
Judgment and Decision Making, Vol. 13, No. 6, November 2018, pp. 587–606

Boundary effects in the Marschak-Machina triangle

Krzysztof Kontek∗

Abstract

This paper presents the results of a study that sheds new light on the shape of indifference curves in the Marschak-Machina

triangle. The most important observation, obtained non-parametrically, concerns jumps in indifference curves at the triangle

legs towards the triangle origin. These jumps, however, do not appear at the hypotenuse. The pattern observed suggests

discontinuity in lottery valuation when the range of lottery outcomes changes and is best explained by decision-making models

based on the psychological phenomenon of range dependence (Parducci, 1965; Cohen, 1992; Kontek & Lewandowski, 2018).

Models founded on other psychological phenomena, e.g., discontinuity in decision weights (Kahneman & Tversky, 1979),

cumulative probability weighting (Tversky & Kahneman, 1992), attention shifting (Birnbaum, 2008), overweighting of salient

payoffs (Bordallo, Gennaioli & Shefrin, 2012), and treating stated probabilities as imperfect information (Viscusi, 1989),

predict indifference curve shapes that differ from the one obtained in this study.

Keywords: Marschak-Machina triangle, indifference curves, certainty equivalents, trimmed mean, models of decision-making

under risk, ranking of models

1 Introduction

The Marschak-Machina triangle (Marschak, 1950; Machina,

1982) is a graphical tool for both theoretical and experimental

considerations concerning the modeling of decision-making

under risk. The triangle represents the set of all lotteries

involving three fixed outcomes x1 < x2 < x3 with respective

probabilities of p1, p2, and p3. Probability p1 is represented

on the horizontal axis; probability p3 is represented on the

vertical axis; and probability p2 is their sum subtracted from

1. Every point in this triangle represents a particular lot-

tery: a point inside the triangle represents a three-outcome

lottery where p1, p2, and p3 are strictly positive; a point on

the boundary of the triangle (but not at one of the corners)

represents a two-outcome lottery, since one pi is zero; while

the corners represent certainties.

A common and useful way to visualize the predictions

of the various decision-making models is to inspect their

indifference curves, as they connect points representing lot-
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teries of equal utility. If the decision-maker behaves in ac-

cordance with Expected Utility Theory (von Neumann &

Morgenstern, 1944), then his or her preferences can be rep-

resented in the Marschak-Machina triangle by a set of par-

allel straight line indifference curves. A number of theories

of decision-making under risk have been developed to ex-

plain Expected Utility violations (more specifically the Allais

paradox). These models predict indifference curves of vari-

ous shapes: straight lines that “fan-out” (i.e., that intersect at

a point to the south-west of the triangle origin, Chew & Mac-

Crimmon, 1979; Loomes & Sugden, 1982), “fan-in” (i.e.,

that intersect at a point to the north-east of the hypotenuse;

Blavatskyy, 2006), are a mixture of both (Gul, 1991; Neilson,

1992; Jia et al., 2001; Bordalo, Gennaioli & Schleifer, 2012),

or do not converge to any specific point (Dekel, 1986). The

indifference curves may be concave (Kahneman and Tversky,

1979), concave or convex (Becker, Sarin, 1987), or concave

and convex (Tversky & Kahneman, 1992; Birnbaum, 2008).

They may also be discontinuous at all boundaries (Kah-

neman & Tversky, 1979; Viscusi, 1989; Birnbaum, 2008;

Bordalo, Gennaioli & Schleifer, 2012), or only at the trian-

gle legs (Cohen, 1992; Kontek & Lewandowski, 2018). The

Marschak-Machina triangle, with the indifference curves in-

side it, is therefore a powerful tool for distinguishing the

predictions of different decision-making models. Example

shapes of the indifference curves predicted by the models

discussed in this paper are presented in Figure 1.

Many investigations have tested hypotheses about the

shape of the indifference map using real data (e.g., Hey

& Strazzera, 1989; Camerer, 1989; Loomes, 1991; Harless,

1992; Blavatskyy, 2006; Bardsley et al., 2010). Harless and

Camerer (1994), after analyzing a large number of experi-

mental data sets, conclude that the EU model should be used
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Figure 1: Indifference curve shapes predicted by: Expected Utility Theory (EUT, von Neumann & Morgenstern, 1944),

Cumulative Prospect Theory (CPT, Tversky & Kahneman, 1992), the TAX model (TAX, Birnbaum, 2008), Salience Theory

(ST, Bordalo, Gennaioli & Shefrin, 2012), Prospective Reference Theory (PRT, Viscusi, 1989), and the Decision Utility model

(DUT, Kontek & Lewandowski, 2018).

when all the lotteries are located in the interior of the triangle

(from which follows that the indifference curves are parallel

straight lines inside the triangle), but a different model has

to be used when some of the lotteries are located on the

boundaries or in the corners of the triangle. The literature

contains evidence of boundary effects (e.g., Conlisk, 1989),

although the shape of the indifference curves in the vicinity

of the triangle boundaries is not clearly stated. For instance,

Abdellaoui and Munier (1998) state only that the hypothe-

sis concerning parallelism of the indifference curves at the

triangle legs is strongly rejected.

This paper presents the results of a study that sheds new

light on the shape of indifference curves in the Marschak-

Machina triangle. The study was performed using a novel

method of non-parametrically plotting indifference curves

using certainty equivalents based on the common carto-

graphic practice of plotting contour maps (Section 2). The

approach allows the indifference curves to be visualized

(Section 3) in contrast to most previous studies, which tested

only hypotheses about the shapes of the indifference curves

in the entire triangle or in its regions (Section 6). Impor-

tantly, many of the lotteries considered in the present study

were located close to the Marschak-Machina triangle bound-

aries (a discussion on the optimal lottery grid is presented

in Section 7). This facilitated the observation of the bound-

ary effects, most importantly the jumps in the indifference

curves at the triangle legs towards the triangle origin (Sec-

tion 3). This effect is characterized by a sudden change in the

slopes of the indifference curves (Section 4). Such jumps,

however, do not appear at the hypotenuse. The indifference

curves in the triangle interior are parallel straight lines (with

a tendency to fan-in along, but not around, the two legs).

To confirm the main observations obtained non-

parametrically, an estimation of six decision-making mod-

els founded on various psychological phenomena was made

(Section 5). This included Expected Utility Theory (von

Neumann and Morgenstern, 1944), Cumulative Prospect

Theory (CPT, Tversky & Kahneman, 1992), Prospective Ref-

erence Theory (PRT, Viscusi, 1989), the TAX model (Birn-

baum, 2008), Salience Theory (ST, Bordalo, Gennaioli &

Shefrin, 2012), and the Decision Utility model (DUT, Kontek

& Lewandowski, 2018). As shown, the best fit is obtained by

the Decision Utility and Prospective Reference models, i.e.,

those that predict parallel straight indifference curves in the

triangle interior and discontinuous jumps at the triangle legs

towards the triangle origin. The Cumulative Prospect The-

ory model, which predicts nonlinear but smooth indifference

curves, was ranked only fourth. The model ranking naturally

leads to a discussion on which of the psychological phenom-

ena underlying the models might correctly explain the shape
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Figure 2: The Marschak-Machina triangle with the lotteries

examined in the experiment.

of the indifference curves obtained non-parametrically in this

study (Section 8). This pattern suggests discontinuity in the

lottery valuation when the range of lottery outcomes changes

and is best explained by models based on the psychological

phenomenon of range dependence (Parducci, 1965; Cohen,

1992; Kontek & Lewandowski, 2018). Models founded on

other psychological phenomena, e.g., discontinuity in de-

cision weights (Kahneman & Tversky, 1979), cumulative

probability weighting (Tversky & Kahneman, 1992), atten-

tion shifting (Birnbaum, 2008), overweighting of salient

payoffs (Bordallo, Gennaioli & Shefrin, 2012), and treat-

ing stated probabilities as imperfect information (Viscusi,

1989), predict indifference curve shapes that differ from the

one obtained non-parametrically in this study.

2 Method

The idea of the non-parametric method of plotting indiffer-

ence curves comes from contour mapping: a contour line

(often simply called a “contour”) joins points of equal eleva-

tion (height) above a given level, e.g., mean sea level. The

procedure is as follows. First, the lotteries to be examined

are chosen; these are the points in the Marschak-Machina

triangle. Second, lottery certainty equivalents (CE) are de-

termined; these are the “heights” of the respective points.

Finally, these CE values are used to plot a contour map; the

contours are the required indifference curve(s) joining points

having the same interpolated CE value.

Figure 3: An example problem from the experiment.

2.1 Lotteries involved

The experiment involved 67 lotteries for each of two payoff

schedules: x1 = 0 zł, x2 = 150 zł, x3 = 300 zł (Triangle 1);

and x1 = 0 zł, x2 = 450 zł and x3 = 900 zł (Triangle 2).

Złoty (zł) is the Polish currency; $1 ≈ 4 zł, although the

purchasing power for basic goods is closer to identity. Of

the 67 lotteries, 3 were located in the corners of the triangle,

24 on the boundaries, and the remaining 40 in the interior.

To verify the boundary effects, the distribution of lotteries

was chosen to be more dense near the triangle boundaries

and corners (Figure 2).

The lotteries were constructed from the following list of p1

and p3 probabilities: {0, 0.01, 0.05, 0.2, 0.4, 0.6, 0.8, 0.95,

0.99, 1}. All combinations { p1, 1 − p1 − p3, p3} such that

1 − p1 − p3≥0 resulted in the lotteries: {0, 1, 0}, {0, 0.99,

0.01}, {0, 0.95, 0.05}, etc. The following lotteries were

added to verify the boundary effects close to the hypotenuse:

{0.04, 0.01, 0.95}, {0.19, 0.01, 0.8}, {0.39, 0.01, 0.6}, {0.6,

0.01, 0.39}, {0.8, 0.01, 0.19}, {0.95, 0.01, 0.04}, all having

p2 = 0.01 and {0.1, 0.05, 0.85}, {0.25, 0.05, 0.7}, {0.4 0.05,

0.55}, {0.55, 0.05, 0.4}, {0.7, 0.05, 0.25}, and {0.85, 0.05,

0.1}, all having p2 = 0.05.

2.2 CE determination

The term “certainty equivalent” was not used in the instruc-

tion (see Appendix 2), as it is unknown or difficult to un-

derstand for most people. The lotteries were presented in

the form of urns containing black, gray and white balls (for

lotteries located in the corners or on the edges of the triangle,

the balls were only one or two colors). To the right of the

urn containing the balls of three colors was another urn that

only contained balls with crosses.

An example problem is demonstrated in Figure 3. In this

sample problem, the value of the black ball was 300 zł, the

gray ball 150 zł, and the white ball 0 zł. The subjects had to

state the value that a ball with a cross would need to have to

make them indifferent between drawing a ball from the left
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or right urn. The subjects thereby determined the CEs of the

lotteries presented on the left side of the panel.

The experiment was conducted on the Internet. The prob-

lems were presented to the subjects in random order. Six

HTML forms with 134 randomly ordered problems were

prepared. A given form was randomly assigned to each sub-

ject. The black ball offered the maximum payoff in three of

the forms, and the minimum payoff in the others. The gray

ball always offered an intermediate payoff.

2.3 Subjects

There were 237 subjects, all undergraduate economics stu-

dents at the Warsaw School of Economics. Their ages ranged

from 18 to 25 years with a mean of 20.2 years and 47% were

women. The students received information about the exper-

iment from their supervisors, who worked with the author

of this paper and agreed to promote the experiment. Par-

ticipation was voluntary. The subjects were given a 12-zł

voucher that they could redeem at the campus cafeteria. As

is known from the literature, the incentive method may have

an impact on the level of risk aversion demonstrated by sub-

jects (e.g., Holt & Laury, 2002). The subjects were therefore

incentivized by performance as well. They were informed

beforehand that some of them would be taking part in a real

lottery. Four subjects were randomly selected after the data

had been collected. The two who offered the lowest CE for a

randomly selected lottery received the amounts they quoted

(70 zł and 90 zł). The other two (who quoted CEs of 100 zł

and 130 zł) had to play this lottery. They did not, however,

win anything.

As the experiment was conducted on the Internet, the

subjects could respond at their convenience. They first reg-

istered and familiarized themselves with the instructions on-

line. They were then required to solve two sample problems.

The time to answer all questions was planned at 40–50 min-

utes, although they were asked to work at their own pace.

The average time was about 41 minutes. The value of the

voucher (12 zł) therefore exceeded the minimum hourly wage

in Poland, which is about 10 zł.

3 Results

3.1 Aggregating the data

Responses in experiments involving lottery CEs are usually

noisy, skewed, and contain a lot of outliers. The level of

noise encountered in this experiment is probably magnified

by the fact that many of the lotteries under consideration

involved three outcomes, rather than two, as in typical lot-

tery experiments. Moreover, people tend to round their CE

valuations to the nearest ten, fifty, or even hundred (e.g., 10,

50, 700 rather than 9, 54, 670). These rounded CE values

may then appear several times in the responses of different

subjects. The term “tied values” is used in the literature

on robust statistics to describe repetitive responses (see e.g.,

Wilcox, 2011, 2012). Example histograms of CE responses

obtained for particular lotteries are presented in Figure 4.

For the reasons presented above, it is of great importance

to choose a proper measure of CE location. The mean value

is known to be very sensitive to outliers (e.g., the upper

left graph in Figure 4, which has a mean value of 60.6,

but a median value of only 10.0). The median value is

less sensitive to outliers. However, it is sensitive to tied

values (e.g., graphs in the middle row and the lower left,

with a median of 200, 700, and 500). Many robust location

estimators are proposed in the literature. The trimmed mean

estimator is simple to compute, yet, according to Wilcox

(2012), often performs better than more complex ones when

sampling from heavy-tailed distributions. More specifically,

it usually has a narrower confidence interval than the median,

mean, and other measures of central tendency. The trimmed

mean is the mean of the elements in a list after dropping

a fraction f of the smallest and largest elements. Wilcox

(2011) suggests f = 20% for data in social and behavioral

sciences. The 20% trimmed mean is a compromise between

the mean (f = 0 %; no points dropped) and the median (f

= 50%; all but one point dropped). Therefore, as seen in

Figure 4, the 20% trimmed mean (in green) assumes a value

between the mean (in red) and the median (in orange).

Applying the 20% trimmed mean estimator results in 134

aggregated CE values (presented in Appendix 1), which are

further used in the analyses. However, using median or

mean CE values does not change the general observations

regarding the shape of the indifferences curves.

3.2 Plotting the CE surfaces

The aggregated CE values are first visualized using a 3D plot

(see Figure 5). Note that the three triangle corners are tied

to the values of 0, 150, and 300 (left) and 0, 450, and 900

(right), as they represent certainties. Observe the CE surface

shape at its edges. The surface rises and drops sharply at

the p1 and p3 axes, although the slope is maintained at the

hypotenuse.

Note that moving upwards from the p1 axis into the area of

positive p3 values (i.e., introducing a new high outcome x3)

sharply increases the lottery CE value. Per contra, moving

right from the p3 axis into the area of positive p1 values (i.e.,

introducing a new low outcome x1) sharply decreases the

lottery CE value. This suggests that changing the range of

lottery outcomes might explain this pattern. No such sharp

change in the CE value is observed when moving from the

cube diagonal into the triangle interior (i.e., introducing a

new middle outcome x2). In this case, however, the range of

lottery outcomes remains unchanged.
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Figure 4: Example histograms of CE responses for particular lotteries presented with expected (ev), median (med), mean

(mn) and 20% trimmed mean (trm) values.

3.3 Plotting the indifferences curves

The indifference curves are plotted using the Wolfram

Mathematica® ListContourPlot function, which generates a

contour plot from height values defined at specified points.

Similar functionalities are offered by e.g., “filled.contour” in

R and “contour” in Matlab. According to the Mathematica®

tutorial, the program plots the required contour lines by lin-

early interpolating heights along the lines connecting adja-

cent points on the plane. For instance, to plot a contour of

200, the program first searches for points on the plane hav-

ing an interpolated height of 200. Connecting these points

then results in the required indifference curve of 200. Note

that the indifference curves are plotted using a single com-

mand: no dedicated software is needed. The indifference

curves obtained using aggregated CE values for Triangle 1

and Triangle 2 are shown in Figure 6.

Note that indifference curves are expressed in terms of

monetary CE values, rather than hypothetical “utils” (see

plot legends). The contour values of 0, 20, 40, . . . ., 300

are presented in the left diagram, and those of 0, 60, 120,

. . . , 900 in the right (which results in 14 curves on each

plot). However, the plots for any arbitrarily chosen number

of indifference curves and indifference curve values can be

generated without re-running the experiment.

Several observations need to be made. First, the indiffer-

ence curves seem to be straight parallel lines in the middle

of the triangle. This is the area where behavior conforms to

Expected Utility Theory.

Second, the further north of the origin towards the north-

west corner of the triangle, the flatter the slopes of the in-

difference curves, and the further east of the origin towards

the southeast corner of the triangle, the steeper the slopes of

the indifference curves. This results in a pattern of “fanning-

in” around the two legs of the triangle (i.e., the tendency

to intersect at a point to the north-east of the hypotenuse)

and “fanning-out” in the area around the southwest corner of

the triangle (i.e., the tendency to intersect at the point to the

south-west of the origin).
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Figure 5: 3D plots of the aggregated CE values: Triangle 1 (left); and Triangle 2 (right).
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Figure 6: Indifference curves in two Marschak-Machina triangles: Triangle 1 (left) with outcomes x1 = 0 zł, x2 = 150 zł, and

x3 = 300 zł; and Triangle 2 (right) with outcomes x1 = 0 zł, x2 = 450 zł, and x3 = 900 zł. The Mathematica® program draws

colored contour plots, so that areas of low CE contour values are marked using “cold” colors, and areas of high contour values

are marked using “warm” colors.

Finally, and most importantly for the present study, the

indifference curves appear to have jumps in the direction of

the origin near the legs of the triangle. Significantly, these

jumps are not observed near the hypotenuse.

3.4 Limitation and robustness of the method

The method of non-parametrically plotting indifference

curves is sensitive to noise and often results in plots of poor

quality when applied to individual data. At the same time,

it is very robust when the individual data are aggregated

using the 20% trimmed mean. The limitation and the ro-

bustness of the method will be illustrated by the following

simulation. Let us assume that the pattern of the indifference

curves presented in Figure 6 reflects the real preferences of

the “average” subject, but a Gaussian noise is added to every

aggregated certainty equivalent value:

Cnoise
i = CEi

(
1 + N

(
0,σ2

))
.

The simulated indifference curves are presented in Figure

7. As can be seen, even a small noise ( σ = 0.05, graph

on the left) seriously distorts the curves, and a larger one (

σ = 0.20, graph on the right) results in curves that would

suggest a lack of any pattern in the triangle interior and at its

boundaries. In fact, the plot on the right resembles the plots

of many of the subjects who took part in the experiment.

https://doi.org/10.1017/S1930297500006616 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500006616


Judgment and Decision Making, Vol. 13, No. 6, November 2018 Boundary effects in the Marschak-Machina triangle 593

��

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p1

p3

x�=0 z�, x�=�1� z�, x�=300 z�

40

80

120

160

200

240

280

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p1

p3

x�=0 z�, x�=41� z�, x�=900 z�

60

180

300

420

5��

660

780

900

Figure 7: Simulated indifferences curves after adding a Gaussian noise to aggregated certainty equivalents. On the left:

σ = 0.05, on the right: σ = 0.20.
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Figure 8: Simulated indifferences curves after adding a Gaussian noise to individual certainty equivalents, and then aggre-

gated them using 20% trimmed mean. On the left: σ = 0.05, on the right: σ = 0.20.

However, adding a Gaussian noise to individual certainty

equivalents (which are already very noisy), and aggregating

them using 20% trimmed means, results in an almost perfect

recovery of the observed pattern (see Figure 8). In fact,

there is hardly any discernible difference between the curves

presented in Figure 6 and Figure 8: the median absolute

difference between the certainty equivalent values used to

plot them is 0.4% for σ = 0.05 (graphs on the left), and 2%

for σ = 0.20 (graphs on the right).

The following conclusions can be drawn. First, the method

might not be suitable for plotting individual indifference

curves, unless some other means of reducing the noise are

implemented (see also the discussion in Section 8). Second,

the lack of “nice” plots on the individual level does not nec-

essarily result from a lack of any interesting effects at the

boundaries and in the interior of the triangle; the method

simply fails to recover them when the noise level is high.

Third, the method is very robust when individual data are

aggregated using the 20% trimmed means. Fourth, the pat-

tern obtained on the group level very likely demonstrates the

real preferences of the “average” decision maker and is not

the result of misidentification.

4 Indifference curve slopes

The main observations concerning the shape of the indiffer-

ence curves are confirmed by estimating their slopes in the

triangle sub-areas. If decision-makers behave as predicted

by Expected Utility Theory, then their preferences can be

represented in the Marschak-Machina triangle by a set of

parallel straight line indifference curves. For x2 =
(x1+x3)

2
,

as in the present experiment, the slope of the indifference

curves for risk averse people is greater than 1, for risk seek-

ing people less than 1, and for risk neutral people equal to

1. Lottery CEs may serve to determine indifference curve

slopes using a linear model:

p3 = a + bp1 + cCE ,

in which the required slope is given by the parameter b.
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Figure 9: Sub-areas of the Marschak-Machina triangle used to determine local slopes of indifference curves. The numbers

on the graph show the number of lotteries in each area.

Figure 10: Indifference curves estimated non-parametrically from the experiment presented together with local estimations

of their slopes in Triangle 1 (left) and Triangle 2 (right). The statistical significance of the estimated slope values is denoted

as: ** for p-value ≤ 0.01, and * for 0.01<p-value ≤ 0.05. Area A: 0 ≤ p1 ≤ 0.01 and 0.2 ≤ p3 ≤ 0.8; Area B: 0.01 ≤ p1 ≤ 0.2

and 0.2 ≤ p3 ≤ 0.8; Area C: 0.2 ≤ p1 ≤ 0.8 and 0.2 ≤ p3 ≤ 0.8; Area D: 0.2 ≤ p1 ≤ 0.8 and 0.01 ≤ p3 ≤ 0.2; Area E: 0.2 ≤

p1 ≤ 0.8 and 0 ≤ p3 ≤ 0.01.

4.1 The entire triangle

The minimum least squares procedure applied to aggregated

CE values in the entire triangle leads to b = 1.02 (0.03) for

Triangle 1, and b = 1.06 (0.03) for Triangle 2 (standard errors

are given in parentheses). This suggests that, on average, the

subjects demonstrated slight risk aversion.

4.2 Triangle sub-areas

The same least squares procedure may be applied in triangle

sub-areas to determine local slopes in indifference curves.

The triangle has been split into smaller regions as presented

in Figure 9. The numbers on the graph show the number of

lotteries in each area. It is assumed that lotteries located on

the boundaries between two regions (marked as dotted lines)

belong to both regions.

A linear regression procedure was performed in each of

these regions to obtain a number of linear models approxi-

mating the indifference curves locally (the number of degrees

of freedom in each model is 3 less than the number of lot-

teries). The b value estimations for aggregated CE values

are presented graphically in Figure 10. The statistical sig-

nificance of estimated slope values is marked with ** for

p-value ≤ 0.01, and * for 0.01 < p-value < 0.05. Definitions

of areas A, B, C, D, and E, which are most important for

deriving conclusions, are given in Figure 10.
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4.3 Areas of straight parallel lines and

fanning-in patterns

It can be seen that the indifference curves in Area C of

Triangle 1 are parallel straight lines with a slope of 1.14

(0.04). This is the area of conformity to Expected Utility.

At the same time, the slope of the indifference curves is

0.87 (0.08) in Area B, and 1.45 (0.22) in Area D. The same

pattern (albeit with some distortions) can be seen in Triangle

2, where the slope values are 1.00 (0.08), 0.78 (0.12), and

1.60 (0.30) respectively. This indicates a fanning-in pattern

in areas B and D: indifference curves tend to converge to a

point somewhere to the north-east of the Marschak-Machina

triangle.

4.4 Jumps at the legs

These results reveal a sudden change in the slopes of the

indifference curves close to the triangle legs. In Triangle 1,

the slope value changes from 1.45 (0.22) in Area D to 0.07

(0.01) in Area E, i.e., by a factor of 20. In Triangle 2, there

is a similar change from 1.60 (0.30) to 0.10 (0.02), i.e., by

a factor of 16. The same pattern is observed at the vertical

leg. In Triangle 1, the slope value changes from 6.79 (1.90)

in Area A to 0.87 (0.08) in Area B, i.e., by a factor of 8, and

in Triangle 2 from 8.79 (2.99) to 0.78 (0.12), i.e., by a factor

of 11. Less abrupt changes can also be observed in the areas

around the three triangle corners, but the results in this case

are not statistically significant.

Unfortunately, the regression procedure on the individual

level leads to statistically insignificant results: individual b

values estimated in the most interesting triangle sub-areas

A, B, D, and E involving 8 or 13 points were statistically

insignificant (p-value > 0.05) for the vast majority of subjects

(93% for Triangle 1, and 95% for Triangle 2). The slope

values estimated for the remaining subjects assumed a value

of 1 in about half the cases, meaning that they gave lottery

expected value as their responses.

4.5 Continuous or discontinuous indifference

curves?

These data raise the question as to whether these jumps at

the triangle legs are continuous or discontinuous. It could be

argued that 0.01, the minimum non-zero probability used in

the experiment, is still far greater than 0 (at least on a loga-

rithmic scale) and that the indifference curves might become

smooth for probabilities of less than 0.01. The hypothe-

sis regarding continuity or discontinuity of the indifference

curves at the triangle legs is, however, not testable. Even

if the jumps observed in the experiment had occurred at a

probability of say 0.001, it could still be argued that this was

far greater than 0.

The path of the indifference curves near the two legs of

the triangle suggests, however, that the jumps in the curves

are discontinuous. It is highly unlikely that the indifference

curves, which are parallel as they depart from the hypotenuse

and remain so in the middle of the triangle, would first turn

away from the origin, and then (somewhere between a prob-

ability of 0 and 0.01) smoothly turn back towards it. The in-

difference curve discontinuity hypothesis would not require

such dramatic changes in the slope values: the indifference

curves would remain steep near the horizontal leg for any

non-zero probability p3, and remain flat near the vertical leg

for any non-zero probability p1.

5 Model estimation

The observations presented so far were confirmed using an-

other analysis: the data collected in the experiment were

used to estimate and compare six decision-making models

under risk. Four of them predict jumps at the triangle bound-

aries. The idea of this analysis is to check which models,

predicting smooth or discontinuous indifference curves, bet-

ter describe the data collected. The models are estimated

using CE values obtained from the experiment and the sum

of squared errors (SSE) values are compared to choose the

most accurate model. Certainty equivalents were used in

the past to estimate the CPT parameters (e.g., Tversky &

Kahneman, 1992; Gonzales & Wu, 1999) and to compare

decision-making models (e.g., Blavatskyy, 2007). This ap-

proach differs from other studies (e.g., Hey & Orme, 1994),

in which models were compared on the basis of preference

questions and correct predictions of choices between two

lotteries.

5.1 The models

The typical shapes of the indifferences curves predicted by

the models under consideration are presented in Figure 1.

How these models evaluate CE is detailed below. As be-

fore, it is assumed that x1 < x2 < x3. In what follows

(especially in the case of binary lotteries) xL = Min [xi] and

xH = Max [xi] will occasionally be used to denote lottery

minimum and maximum outcomes having respective prob-

abilities of pL and pH (when p1 = 0, the minimum outcome

is x2 rather than x1; when p3 = 0, the maximum outcome

is x2 rather than x3). A power utility function v (x) = xα is

assumed for the first four models and the predicted CE value

is the utility inverse of the functional.

Expected Utility Theory (EUT, von Neumann and Mor-

genstern, 1944) is the standard model of decision-making

under risk. It evaluates prospects as follows:

v (CEEUT ) =

n∑

i=1

v (xi) pi .
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As the model is linear in probabilities, the indifference curves

in the Marschak-Machina triangle are parallel straight lines

with no jumps at the triangle boundaries.

Prospective Reference Theory (PRT; Viscusi, 1989) is a

variant of the Expected Utility model in which the individual

treats stated probabilities as imperfect information and uses

them to update his/her prior probabilities to posterior ones in

the standard Bayesian fashion. For convenience, the theory

assumes a prior probability of 1/n for each outcome, where

n is the number outcomes with pi > 0. It follows that:

v (CEPRT ) = β

n∑

i=1

v (xi) pi + (1 − β)
1

n

n∑

i=1

v (xi) ,

where the parameter β weights: a). the expected utility

functional using stated probabilities (the term on the left) and

b). the expected utility functional using equal probabilities

of 1/n (the term on the right). Changing the number of

outcomes n results in a discontinuous change of the predicted

CEPRT value. This leads to discontinuous jumps of the

indifference curves at all triangle boundaries. As the model

is linear in probabilities, the indifference curves inside the

triangle are parallel straight lines, as they are in the EU

model.

Cumulative Prospect Theory (CPT; Tversky & Kahne-

man, 1992) evaluates prospects using a probability weight-

ing function w (p) applied to cumulative probabilities; the

probability weights are then de-cumulated. Three-outcome

lotteries are evaluated using the functional:

v (CECPT ) =v (x3)w (p3) + v (x2) [w (p3 + p2) − w (p3)]+

v (x1) [1 − w (p3 + p2)] ,

As the CPT model is nonlinear in probabilities, the indif-

ference curves in the Marschak-Machina triangle are also

nonlinear: they are concave in the upper-left part of the tri-

angle and convex in the lower-right part for a typical inverse

S-shaped probability weighting function. The probability

weighting function is described in this study using the two-

parameter Prelec (1998) function:

w (p) = e−γ(− ln p)δ ,

where parameter δ is responsible for the curvature (lower the

parameter value, more curved the function), and parameter

γ is responsible for the elevation (lower the parameter value,

greater the elevation).

There is no discontinuous change of the predicted CECPT

value when one pi becomes 0, and the functional simplifies

to v (CECPT ) = v (xL) + [v (xH ) − v (xL)]w (pH ). There-

fore, the indifference curves predicted by the CPT model are

smooth everywhere.

TAX model (TAX; Birnbaum, 2008) assumes that

prospect branches are assigned decision weights that de-

pend on the “attention” that the decision maker allocates to

a particular branch. A risk-averse individual shifts atten-

tion from high outcome branches to low outcome ones. The

lottery utility is then a weighted average of the outcome util-

ities with weights that depend on probabilities and outcome

rankings. Three-outcome lotteries are evaluated as:

v (CETAX3) =
Av (x1) + Bv (x2) + Cv (x3)

A + B + C
,

where: A = t (p1) +
δ
4

t (p2) +
δ
4

t (p3), B =
(
1 − δ

4

)
t (p2) +

δ
4

t (p3), and C =
(
1 − δ

2

)
t (p3), and where t (p) is the weight

of the branch’s probability (not decumulative probability as

in CPT), and parameter δ defines attention (weights) transfers

from branch to branch (higher the parameter value, greater

the attention transfers to lower branches). Two-outcome

lotteries are evaluated as:

v (CETAX2) =
Av (xL) + Bv (xH )

A + B
,

where: A = t (pL) +
δ
3

t (pH ) and B =
(
1 − δ

3

)
t (pH ). The

weights A, B, and C change discontinuously when the num-

ber of outcomes with a positive probability varies. There-

fore, the lottery valuation changes discontinuously in this

case and the indifference curves might be discontinuous at

all triangle boundaries. The probability weighting function t

is described using the power function t (p) = pγ, and, as the

model is nonlinear in probabilities, the indifference curves

are nonlinear: concave in the left-upper part of the triangle

and convex in the lower-right part, as they are in the CPT

model.

Decision Utility model (DUT; Kontek & Lewandowski,

2018) applies a normalized utility function D (decision util-

ity) to each lottery range under consideration. This way the

lottery valuation depends on its range [xL, xH ]. Lotteries are

compared with respect to their CE values:

CEDUT = xL + (xH − xL) D−1

[
n∑

i=1

D

(
xi − xL

xH − xL

)
pi

]

.

For a binary lottery, the functional simplifies to:

CEDUT2 = xL + (xH − xL) D−1 (pH ), which is the same as

for CPT, assuming v (x) = x, and D−1 (p) = w (p) . Contrary

to CPT, however, when one pi becomes 0 and the lottery

range [xL, xH ] changes, the predicted CEDUT value changes

discontinuously. Therefore, the indifference curves are dis-

continuous at the triangle legs, but not at the hypotenuse. As

the model is linear in probabilities, the indifference curves

inside the triangle are parallel straight lines, as they are in the

EU model. The D function is described in this study using
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Table 1: Estimation results of several decision-making models under risk.

Parameters

Model SSE AIC BIC Est. value St. error p-value

EV 54 792.9 1190.1 1195.9

EUT 54 631.6 1189.7 1195.5 α = 0.99 0.02 < 10−101

ST 46 427.1 1169.9 1178.6 δ = 0.91 0.02 < 10−92

θ = 20904 43400 0.63

CPT 32 118.0 1122.5 1134.1 α = 1.12 0.05 < 10−46

γ = 1.09 0.04 < 10−52

δ = 0.86 0.01 < 10−96

TAX 30 183.1 1114.2 1125.8 α = 1.05 0.02 < 10−83

γ = 0.95 0.02 < 10−73

δ = 0.12 0.02 < 10−5

PRT 24 860.8 1086.2 1094.9 α = 0.96 0.01 < 10−124

β = 0.91 0.01 < 10−139

DUT 20 003.7 1057.1 1065.8 r0 = 0.40 0.02 < 10−37

δ = 1.24 0.02 < 10−105

the CDF of the Two-Sided Power Distribution (Kotz & van

Dorp, 2004):

D (r) =




r0

(
r
r0

)δ
0 < r≤r0

1 − (1 − r0)
(

1−r
1−r0

)δ
r0 < r≤1

,

where r =
xi−xL
xH−xL

denotes the relative position of xi within

the lottery range [xL, xH ], δ is the parameter responsible

for the curvature (greater the parameter value, greater the

curvature), and r0 defines the value of r at which the curve

crosses the diagonal.

Salience Theory (ST; Bordalo, Gennaioli & Schleifer,

2012) provides a context-dependent representation of lot-

teries in which true probabilities are replaced by decision

weights distorted in favor of salient payoffs. The functional

for the lottery CE is not given in the original paper and

its derivation indicates flaws in the model (for details, see

Kontek, 2016). For instance, the CE value is undefined for

some probability intervals. More seriously, any assumption

regarding CE in those intervals violates monotonicity. Only

the formula for binary lotteries is presented below:

CEST =




xL + (xH − xL)
p

p+δ(1−p)
p < δ

δ+A

AxL +
(A−1)θ

2
δ

δ+A
< p < 1

1+δA

xL + (xH − xL)
δp

δp+(1−p)
p > 1

1+δA

,

where: A =

√
2xH+θ
2xL+θ

, p = pH , parameter θ affects the

salience function σ
(
xi, x j

)
=

|xi−x j |
|xi |+|x j |+θ

(greater the pa-

rameter value, lower the salience of payoffs in a given state),

parameter δ measures the extent to which salience distorts

decision weights (lower the parameter value, less salient

states are more discounted), and where a constant CE value

in the middle row is assumed to make the model operational.

The model predicts discontinuous jumps at all boundaries,

as introducing or removing an outcome results in a discon-

tinuous change in the predicted CE value. The indiffer-

ence curves are non-parallel straight lines (there are areas of

fanning-in, fanning out, and constant CE). Despite its pecu-

liar features, the ST model is used in this study because it

has recently gained a lot of attention among researchers.

5.2 Estimation results on the group level

The fit of 134 aggregated CE values was performed us-

ing the Mathematica “NonlinearModelFit” function, which

constructs a nonlinear least-squares model and assumes

that errors are independent and normally distributed. Pos-

sible settings for the search method include “Conjugate-

Gradient”, “Gradient”, “LevenbergMarquardt”, “Newton”,

“NMinimize”, and “QuasiNewton”, with the default being

“Automatic” (in which case the method is chosen automat-

ically by the function; this option was used in estimations).

The “NonlinearModelFit” function enables the parameter

space to be constrained, but this was not required for the ag-

gregate data (except of the ST model). The estimation results

are presented in Table 1. As can be seen, the two-parameter

DUT model offers the best fit, and the PRT model, which also

has two parameters, the next best. The three-parameter TAX
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Table 2: The number of subjects for whom the respective

model has the lowest SSE value.

Model CPT TAX PRT DUT

Number of subjects 110 47 34 46

Percentage of subjects 46.4% 19.8% 14.3% 19.4%

model is third, and the CPT model, which also has 3 param-

eters, only comes fourth. The ST model, with much poorer

results, is fifth (the p-value of the θ parameter is very high

indicating problems with estimation of the salience function

σ
(
xi, x j

)
which is essential for the ST model). The one-

parameter EUT model is only slightly better than Expected

Value. This model ranking is confirmed by the AIC and BIC

measures.

As seen the DUT, PRT, and TAX models predicting jumps

at the triangle boundaries are more accurate than CPT, which

predicts smooth indifference curves. This happens even

though the DUT and PRT models use one parameter less

than CPT. The poor performance of the ST model is not

surprising given its peculiar features as described above.

5.3 Predicted vs. observed indifference curves

To make the estimation results more readily comprehensi-

ble, the indifference curves predicted by the best-fit EUT,

ST, CPT, TAX, PRT, and DUT models are presented in Fig-

ure 11, together with the indifference curves obtained non-

parametrically. The plots illustrate the manner and extent

to which the predicted curves match those obtained non-

parametrically. As can be seen, the best-fit PRT and DUT

models predict discontinuous jumps on both legs towards

the triangle origin, while the best-fit TAX model predicts

discontinuous jumps on the vertical leg only (jumps at other

boundaries are almost invisible). The CPT model does not

predict any jumps. This explains the ranking of the models

obtained in the comparison.

These ranking results suggest that the boundary effects at

the triangle legs capture most of the variation in the data.

The nonlinearity of the indifference curves in the triangle

interior (if any) is only a second-order effect. Both the

DUT and PRT models perform well because they conform

to Expected Utility inside the triangle, and, at the same time,

capture the specific effects at the triangle legs. Note the

difference between the DUT and PRT models. The size

of predicted jumps along both legs is always the same for

PRT but differs for DUT. This explains why the DUT model

performs better than PRT.

It should be noted that the best-fit PRT and TAX models

do not predict any jumps at the hypotenuse, although they

generally allow such jumps (in fact, they predict jumps at the

hypotenuse, but these are too small to be seen on the plot).

Table 3: The number of subjects for whom the respective

two-parameter model has the lowest SSE value.

Model CPT TAX PRT DUT

CPT: γ = 1; TAX: γ = 1 55 47 51 84

CPT: γ = 1; TAX: β = 1 46 38 65 88

CPT: α = 1; TAX: γ = 1 77 41 49 70

CPT: α = 1; TAX: β = 1 71 27 61 78

Average 62.25 38.25 56.5 80

Percentage of subjects 26.3% 16.1% 23.8% 33.8%

This additionally confirms that the jumps in the indifference

curves are present only at the triangle legs.

5.4 Estimation results on the individual level

The CPT, TAX, PRT, and DUT models were next estimated

using individual data. Individual data is much more noisy

than aggregate data and, in some cases, may lead to problems

with obtaining results. Therefore, fits were performed with

the constrained parameter space (although the constraints

were not too restrictive; for instance, it was assumed for the

CPT model that 0 < α < 4, 0 < γ < 20, and 0 < δ < 20).

Four starting points were chosen for each individual and

each model, and the estimation with the lowest SSE value

was chosen as the best fit. Calculations were performed with

the working precision of 16 digits and were conducted in

parallel using 8 Mathematica kernels.

The most accurate model for each subject (i.e., having

the lowest SSE value), was then chosen. Table 2 shows the

number of subjects for whom the respective model was the

most accurate.

As can be seen, the CPT model has the lowest SSE value

for 46.4% of subjects. Other models, which allow jumps in

the indifference curves at the triangle boundaries, are the best

in the case of the remaining 53.6%. As the CPT and TAX

models have three parameters, whereas PRT and DUT only

two, estimations were also made for two-parameter versions

of the CPT and TAX models to make the comparison fair.

In the case of CPT, the version with γ = 1 means that

a nonlinear value function was used together with a one-

parameter probability weighting function, and the version

with α = 1 means that a linear value function was used

together with a two-parameter weighting function. In both

cases, the two-parameter CPT model performs poorer than

previously, and the DUT model becomes the prevailing one

for 33.8% of subjects on average (see Table 3).

Importantly, the CPT model, which predicts smooth in-

difference curves, is, on average, the best for only 26.3% of

subjects (20-33% depending on which two parameters are

used). Other models (including DUT), that allow jumps in

the indifference curves at the triangle boundaries, are the
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Figure 11: Indifference curves obtained non-parametrically (dashed) and predicted by the best-fit models.

best for the remaining 73.7%. The PRT model is generally

slightly less accurate than CPT on the individual level, and

the TAX model is the worst in this comparison.

A direct comparison was finally made between the two-

parameter versions of the CPT and the DUT models. In

this case, DUT offers more accurate fits for 51.5%-59.5% of

subjects and performs slightly better than CPT. The results

are presented in Table 4.

It may be argued that the model comparisons presented

in Tables 2, 3, and 4 identify a discrete “winning model”.

An SSE difference of 0.01 could lead one to claim that one

model is superior without any way to determine the differ-

ence between this situation and one where a model excels

by a difference of 100. Therefore, Table 4 presents also

mean and median absolute differences between the models

in terms of SSE (calculated as an average for all individuals).
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Table 4: The number of subjects for whom the two-parameter CPT or DUT model has a lower SSE value, and the mean and

median absolute differences between the models expressed in %.

The best model CPT DUT Mean absolute difference in SSE Median absolute difference in SSE

CPT: γ = 1 96 (40.5%) 141 (59.5%) 5.3% 3.6%

CPT: α = 1 115 (48.5%) 122 (51.5%) 5.8% 3.8%

As seen, the best model fits differ on average by 5.3%-5.8%

(from 0.1% to 363%) in terms of SSE with either CPT more

accurate than DUT, or DUT more accurate than CPT. This

shows that either one or another model offers a clear advan-

tage for a given individual.

The analysis of individual data presented in this section

confirms the existence of the boundary effects captured by

models that predict jumps at the triangle legs. The compari-

son also shows that the CPT model performs comparatively

better on the individual than on the aggregate level. The

flexibility of this model by the addition of the third parame-

ter (important when individual data diverge from the average

pattern) may explain this result.

6 Related literature

Many studies have tested the various hypotheses about the

shape of the indifference map (e.g., Hey & Strazzera, 1989,

Camerer, 1989; Loomes, 1991; Harless, 1992; Harless &

Camerer, 1994; Abdellaoui & Munier, 1998; Blavatskyy,

2006; Bardsley et al., 2010). There are generally two ways

to identify indifference curves in experiments: ask indif-

ference questions; ask preference questions. The former

involves asking subjects to indicate those lotteries to which

they are indifferent vis-à-vis a given one. This procedure

allows an indifference curve to be plotted by connecting the

points representing indifferent lotteries inside the triangle

(Hey & Strazzera, 1989). The method proposed in this pa-

per is a version of this general approach: subjects indicate

certainty equivalents to which they are indifferent vis-à-vis a

given lottery, and these certainty equivalents serve to plot the

indifference curves. The other approach involves presenting

subjects with a set of pairwise choices and asking them to

indicate their preferences (e.g., Harless & Camerer, 1994).

This approach allows only hypotheses regarding the shapes

of indifference curves in the triangle or regions of it to be

tested. Combinations of both approaches have been used.

Loomes (1991) and Cubitt et al. (2015) ask indifference

questions to test hypotheses about the shapes of indifference

curves and underlying axioms. Yet another approach is used

by Hey and Orme (1994), who ask preference questions to

estimate preference functionals (i.e., decision-making mod-

els). The indifference curves predicted by the best model

indicate the underlying pattern.

The observation that the EU model works fine for lot-

teries inside the Marschak-Machina triangle has often been

reported in the literature. Hey and Orme (1994) state that the

EU model appears to fit no worse than any of the other mod-

els for 39% of subjects. Similarly, Carbone and Hey (1994)

find that approximately half their subjects appear to conform

to the EU model. Hey and Strazzera (1989) additionally

find that, for the majority of their subjects, the indifference

curves were in accordance with EU theory. Abdellaoui and

Munier (1998) find that the shape of the indifference curve

is compatible with the EU hypothesis along the middle part

of the hypotenuse and in the “immediate” interior of that

middle part. This result is very close to the one obtained in

the present study.

The existence of fanning-in has been reported in the litera-

ture by e.g. Hey and Di Cagno (1990), who observed that the

fanning-in point was to the northeast of one of the three tri-

angles for 14 subjects. Moreover, the indifference curves fan

in for 22 of the 56 subject/triangle pairs. Blavatskyy (2006)

presents a more detailed study concerning “fanning-out” and

“fanning-in”, and suggests that an individual’s indifference

curves tend to “fan-in” when probability mass is associated

with the best and the worst outcomes and tend to “fan-out”

when probability mass is associated with intermediate out-

comes. The results presented in this paper are clearly close

to Blavatskyy’s summary.

There is evidence of boundary effects in the literature,

although how and to what extent these effects affect the

shape of the indifference curves is not clearly stated. Con-

lisk (1989) moved the Allais lotteries to the interior of the

triangle and concluded that EU theory violations are less

frequent and cease to be systematic when boundary effects

are removed. Camerer (1989), Harless (1992), and Sopher

and Gigliotti (1993) obtained similar results. Harless and

Camerer (1994), after analyzing a large number of exper-

imental data sets, conclude that the EU model should be

used when all the lotteries have the same number of prob-

able outcomes (i.e., the lotteries are located in the interior

of the triangle), but a different model has to be used when

the lotteries have different numbers of probable outcomes

(i.e., some of the lotteries are located on the boundaries or in

the corners of the triangle). Boundary effects were studied

in detail by Abdellaoui and Munier (1998), who concluded

that indifference curves were distorted near triangle bound-

aries. They draw a distinction, however, between behavior
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near different edges of the triangle. One test, restricted to

segments linking the hypotenuse to the triangle interior leads

to an acceptance of the hypothesis of parallelism. By con-

trast, the same hypothesis concerning the segments linking

the left and lower edges to the interior is strongly rejected.

The present experiment not only captures this difference but

additionally shows that the distortion near the triangle legs is

due to jumps towards the triangle origin in the indifference

curves.

7 Optimal lottery grid

It may be argued that the variability of the indifference curves

at the triangle legs observed in the present experiment (cou-

pled with a lack of such variability in the triangle interior)

is simply the result of repeated measurements in this re-

gion of the triangle. The jumps, so this reasoning goes, are

observed at the legs because that is where the points were

repeatedly sampled; had several points been measured close

to any point in the triangle interior, similar jumps would

have been observed. This objection can be easily coun-

tered by stating that, if the variability at the legs is the result

of repeated sampling, then the variability observed at the

hypotenuse, where the measurement points were likewise

densely located, should be similar. This, however, is not the

case.

More broadly, this objection raises an important question

concerning the optimal lottery grid in Marschak-Machina

triangle experiments. It is well known from experiments in-

volving binary lotteries that the greatest variability in lottery

certainty equivalents occurs for probabilities close to 0 and

1: the change of the certainty equivalent value is large when

the probability changes from 0 to 0.01, or from 1 to 0.99,

but not that large when the probability changes from 0.50

to 0.51. This phenomenon is best expressed by an inverse

S-shaped probability weighting function (Tversky & Kahne-

man, 1992; Gonzales & Wu, 1999), which is nonlinear at

the probability endpoints and almost linear in the middle.

Tversky and Kahneman (1992) offered a psychological hy-

pothesis to explain this shape, which they called diminishing

sensitivity. According to this hypothesis, people become less

sensitive to changes in probability as they move away from

0 or 1, just as they are less sensitive to changes in outcome

values as they move away from the reference point.

It follows that the optimal set of lotteries to test diminish-

ing sensitivity experimentally should consist of more lotter-

ies having probabilities close to 0 and 1. Therefore, Tversky

and Kahneman used lotteries having probabilities of 0.01,

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99, rather

than having an equal spread. The diminishing sensitivity

observed experimentally is thus not the result of applying

more lotteries close to the probability endpoints, but cer-

tainly more lotteries at the probability endpoints are required

to test the anticipated diminishing sensitivity (for a contrary

opinion see Stewart, Reimers & Harris, 2015). For the very

same reason, and in order to verify the boundary effects, the

distribution of lotteries in the Marschak-Machina triangle

in the present study was chosen to be more dense near the

triangle boundaries and corners. Using probabilities having

an equal spread could make any boundary effects impossi-

ble to detect. Note that some previous investigations were

conducted using an equal spread of probabilities (e.g., Hey

& Orme, 1994, with a spread of 1/8). It is therefore not

surprising that the EU model appeared to fit no worse than

any of the other models for a substantial percentage of sub-

jects, as the boundary effects had not been probably taken

into account in the experimental set-up. This also applies

to the present data: removing lotteries close to the triangle

boundaries (i.e., having probabilities of either 0.01 or 0.05)

from the data set results in plots of the indifference curves

showing no jumps at the legs.

Verifying whether there is any local variability in the trian-

gle interior would require more lotteries in this region. This

would resemble detailed testing of the probability weighting

function shape around its middle part, which, according to

many studies, is more less linear. Thus, although such exam-

ination is possible, it would probably result in conclusions

stated already in this paper and in a number of former stud-

ies, i.e., that the indifference curves in the middle part of the

Marschak-Machina triangle are linear with local variability

caused possibly by the noise only.

The question of how to select an optimal lottery grid inside

the Marschak-Machina triangle not only involves determin-

ing the shape of the indifference curves, but also estimat-

ing the model parameters, and comparing decision-making

models. The model estimation results presented in this paper

come with the caveat that the fits and the model ranking ap-

ply only to the specific lottery grid in the Marschak-Machina

triangle examined in the experiment. The grid used in the

experiment involves many lotteries in the vicinity of the tri-

angle edges (to explore the boundary effects), so the model

ranking could be quite different for a different grid. In fact,

removing lotteries close to the triangle boundaries from the

data set results in CPT having the highest ranking, followed

by DUT, TAX, and PRT. On the other hand, using a grid with

an equal probability spread would possibly lead to a ranking

that does not take any boundary effects into account, even

so well accepted in the literature as overweighting of small

probabilities and underweighting of large ones. This raises

the general question of how to select an optimal lottery grid

when discriminating between decision-making models (Cav-

agnaro et al., 2013). Designing an optimal lottery grid based

on axioms in order to plot the indifference curves and to dis-

criminate between the models of decision-making under risk

is certainly an interesting direction of future research. The

number of lotteries used in the experiment is one of the pa-

rameters that needs to be optimized: the natural inclination
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to increase this number would lead to more detailed plots,

but, on the other hand, would leave the subjects less time

to focus on each problem and would probably increase the

noise. Thus limiting, rather than increasing the number of

lotteries should be also considered.

8 Discussion

This paper presents experimental results concerning the

shape of indifference curves in the Marschak-Machina tri-

angle. The plots obtained non-parametrically indicate that:

(i) indifference curves are straight parallel lines in the mid-

dle part of the triangle; this is the area of conformity to the

Expected Utility model; (ii) the indifference curves “fan-in”

along the triangle legs (but not in their vicinity); and (iii) the

indifference curves jump towards the origin along the two

legs of the triangle; these boundary effects are, however, not

present at the hypotenuse. This observation is confirmed by

estimating the slopes of the indifference curves in the trian-

gle sub-areas and by estimating six decision-making models

under risk.

The model ranking naturally leads to a discussion on

which of the psychological phenomena underlying the mod-

els best explains the shape of the indifference curves obtained

in this study. The path of the indifference curves near the

two legs of the triangle suggests that the jumps in the curves

are discontinuous. Abrupt changes in the slopes of the indif-

ference curves were statistically confirmed in the vicinity of

both triangle legs. The discontinuity of indifference curves

is not particularly welcomed by mathematicians and could

even be regarded as a weakness in the model. One possible

explanation of this phenomenon could be discontinuity in

probabilities. This feature has a solid psychological foun-

dation and is prevalent in the psychological literature. The

tendency to overweight certain outcomes relative to merely

probable ones was labeled the “certainty effect” by Kahne-

man and Tversky (1979). Certain outcomes, however, are

located in the corners of the Marschak-Machina triangle,

and only the jumps starting from there can be explained by

this effect. Discontinuity in decision weights for probabili-

ties close to 0 and 1 is a slightly more general concept which

can also be applied to lotteries located on the triangle bound-

aries. This holds, however, for all probabilities, including the

probability of the middle outcome. The indifference curves

are therefore discontinuous at all three triangle boundaries

in the original Prospect Theory.

Cumulative Prospect Theory, per contra, predicts smooth

indifference curves. For this reason, they do not match the

indifference curves obtained in this study particularly well.

Moreover, the lottery certainty equivalents (especially their

aggregated values) are not fitted so accurately by CPT as

by other models. This raises the question as to whether

the cumulative probability weighting postulated by CPT is

the right phenomenon to explain the anomalies observed in

decision-making under conditions of risk. The original idea

of probability weighting applied to individual probabilities

(Kahneman & Tversky, 1979) was simple and convincing:

small probabilities are overweighted whereas medium and

large ones are underweighted. Unfortunately, this kind of

probability weighting violates first-order stochastic domi-

nance, which limits its applicability to prospects involving

no more than two non-zero outcomes. Weighting of cumu-

lative probabilities was introduced to fix this issue (Quiggin,

1980; Yaari, 1989; CPT, Tversky & Kahneman, 1992). This

solution is mathematically elegant and allows prospects in-

volving any number of outcomes to be considered. Psycho-

logically, however, it is less plausible, as this would mean

that people assess probabilities cumulatively rather than indi-

vidually. Birnbaum (2004) has presented evidence to refute

this. The results presented in this study provide further ev-

idence that the cumulative probability weighting postulated

by CPT might not be psychologically vindicated.

The phenomenon of range dependence (Parducci, 1965;

Cohen, 1992; Kontek & Lewandowski, 2018) is sound psy-

chologically and adequately explains the pattern observed.

Introducing a new high outcome x3 results in an upward

payoff range extension and a sharp increase in the lottery

CE value. Introducing a new low outcome x1 results in a

downward payoff range extension and a sharp decrease in

the lottery CE value. Introducing a new middle outcome x2

does not change the payoff range and so no sharp change

in the lottery CE value is observed. Essentially, the same

explanation was presented earlier by Abdellaoui and Munier

(1998): lotteries located on the legs of the triangle do not

have the same support as those located elsewhere in the tri-

angle; as a result, either p1 = 0 or p3 = 0 implies a more

dramatic change in individual behavior than p2 = 0. The

three-criteria1 (Cohen, 1992) and decision utility (Kontek

& Lewandowski, 2018) models, both based on range de-

pendence, predict parallel straight line indifference curves

in the triangle interior with jumps towards the triangle ori-

gin at the legs. This pattern was stated non-parametrically

in the present study. The DUT model was, moreover, the

most accurate in fitting aggregated certainty equivalents and

in fitting individual ones when two-parametric models were

compared.

Prospective Reference Theory (Viscusi, 1989) predicts

the same pattern of the indifference curves as models based

on range dependence, but allows jumps at the hypotenuse.

These happened to be almost invisible for the aggregated

data and the fit was only slightly less accurate than that of

1Cohen’s criteria are: security level, potential level, and Expected Util-

ity. The concepts of security and potential levels were earlier introduced

by Lopes (1987) in her SP/A model. Their models, however, differ greatly.

Cohen uses both levels to define the range in which Expected Utility holds.

Lopes, per contra, integrates security, potential, and aspiration levels us-

ing Rank-Dependent Utility. For differences between the three-criteria and

decision utility models, see Kontek and Lewandowski (2018).
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DUT. The PRT model was slightly less accurate than CPT

on the individual level. It is interesting to note that the

PRT model was also among the winners in Hey and Orme’s

study (1994). Its good performance in this study is there-

fore not accidental. However, the assumption underlying the

theory that individuals treat stated experimental probabili-

ties as imperfect information and use them to update their

prior probabilities to posterior ones in the standard Bayesian

fashion, seems psychologically less plausible.

Models founded on other psychological phenomena only

partially explain the shape of the indifference curves obtained

in this study. The TAX model, which postulates a shift in

attention from high outcome branches to low outcome ones,

generally predicts various shapes of the indifference curves

with jumps allowed at all boundaries. However, the shape

predicted by the best-fit model only partially corresponds

with the stated one (jumps on the vertical axis only). As a

result, the model takes an intermediate position in the rank-

ings: it performs better than CPT on the group level, but

does not perform so well on the individual level. The over-

weighting of salient outcomes postulated by Salience Theory

has recently gained a lot of attention among researchers as a

phenomenon explaining anomalies in various areas of eco-

nomics and finance. The shape of the indifferences curves

predicted by this model is, however, in strong disagreement

with the one stated in this study. As a result, the Salience

Theory model fits the lottery certainty equivalents collected

in the experiment poorly and performs only slightly better

than EU.

To sum up, the best lottery certainty equivalent fits were

offered by models that predict parallel straight line indiffer-

ence curves in the triangle interior with jumps at the legs

towards the origin. The shape of the indifference curves ob-

tained non-parametrically explains this result. As stated in

previous studies, Expected Utility Theory generally holds in

the triangle interior. This study shows that the psychological

phenomenon of range-dependence best explains the bound-

ary effects. To conclude, Expected Utility holds for lotteries

having the same range of outcomes; Expected Utility is vi-

olated when the range of outcomes changes (note that the

lotteries in the famous Allais paradox have different ranges).

The above analysis was made possible thanks to a novel

method of plotting indifference curves inside the Marschak-

Machina triangle using lottery certainty equivalents. One

major advantage of this method is that it allows the indif-

ference curves to be visualized, and not merely hypotheses

concerning their shapes to be tested. Moreover, plots can

be obtained using a standard command available on most

statistical packages, without any dedicated software having

to be written.

One problem encountered in this study is the high level of

noise observed in the certainty equivalent values. The level

of noise is probably magnified by the fact that many of the

lotteries under consideration involved three outcomes, rather

than two, as in typical experiments. Despite this, the method

proposed generates clear indifference curve patterns for in-

dividual data aggregated using 20% trimmed means, and is

very robust, even if the noise level in individual responses

is artificially increased, as shown by a separate simulation.

The method, however, results in poor quality plots when the

level of noise is too high. Therefore, it often fails to demon-

strate a clear pattern of individual indifference curves, which

exposes its limitation. Possible approaches towards solving

this problem include conducting similar experiments in a lab-

oratory, rather than on the Internet, using stronger incentive

schemes, and devising other ways of determining certainty

equivalents. It is not certain, however, whether using these

means will result in cleaner data. A better approach might be

to repeat collecting responses from the same subject. This

would allow his/her responses to be averaged and the noise

levels at given measurement points to be reduced. Another

option would be to perform a smoothing procedure on the

plane in order to get the average value of the points in the

vicinity of any given one. The initial tests using a smooth-

ing procedure demonstrated the advantage of this approach

and, in many cases, a great improvement of the plots quality.

However, care needs to be exercised when smoothing values

on the plane as it may also smooth the jumps, which are of

the greatest interest in this study.
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Appendix 1: CE values aggregated for the group for Triangle 1 (CE300 column) and Triangle 2

(CE900 column).

P1 p2 p3 CE300 CE900

0 0 1 300.0 900.0

0 0.01 0.99 294.2 886.3

0 0.05 0.95 278.7 842.6

0 0.2 0.8 259.4 778.8

0 0.4 0.6 228.7 682.8

0 0.6 0.4 209.4 625.3

0 0.8 0.2 188.8 558.8

0 0.95 0.05 172.3 499.4

0 0.99 0.01 158.9 466.4

0 1 0 150.0 450.0

0.01 0 0.99 292.1 883.2

0.01 0.04 0.95 274.8 838.2

0.01 0.19 0.8 250.5 759.4

0.01 0.39 0.6 222.6 648.9

0.01 0.59 0.4 201.0 579.0

0.01 0.79 0.2 180.5 524.2

0.01 0.94 0.05 161.0 477.2

0.01 0.98 0.01 150.2 451.1

0.01 0.99 0 146.5 442.0

0.04 0.01 0.95 272.5 819.0

0.05 0 0.95 273.8 831.6

0.05 0.15 0.8 238.4 737.0

0.05 0.35 0.6 217.5 639.2

0.05 0.55 0.4 193.5 570.8

0.05 0.75 0.2 172.8 507.5

0.05 0.9 0.05 152.1 456.0

0.05 0.94 0.01 145.9 436.9

0.05 0.95 0 135.6 411.6

0.19 0.01 0.8 229.9 699.9

0.2 0 0.8 230.8 705.6

0.2 0.2 0.6 205.9 599.6

0.2 0.4 0.4 178.3 506.3

0.2 0.6 0.2 155.3 446.6

0.2 0.75 0.05 138.2 417.1

P1 p2 p3 CE300 CE900

0.2 0.79 0.01 132.5 400.1

0.2 0.8 0 113.7 362.5

0.39 0.01 0.6 178.3 525.5

0.4 0 0.6 176.5 522.0

0.4 0.2 0.4 151.0 425.7

0.4 0.4 0.2 127.9 374.4

0.4 0.55 0.05 118.4 330.8

0.4 0.59 0.01 111.3 328.9

0.4 0.6 0 92.1 277.4

0.6 0 0.4 121.1 365.0

0.6 0.01 0.39 121.0 333.9

0.6 0.2 0.2 92.3 255.0

0.6 0.35 0.05 84.6 244.0

0.6 0.39 0.01 85.0 231.4

0.6 0.4 0 66.8 204.0

0.8 0 0.2 66.8 172.4

0.8 0.01 0.19 66.5 169.8

0.8 0.15 0.05 55.9 111.9

0.8 0.19 0.01 49.9 131.4

0.8 0.2 0 36.6 104.8

0.95 0 0.05 31.1 54.3

0.95 0.01 0.04 28.8 57.4

0.95 0.04 0.01 29.7 50.3

0.95 0.05 0 21.0 36.0

0.99 0 0.01 13.1 17.7

0.99 0.01 0 9.0 16.5

1 0 0 0 0

0.1 0.05 0.85 251.6 760.8

0.25 0.05 0.7 210.5 618.0

0.4 0.05 0.55 172.9 495.3

0.55 0.05 0.4 127.9 373.9

0.7 0.05 0.25 87.4 253.1

0.85 0.05 0.1 46.5 108.1
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Appendix 2 – Instruction (a translation from

Polish)

The left and right urns each have 100 balls. You are required

to select a ball at random from one of the two urns.

The left urn has black, white and gray balls. The value

of each ball is given under the illustration. Selecting a ball

from this urn carries a risk. The payoff depends on the color

of the ball and its value.

All the balls in the right urn are marked with a cross. They

are all identical. Therefore, if you select a ball from this urn,

you are guaranteed a given sum of money with absolutely no

risk.

Task:

Nominate the value of the balls in the right urn that would

make you indifferent between a random selection from either

urn, i.e., so that it would not matter to you which urn you

chose when making a random selection.

Example 1:

In this example, the left urn has 50 black balls with a value

of 0 zł, 40 gray balls with a value of 150 zł, and 10 white

balls with a value of 300 zł.

a) Think of the value a cross-marked ball would need to

have to make you indifferent as to which urn to choose when

selecting a ball at random. Write this value under the right

illustration.

b) If you feel that you would prefer to select a ball from

the right urn, then the value you have nominated for the

cross-marked balls is too high.

c) If you feel that you would prefer to select a ball from the

left urn, then the value you have selected for the cross-marked

balls is too low.

d) Repeat steps a), b), c) and d) until you are indifferent as

to whether you randomly select a ball from the left or right

urn.

Further comments:

Carefully consider the amounts given in the problems, and

remember that you stand to gain real money. In fact, some of

you will be selected and will take part in a real lottery after

the experiment is finished.

Try to nominate the value of the cross-marked balls as

precisely as possible – at least to within 5-20 zł. Avoid

giving rounded amounts. The more precise your answers,

the greater their academic worth.

Do not try to be “mathematically correct”. Obviously,

you are not prohibited from counting. It might even be

advisable that you do so. Keep in mind, however, that this is

a psychological, and not a mathematical, test.

Verifying the responses

If when completing the next problem, you find a filled-in

field changes color to red, then that field has been filled in

incorrectly.

A figure greater than the maximum value of the balls in

the left urn (300 zł in the above example) or less than their

minimum value (0 zł in the above example), or perhaps a

non-numerical character, might have been entered. Your

form will not be accepted unless the error is corrected.

Green, on the other hand, means that the field has been

filled in correctly.

Before you complete the experiment, try one more exam-

ple.

Example 2:

If you understand the instructions, start the test by clicking

“Next”.

If you are not sure about anything, read the instructions

again.

If you do not wish to complete the test, press “Return”.
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