a solution of Problem (O) corresponding to y. Then, for all
v e K(y), @ € (0, 1), we have u + a(v — u) € K(y). Thus,
1
0< 5 (/ P(|Vu+ a(Vv — Vuw|)dx — / O(|Vu|) dx] .
Q Q .

Leta — 0%, we get (3.5).
On the other hand, suppose that u € K(y) satisfies (3.5). Then, since G(-) is
convex, we have

é—/ [®(aVv+ (1 —a)Vu)|) — D(|Vul)] dx
Q

IA

%/ [P@|Vvl+ A —a)|Vu]) — ®(|Vu))] dx
Q

IA

1
;f [a® (Vo)) + 1 =)@ (IVul) — ®(Vul)] dx
Q

I

[[¢(IVUI) —o(Vuhldx, VveKo).
Q
Passing to the limit, we get

v
f &(|Vu|)dx — f ®(|Vul) dx > / (Vi) —— - V(v — u) dx
Q Q Q V|
>0, VvekK(®).
Therefore, u is a solution of Problem (0), and we get the proof. d

Now, let us state a simple lemma before we establish the basic properties of T.

LEMMA 3.2. Suppose ¢(-) € C[0,4+00), ¢(0) = O, and ¢ increases strictly in
[0, +00). Then

(3.8) I:fﬁ(lal)i - ¢(|bl)-li] (a-b)=0, VabeR",
lal |b|

and the equality holds if and only if a = b.

PROOF. Without loss of generality, we suppose that a 7% 0, b # 0. We have

a b
[¢(Ial)m - ¢(|b|)m] -(a—-b)

b b
= ¢(lablal + $(1BDIb] ~ $(lal) === — $(1b)) =
|al |b]

> ¢(lalal + ¢ (1b)Ib] — ¢ (la))|b] — ¢ (lbDlal
= [¢(la]) = ¢(16D](lal = |B]) = 0.
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Moreover, in the second inequality, the equality holds if and only if a - b = |a| |b],
while in the last inequality, the equality holds if and only if |a| = |b|. Thus, (3.8)
holds, and the equality holds if and only if a = b. a

Now, we give some basic properties of Tp.

LEMMA 3.3. Let Q be a bounded Lipschitz domain, y be a measurable function,
K(y) # 8, & satisfy (S1)~(S3) and A,-condition. Then
) To(y) € HL2(Q).
(i) T2 = To, thatis, To(Te(y)) = To(y).
(i) To(y) =y ifandonly if y € H2(S).
(iv) Denote

Kip)={ve W Q) |v>y, ae Q}, and.
SR ={ve WQ)|-Av>0, v>0, ae. Q).

Then Ty(y) is the smallest element in K, (y) N ZX(Q), that is, To(y) € Ki(y) N
SLL2(Q) and To(y) < v, ae. Q, forallv € K (y) N FI(Q). In particular, Ty(y) is
the smallest element in K, (y) N €2 (Q) since A2 (Q) C L2 (Q).

(v) Suppose u, € HL(Q), uy, uy, ... € F2(Q). Then u = infyu, € HP(Q),
and

(3.9 /¢(IV£|)dx 5/‘D(IVu1I)dx.
Q Q

PROOF. By Lemma 3.1, u = T3 (y) exists and is unique.
(i) Forany v € Wo"°(§2), v > 0, a.e. 2, we have u + v € K(y). Replacing v by
u+ v in (3.5), we get

f«p(|vu|)|—v—| Vvdx >0, Yve W), v>0.

Therefore, u € F£2(RQ).
(ii) Obviously, u € K(u). Therefore, K(u) # @. On the other hand, for v € K(u),
we have v € K(y). Thus, by the definition of u (see (3.4)),

/¢(|Vu|) dx < f P(|Vvhdx, Vvelk.
Q Q
Consequently, u = To(u). Thatis, T = To.
(iii) Let To(y) = y. Then y € J£2(S) by ().
Now, suppose that y € S£°(Q2). Then y € K(y) and K(y) # #. Since ~Asy > 0,

/fp(lVyl)ﬁ——l Vudx >0, Yve W*®R), v>0.
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Forany v € K(y), wehavev —y > 0,a.e. Q,andv —y € WOW(Q). Thus,
fw(IVyl)ﬁ Vv-y)dx =20, VveK(@).
Therefore, y = Ty (y) by Lemma 3.1. ‘
(iv) Suppose v € K, (y) N 2 (Q2). Then v A u € Wy () since W-®(Q) C
Wi1(S2). Moreover,
Vu(x), if v(x) < u(x);

3.10 v -
(3.10) (v A u)(x) {Vu(x), if v(x) > u(x),

It follows that vAu € W®(Q)since v, u € W-*(Q). Consequently, vAau € W, *(2)
by Lemma 2.2 (ii). Thus, v A u € K(y). By Lemma 3.1, we get

(3.11) ‘ /(p(IVuI) (Vv A u) — Vu)dx > 0.

[Vul

On the other hand, since —Aov > 0,and u — (V A u) > 0, u — (v A u) € Wy *(Q),
we get (see (3.3))

(3.12) / (p(lel) -(Vu—-V@Au))dx = 0.

v I
Combining with (3.11), we have

Va2 YV | (Vu—v dx <0,
/S;[fp(l ul)lvul—fp(l vl)l—v——l] (Vu—V@Aw)dx

Then, by (3.10),

/‘m) [fp(l ul) IV i e(IV I)IV—I] -(Vu—Vv)dx <0.

Therefore, by Lemma 3.2, Vu = Vu, a.e. {u > v}, thatis (see (3.10)), Vu = V(vAu),
a.e. 2. Consequently, there exists a constant C, such that u = v A u 4 C, a.e. 2.
Since u, v Au € WOW(Q), we have C = 0. Thus, u = v A u, a.e. £, thatis, u < v,
a.e. Q. On the other hand, it is easy to prove that any v € J£*(Q) satisfies v > 0,
a.e. . Thus .%”f Q) C 5’:_" (R2). Therefore, Ty (y) is also the smallest member in
K+ (y) N H2(Q) since To(y) € Ky (y) N AL().

(v) Since 0 < u < uy, K(1) # @. Thus, Tp(u) uniquely exists. By (iv) and noting
that u, € Ky (w) N2 (Q), we have Tp () < wy, a.e. Q. Thus, '

To(w) <u= irzf u, ae. Q.

On the other hand, To(#) > u by the definition of Ty. Therefore, u = To (W) €
J€2(Q). Finally, since u; € K(u), we get (3.9) from (3.4). O
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4. Convexity of S5 ()

First, we establish the following lemma.

LEMMA 4.1. Let Q be a bounded domain in R", ® satisfy (S1)~(83), A,-condition
and V,-condition. Let W=¥(Q) be the dual space of W,"* (). Letv € W¥(Q)
and v > 0 in Q in the distribution sense. Then, there exists a sequence vy € C*(Q),
such that vy > 0 and

@.1 v —> v, stronglyin w Y (Q).

PROOF. By the assumptions and Lemma 2.1 (v), Wom’(Q) is reflexive. Conse-
quently, as the dual space of W,"® (), W="¥(Q) is reflexive.

Letv e W-¥(Q) and v > 0 in § in the distribution sense. According to [5,
Chapter 1, Theorem V], v is a nonnegative measure in Q. For k = 1,2, ..., denote
Q = {x € Q|d(x,3R2) > 1/k}, where d(x, 3Q) = inf,cq [x — y|. Let vy = v{
be the restriction of v in 4, that is, v, (A) = V([ )A) forany A € Q. Then, y;
is a nonnegative measure in  (see [6, Chapter 1], for example). Moreover, for any
w € CX(82), we have

“4.2) Kve, w) < (v, [w]) < (v, [w]) < [VIlw-rv@ llwll wieq)-

Consequently, for any w € W, ®(£2), we can define (v;, w) by choosing w; € C®(S)
converging strongly in Wol'q’(Q) and defining

A .
(Uk, ’U.)) =thoo<vk’ UJj).
—

By (4.2),
(Ve w) < llw-v@llwllwiog, ¥ w e Wy®(Q),

that is, v, € W ¥(Q) and
4.3) el w-rey < lIvilw-1v ).

On the other hand, we have (v, w) — (v, w), for all w € CZ(§2). Combining the
above with (4.3), we can easily get (v, w) — (v, w), forall w € Wol‘q’(Q), that is,
v — v, weakly in W=1Y(Q).

By Mazur’s Theorem, there exist a;; > O, Z;’;l o,; = 1, such that v, =
Z?’;, o jv; — v, strongly in W='¥(Q). For any [ > N,, we have

v — v, w) < (v =, |w]) < (v =i, lw])

~ 1,¢
< v =bdlw-v@llwlweq, Ywe Wy (8).
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Thus, |v; — v[lw-1v@) < [Tk — vilw-1v, if I = Ni. Consequently,

4.4 v — v, stronglyin WY (Q).

Let

texp[—1/(1 = M), if Ix[ <

x) =
) o, if |x|>1,

where T > 0is chosen such that fw n(x)dx = 1. Let & € CP(R") satisfy & (x) = 1,
in €, and & (x) = 0, in R" \ Q4. Then v, can be looked as a distribution
and a nonnegative measure in R”. In fact, &y = v, in Q. Forj = 1,2,..., set
n;(x) =jn(x),and by = (&) *n; (for the definition of convolution of generalized
function, see [2]). Obviously, 1y (x) > 0. When j > 12k, we have vy (x) = 0, for all
x & Q3. Then, it is easy to prove that i; € C*(2) (if j > 12k), and (as j — +00)

Dy — v, weaklyin WY (Q).

Consequently, by Mazur’s Theorem, we have i; € C*(), such that vy > 0, and
(asj — +00) Uy — vy, strongly in W~¥(Q). Thus, combining with (4.4), we have
Jj& = 1, such that v, = ¥, — v, strongly in W="¥(Q). Thus, we get the proof. [

Now, we give a result in case n = 1.

THEOREM 4.2. Let a < b, ® satisfy (S1)~(S3), A;-condition and V,-condition.
Then u € jﬁf’(a, b) ifand only if u € Wol’q’(a, b), and —u” > 0, in (a, b). Conse-
quently, 2 (a, b) is convex.

PROOF. We give a sketch of the proof.
Letu € #(a, b). Thenv = —Agu € W™'¥(q, b), and v > 0 in the distribution
sense. By Lemma 4.1, there exists v; € C*(£2), such that v; > 0, and

v; — v, strongly in W'¥(a, b).
Letu; € Wom(a, b) be the unique solution of the following equation:

e (VTTTF D)« / JTTEF ] = v, in (a,b);
uj(a) = u; (b) = 0.

4.5) {

Then u; € C*(a, b), and u; is bounded in Wo"d’(a, b). Since Wol'q’(a, b) is reflexive,
we can suppose that u; — &, weakly in W, ®(a, b). Similarly as in Lemma 3.1, it
follows from (4.5) that for all v € W,*®(a, b),

b b
/¢(,/1/j2+|u;.|2)dx—(v,-,u,)5] <I>(\/1/j2+lv’|2 dx — (v;, v).
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Passing to the limit (see the proof of (2.1)), we get

b b
/ &) dx — (v, it) 5[ Q(|V])dx — (v,v), VYve Wy%a,b),

that is,

—Agl = v, in (a, b);
u(a) = u(b) =0.

Therefore, & = u. Consequently, u; — u, weakly in Wol‘d’(a, b).
Since u; € C*(a, b), by (4.5),

(JITEF TR 14 12 NIV EEATAR)
_[(9( /i | %) 15| +(p( fi 14 ]u”-—ijO, in (a, b).

NSV EESTAL RV ERPADECY I

Thus, —u}’ > 0, in (a, b). Passing to the limit, we get —u” > 0, in (a, b). Similarly,
ifue Wom(a, b), and —u” > 0, in (a, b), then we can prove that u € S (a, b). O

When n > 2, we have:

THEOREM 4.3. Let 2 be a bounded Lipschitz domain. Suppose that n > 2, ®
satisfies (S1)—(S3) and A,-condition. Then .%’f(Q) is convex if and only if ®(r) =
Cr? for some positive constant C.

PROOF. If ®(r) = Cr?, then Ay = 2CA. Consequently, jf_’f’(Q) is convex.

On the other hand, suppose jff’(Q) is convex. We want to prove ®(r) = Cr?, or
equivalently, h(r) = r¢’(r) — ¢(r) = 0. Without loss of generality, we suppose that
0 € Q, and therefore there exists an ¢ > 0, such that the ball B, = B,(0) C Q. We
will prove that A(r) = 0 in two steps.

Step I. First, we claim that & does not change its sigh in [0, +00).
To prove this, suppose that ry > O satisfies h(ry) > 0. Then, by the continuity of
h, there exists an ¢ € (0, rp), such that

(4.6) hir) >0, Yre(rn—¢r+t+e).

Let
x%—x2
4.7 ) =-"—"2 4, + C, x=x,x2...,x,) €L,

where L and C, are two large positive numbers, such that
4.8) IVu,(x)| € (o —~¢,0+¢), VYxeQ,

and u;(x) > 1, forallx € Q.
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Since u; € C*(2), |Vu,| # 0 (see (4.8)), we have

(D*u,Du;, Du) Auy
4.9 —Apu; = —h(|V - (Vv .
4.9) o U1 (Vuil) e e(l ull)IVunl
It is easy to verify that '
(4.10) Au; =0, in Q,
4.11) (D*u;Duy, Duy) <0, in .

Thus, u; € L (Q).
Let vy € J°(2) be the solution of the following equation

(4.12)

Uplon = 0.

[—Aq;.UM =M, in Q;

We can prove that, if we choose M sufficiently large, then vy > sup, .5 u;(x), in B,.
By Lemma 3.3 (v), u; A vy € S2°(RQ). Since 0 € S (Q2) and H°(Q) is convex,
we have 7(u; A vy) € FEL(Q), for ¢ € (0, 1). Noting that

t(ul/\vM)=tu1, in Ba, Vte(O, 1),
we have
4.13) 0< —Ap(tuy), in B, Yt e (0,1),
that is, (see (4.9) and (4.10)),

(D*uyDuy, Duy)
Vi, P

Therefore, from (4.8) and (4.11), we get h(r) = 0, for all r € (0, rp).
Similarly, if h(r;) < O for some ry, > O, then h(r) < O, for all r € (0, rp).
Therefore, we must have

0 < —h(t|Vu,}) , in B,, Vre (0,1).

(4.14) h(r)>0, Vr>0,
or
4.15) h(r)<0, VYr>0.

Step II. By what we established in the first step, we can suppose that (4.14) holds
without loss of generality. We claim that & = 0. Otherwise, there exists an ry > 0,
such that 2(rp) > O.

Let u; be defined by (4.7). Since h > 0, we have (see (4.9)—(4.11))

—Ae(tLu)) =0, in Q, Ve>0.
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Let u,(x) = —rox; + C,, such that u; > 1, in 2. Then
—Ae(tLu;) =0, in £, Vt>0.

Let M be large enough, and v,, be defined by (4.12), such that
vy = (Lry/a) max(u,, uz), in B,.

Let w; = (Lrou;/a) A vy, i = 1,2. Then w; = (Lry/a)u;, in B,, i = 1, 2, and by
Lemma 3.3 (v), w; € (), i = 1, 2. Therefore,

Aw1+w2

2

o . .
[Vw| = —/x} + x2, in B,.
a

Since h is continuous, there exists an £ € (0, rp), such that

(1] 2 2 .
w = -2—"1-(—x1 +x3), in B,

and

h(r) >0, Vre(ro—e¢gr+e¢).
Noting that
—x?+x}

—Aow = —h(|Vw|)— 2
oW (l wl)(x12+x22)3/2

in B,,
and

h(jVwl) =h(2,/x3+x§) >0, in [x €B, | /x+x2> ’°_£a},
a To

we see that {x € B, | —Agsw(x) < 0} has positive measure. That is, w ¢ %"’(Q),
contradicting the assumption. Therefore & = 0 and consequently, ®(r) = Cr’>. [

5. Weak closeness of 7, ()

It is easy to prove that /> () is strongly closed in Wy ®(Q). If A2 (Q) is convex,
then it is also weakly closed in W, ®(2) by Mazur’s Theorem. Theorem 4.3 shows
that when n > 2 and ®(r) # Cr?, ‘%‘f’(ﬂ) is not convex. But we will prove that
2 (Q) is still weakly closed in W, ®(2). More precisely, we have the following
theorem.

THEOREM 5.1. Let Q be a bounded Lipschitz domain, ® satisfy (S1)—(S3) and A,-
condition. Suppose that u; € Jff’(Q) is bounded in W0"°(S2), and u, — u, weakly
in Wy (). Then u € K2 ().
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PROOF. By the assumption of the theorem, we can suppose that u, — u, strongly
in L'(2). Thus, we can further suppose that

¢.1) u, —> u, ae. Q.

Therefore,

(5.2) u(x) = liminf u,(x) = lim infu;(x), ae. x € Q.
k=400 k—+00 j >k

Denote y,(x) = inf;>; u; (x). Then
(5.3) e Su, a.e. K.

Moreover, by Lemma 3.3 (v), yx € J£2(S2) and
J eannax < [ @qvupas < c.
Q Q

Thus, by Lemma 2.3 and (5.3), we must have y, — u, weakly in WOI'I(Q). Using
Lemma 2.3 again, we get

(5.4) /¢(|Vu|)dx < liminf/ O(|Vy]) dx.
Q k—+x0 Q

Since y; € S (), To(yx) = yx by Lemma 3.3 (iii). By (5.3), K(u) € K(yx). Thus,
we get, from (3.4), that

(5.5) /¢(|Vyk|)dx < / ®(|Vvdx, VuvelK.
Q Q
Combining (5.5) with (5.4), we have
/<D(|Vu|)dx < / ®(|Vul)dx, VYuvelkKw,
Q Q

that is, u = Ty (u). Consequently, u € JE2(S2). a

When € is only a bounded domain, if W, ®(£2) is reflexive, then Theorem 5.1 still
holds. In general, we have:

THEOREM 5.2. Let 2 be a bounded domain, ® satisfy (S1)~(S3) and A,-condition.
Suppose that u; € ()N Wy (2) is bounded in W*(R2), and uy — u, weakly in’
W, (Q2). Then u € 2(Q) N Wy (Q).
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Note that #2(2) N Wy (R) = H2(Q) if S is a Lipschitz domain, Theorem 5.1
is a special case of Theorem 5.2.

Theorem 5.1 implies that ,}2‘1" (£2) is weakly closed in Wol‘d’(SZ). In fact, when
W,®() is reflexive, a bounded sequence converging weakly in W, (€2) must con-
verge weakly in W'®(2). Thus, at this time, Theorem 5.1 is equivalent to say that
.}ﬁ"(Q) is weakly closed in W(,'"”(Q). However, when W(,'"’(Q) is not reflexive, a
bounded sequence in it need not have a subsequence converging weakly. In addition,
we do not know, in W)-®(Q), if we can always say weak* convergence, since we do
not know if W,f‘d’(Q) is the dual space of some normed linear space. Nevertheless, by
Lemma 2.3, a bounded sequence in W, ®(£2) has a subsequence converging weakly in
Wy ' (2). Thus, in application, for example, when we treat some variational problems,
we will find that Theorem 5.1 is more useful than the result of S (2) being weakly
closed in W, ®().

A typical case we are interested in is when ®(r) = r? /p for some p € (1, +00).
At this time, Ag is the so-called p-Laplacian and J£°() is denoted by S#7 ().
It is easy to verify that @ satisfies A,-condition and V,-condition. Thus, J£F () is
convex if and only if p = 2 or n = 1. Moreover, it is weakly closed in Wol”’ ().

Another interesting case is when ®(r) = rIn(1 + r). Then, Ay is called L In L-
Laplacian and J£2(2) is denoted by S£-"L(Q). In this case, ® satisfies Ap-
condition. By Theorem 4.3, #L" () is not convex when n > 2. By Theorem 5.1,
HL1L(Q) is weakly closed in W, """ ().

6. Generalization

In this section, we generalize the results obtained in Section 5. Let G : 2 xR” —» R
be a measurable function satisfying

(6.1) G(x,-) € C'(RHNCHR"\ (0}), Vxeg,
6.2) COo(n) < Glx,n) < GP(n)), Vxe, nelk”,
and

(6.3) G, (X, MES >0, VxeQ, n&e R \{0)),

where C, > C, > 0 are two constants.
Let f € W'®(Q). Suppose that b : 2 x R — R is measurable in x € Q and
continuous in '€ R. Consider the following inequality

—div(G,(x, Vu)) = b(x, u(x)), in Q;

ulaa =f.

(6.4)

We have
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THEOREM 6.1. Let Q be a bounded Lipschitz domain, ® satisfies (S1)~(S3) and
As-condition. Suppose that G satisfies (6.1)6.3), f € W'®(Q),b: Q xR — Ris
measurable in x € Q and continuous in u € R. Let u,(-) € W*(Q) satisfy (6.4) in
the weak sense,

(6.5) u, —> u, weaklyin whi(Q),

and u,(-) be bounded in W"®(Q). Moreover, suppose that b(-, uy(-)) € L¥(R),
and there exists a by(-) € LY(), such that b(x, uy(x)) > by(x), a.e. , for all
k=1,2,.... Then u € W'*(Q), and it satisfies (6.4) in the weak sense too.

PROOF. We give a sketch of the proof.

If b(x, u) is independent of u, then the result can be obtained by a modification of
the proof of Theorem 5.1.

In general, by (6.5), we can suppose that u;(x) converges to u(x) for almost all
x € . Thus, by Egorov’s Theorem (see [7, Chapter 0], for example), for any £ > 0,
there exists a subset E, C €2, such that |E,| < & and u,(-) converges to u(-) uniformly
in Q\ E,, where |E,| is the Lebesgue measure of E,. Let

b(x, ux)), if x e Q\E,;

b (x) =
) {bo(x), if x € E,.

Then for any § > 0, there exists a K > O such that b(x, u;(x)) > l;s(x) — 48, a.e.
x € Q,forall k > K. Thus, forany k > K,
—div(G,(x, Vi) > b,(x) — 8, in
urlan = f.
Consequently,
—div(G, (x, Vi) = b,(x) — 8, in ;
ulo = f.
Lets — 0* and ¢ — 0%, we get
I—div(G,,(x, Vu)) > b(x, u(x)), in ;

ulaa =f.
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