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Abstract

In this paper a limit theorem is proved that establishes conditions under which the
distribution of the difference between the size of the initial event in a random sequence,
modeled as a finite point process, and the largest subsequent event approaches a limiting
form independent of the size of the initial event. The underlying assumptions are that
the sizes of the individual events follow an exponential distribution, that the expected
total number of events increases exponentially with the size of the initial event, and that
the structure of the sequence approximates that of a Poisson process. Particular cases
to which the results apply include sequences of independent and identically distributed
exponential variables, and the epidemic-type aftershock (ETAS) branching process model
in the subcritical case. In all these cases the form of the limit distribution is shown to
be that of a double exponential (type-I extreme value distribution). In sampling from a
family of aftershock sequences, with possibly different underlying parameters, the limit
distribution is a mixture of such double exponential distributions. The conditions for
the simple limit to exist relate to the approximation of the distribution of the number of
events by a Poisson distribution. One such condition requires the coefficient of variation
(ratio of standard deviation to mean) of the number of events to converge to O as the
mean increases. The results provide a statistical background to Béth’s law in seismology,
which asserts that in an aftershock sequence the magnitude of the main shock is commonly
around 1.2 units higher than the magnitude of the largest aftershock.
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1. Introduction

The problems addressed in this paper are motivated by the so-called Béth’s lawin seismology.
This asserts that in an aftershock sequence the magnitude of the main shock (usually but
not always the first shock in the sequence) is commonly around 1.2 magnitude units higher
than the magnitude of the largest aftershock, irrespective of the magnitude of the main event.
The magnitudes themselves are approximately independently and exponentially distributed
(Gutenberg—Richter law).

Bath’s law has been observed and widely discussed since the first compilations of large
events and their aftershocks (Utsu (1961)). A question of recurrent interest is whether the law
has its origin in some physical process underlying the development of aftershock sequences, or
has an essentially statistical origin related to the apparent randomness of the magnitudes in the
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sequence. An early attempt at a statistical model was given in Vere-Jones (1969), using the well-
known result (see, e.g. Feller (1966, Section 1.6)) that if the magnitudes (main shock included)
can be treated as an independent and identically distributed (i.i.d.) sequence of exponential
variates, the difference between the largest and second largest magnitudes should have the
same exponential distribution as the individual variates. This model is plainly inadequate.
Among other points, the exponential distribution does not fit the empirical distribution for the
difference, the model fails to explain why the main shock nearly always occurs at or near the
beginning of the sequence, and it ignores the obvious dependence of the number of terms in
the sequence on the size of the main shock.

Nevertheless, the issue has remained of interest. Recent discussions are given, for example,
in Utsu et al. (1995), Lombardi (2003), and Console et al. (2003). A new focus of interest is
the possibility of a link between Bath’s law and the ‘productivity function’ of the main shock,
meaning the dependence of the expected number of events in the sequence as a function of the
magnitude of the main shock. This issue was raised in Felzer et al. (2002), (2004) in connection
with the further hypothesis that the magnitudes of the events in a sequence are independent of
the previous history of the sequence, so that, for example, a foreshock is regarded simply as
an initial event which by chance happens to be followed by a larger event. Felzer ef al. noted
that, empirically, the productivity function increases roughly exponentially with the size of the
main shock, and that the parameter of the exponential increase roughly equals the parameter
in the exponential distribution of magnitudes, and they suggested that such a balance was
a crucial factor in the explanation of Bath’s law. Helmstetter and Sornette (2003), Saichev
and Sornette (2005), and Zhuang and Ogata (2006) considered the same issue in relation to
Ogata’s epidemic-type aftershock (ETAS) model (Ogata (1988), Daley and Vere-Jones (2003,
Chapter 7)), which again assumes exponentiality both for the magnitude distribution and the
productivity function. They showed, through simulation and analytical studies, that a form of
Bath’s law holds in that context also. An alternative approach was suggested by Shcherbakov
and Turcotte (2004), namely, to take Bath’s law as the primary notion and develop properties
of the aftershock sequence from it.

The purpose of the present paper is to find a general probabilistic setting for results of the
kind just described. More specifically, we attempt to determine a general class of point process
sequences for which a Bath’s law phenomenon may be expected. The main result of the paper
is a limit theorem for the distribution of the difference between the size (magnitude) of the
intial event (whether or not it is the largest event) and that of the largest subsequent event. It
is shown that, under assumptions generalizing somewhat those of an exponential magnitude
distribution and exponential productivity function, this difference should approach a Gumbel
type-1 extreme value distribution (see, e.g. Johnson et al. (1995, Chapter 22)) whenever the
sequence structure has approximately a Poisson form. In essence, the results are variants on
results for the recentered maximum for a sequence of i.i.d. random variables; in particular, some
cognate ideas are to be found in Chapter 6 of Galambos (1987). The mathematical background
and a basic limit theorem are set out in Section 2, while special cases and extensions of the
theorem are stated and proved in Section 3. The most important extension is to situations where
the number distribution is a mixture of Poisson distributions. The applications to seismology
are briefly discussed in Section 4.

2. Definitions, assumptions, and a basic limit theorem

Bath’s law problem resolves itself into the consideration of a cluster, or sequence,
{(t0, X0), (11, X1), (t2, X2, ..., (ty, Xn)} of times ¢; and sizes (magnitudes) X;, with random
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length N. Apart from ordering the elements in the sequence, the times play no essential part
in the study, and we therefore consider just the sequence of sizes {Xq, X1, ..., Xy}, of which
Xo plays a distinguished role.

To provide a framework for studying such a sequence, we consider it as a finite point process.
We denote its probability generating functional (PGFL), conditional on (but not including) a
given value u for X, by G(h | u), so that, for any measurable function 2 (x) withO < h(x) < 1,

N
G | u) = E[l_[h(Xi) ‘ Xo = u]
i=1

Properties of the PGFL for almost sure finite point processes are set out, for example, in
Section 5.4 of Daley and Vere-Jones (2003).

In the earthquake context, it is reasonable to treat the sizes X; as identically distributed
exponential variables (Gutenberg—Richter law), conditionally independent of each other, but
potentially influencing the number of succeeding terms in the sequence. Although we can
generalize this requirement to some degree, it underlies much of the conceptual thinking.

We make two basic assumptions in the analysis. The first of these relates to the conditional
first moment measure

Mi(dx | u) = E[N(dx) | Xo = u],

where N (B) counts the number of events in the cluster with sizes falling within the Borel set B.
We assume that, for all u, this measure exists (in the sense that it allocates finite mass to bounded
Borel sets in R) and that, for any bounded Borel set B, M| (B | u) is an increasing, measurable
function of u. The crucial condition, in its simplest form, is that, for some A > 0, « > 0, and
B > 0, M should satisfy the following separability condition.

Assumption L.
Mi(dx | u) = Ae®Be P* dx. 1)

This assumption combines the exponential forms both for the productivity function (Ae“*
term) and the size distribution (,Be_ﬁ" dx term).

For many purposes, the condition can be relaxed in the following manner. Let S;, x € R,
denote the shift operator acting on o -finite Borel measures v on R in the sense that, for any
bounded Borel set B,

(Sxv)(B) = v(x + B).

Also, let M ]{ (dx | u) denote the measure on R equal to M (dx | u) on RT and to the empty
measure on the negative half-line. For want of a better term, say that a family of totally finite
measures on the Borel sets of R converges h-weakly (denoted by ‘—’) to a o -finite limit, with
bounded mass on any half-line [C, 00), if their restrictions to any such half-line converge weakly
to the corresponding restriction of the limit measure. Then Assumption I can be generalized as
follows.

Assumption I*. For some A > 0, the shifted measures S gy M 1T (dx | u) converge h-weakly
to the multiple of the extended exponential measure with density ABe™P") over the whole real
line:

h _
S(Ot/ﬂ)uMlT(dx | u) - ABe Bx dx. )
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The condition of the assumption is satisfied, in particular, if M7 has the multiplicative form
of the right-hand side of (1). It is closely related to, but different from, the requirement that

e M (dx | u) — ABeP* dx,

weakly, which is also satisfied by the special case of Assumption I.
The second basic assumption is the requirement that, in the sense below, the point process
N, conditional on X (0) = u, should approximate a Poisson process as u increases.

Assumption II. For any family of measurable test functions hy, (x), with 0 < h,(x) < 1, and
for which there exists a constant Cp,, 0 < Cj, < 0o, such that

I, = /(1 —hy ()M (dx | u) — Cp, 3
R

the PGFL G (h | u) satisfies
|[logG(hy | u)+1,| > 0, u—> oo. )

Condition (4) is essentially a requirement that, conditionally on u, the process approximates
the finite Poisson process with intensity measure M (dx | u). Using the terminology of Daley
and Vere-Jones (2003, Chapter 5), it requires the contribution /,, of the first factorial cumulant
measure, which is just M itself, to dominate the expansion of the log PGFL. For a Poisson
process, the second- and all higher-order factorial cumulant measures vanish, so the condition
is trivially satisfied. In the special case that the quantities I, tend to a limit Cj, as required
above, then it is clear that in fact

log G(hy | u) = Cp.

Much of the argument in the present paper is devoted to identifying some broad classes of
finite point process models for which Assumption I holds when M satisfies either Assumption |
or Assumption I*.

For Bith’s law in particular, the focus of discussion is the behavior of

o
Ay = 12:215XN{X’1} ﬁu’
given Xo = u,asu — oo. Inthe casein whicho = 8, —A,, can be interpreted as the difference
between the size of the initial event and that of the largest subsequent event. The condition
a = B is that suggested in Felzer et al. (2004) as being necessary for Bath’s law to hold; the
forms suggested in Assumptions I and II allow extensions to cases where o # .
Now consider the limit, as u — o0, of the distribution function F,(y) = Pr{A, <y | Xo =
u} and, for brevity, write
M* = max X,.
1<n<N

We adopt the convention that M* = 0 if N = 0, and prove the following result.

Theorem 1. Suppose that Assumptions I* and II hold. Then, as u — oo, F,(y) converges
weakly to the following double exponential distribution:

Fu(y) = exp[-Ae™™],  u— 00, —00 <y < o0, ©)

with A defined as in (2)
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Proof. The proof is effectively just a particular application of (4). To see this, first observe
that the distribution function of the maximum M*, for a given value of the index u, is given,

for v > 0, by
d
=GHW—1x) | u)

=G -Hkx—v) | u),

J,(v) =Pr{M* <v | u}

N
= E[H Hv—X;)

n=1

where H () is the Heaviside function. For v < 0, J,(v) = 0, and since J,(0) = Pr{N =
0] X(0) =u} = po(u), J, has an atom at O if po(u) > 0. Now taking v = (o/B)u + y, we

obtain
Fu(y) = Ju<%u + y) ey (H(%u +y-— x)>

This corresponds to the choice
o
hy(x) = H(—u +y —x)
B
in the PGFL, (3). The integral in (3) reduces here to
o
I, =/ Mi(dx | u).
(a/Bu+y

From Assumption I*, as u — oo, this integral converges to

Ace—B@/Puty) _ 4By

Assumption II therefore implies that log F,,(y) — —Ae™#?, and so
Fu(y) — exp[—Ae P], U—> 00, —00 <y < 00. (6)

Since the limit holds for all real y, the distribution functions converge pointwise. Since the
limit is a proper distribution function, the distributions converge weakly. This completes the
proof.

3. Special cases and variations
In this section we examine some special cases of Theorem 1 and some further variations.

3.1. Poisson and mixed Poisson clusters

The paradigm example for the behavior described in Theorem 1 occurs when, given X¢ = u,
the sequence is a finite Poisson process with intensity measure ©*(dx | ) having the separable
form given in (1), or more generally satisfying Assumption I*. The left-hand side of (4) is then O
and no further approximations are needed. This case was noted in Saichev and Sornette (2005).

There is an important extension of this special case to mixed Poisson processes. Such
a situation could arise in considering the statistics from a family of aftershock sequences if
each individual sequence was of Poisson form, but the parameter A varied from sequence
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to sequence. Let us treat parameter A in (1) and (2) (Assumption I) as a random variable,
say W. For given W, the cluster has the Poisson form just discussed, with parameter measure
Wu*(dx | u) = We*Be P* dx. Taking expectations over W, the PGFL G (& | u) then has
the form

Gh | u) = E[exp[W/R(h(x) — Dut(dx | u)ﬂ _ fzw</R<1 ()i (dx | u)),

where £y (s) = E[e™*W] is the Laplace transform of W.

Giving h the special form h,(x) = H((e¢/B)u + y — x) and assuming that Assumption I
holds for ), it follows, from the arguments used in Theorem 1 and the continuity of the Laplace
transform, that

o0
Fu(y) = Zw(/ MZ(dx)> — Lw (™).
(a/ B)uty
We have therefore established the following partial extension to Theorem 1.

Theorem 2. Suppose that the cluster process has a mixed Poisson form with random parameter
measure W u*(dx | u), where u* satisfies the separability condition (1) of Assumption 1, and
W has Laplace transform Ly (s) = E[e™* W1. Then the distribution F, is a mixture of double
exponential distributions with distribution function £y (e=A).

Assuming that second moments exist, it is only in the case that the distribution of W is
degenerate (reduces to a single fixed atom) that the distribution F,(y) reduces to the double
exponential form given in Theorem 1. To see this, first note that the overall mean is m(u) =
Ce*", where C = E[W]. Then, looking at the second-order term in the expansion of log G (1 —
h | u), we see that its leading term is of the form De*", where D is the standard deviation of
the mixing distribution. Thus, Assumption I cannot hold unless D = 0, which is possible only
if the mixing distribution is degenerate.

Supposing that parameter S is fixed, the role of parameter A in the double exponential (5) is to
fix the location (mean or median) of the distribution. Thus, a distribution of the form £y (e B")
can be roughly regarded as a mixture of the simple double exponentials with varying locations.
Commonly, this will still result in a unimodal distribution, but the mixing will broaden the
modal peak.

3.2. Magnitudes independent of cluster structure

Another simple context relates to situations where the magnitudes are i.i.d. with common
exponential distribution with parameter 8 and, with the exception of the initial magnitude u,
do not affect the subsequent sequence structure.

In this case the behavior of the system is controlled by the dependence on u of the probability
distribution for the total number of events, say p, () = Pr{N =n | Xo = u}, with mean

m@) =E[N | Xo=ul=Y_npy(u).
0
Here

Mi(dx | u) = m(u)Be P dx,

while

Ghy | u) = an(u)</ hu(x)ﬁe_ﬂx dx) = H(}_lu | u),
1 0
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where

MGz |u) =ElN | Xo=ul= ) pa(u)?"
1

is the probability generating function for the total number N in the sequence, given Xo = u,
and

0
hy = /O hu(x)Be P dx.
Assumption I* now reduces to the requirement that
m(u) ~ Ae*", @)
while to satisfy Assumption II, we need
[log{TT((hu) | u)} + L| — 0.

Since I, is given by m(u)(1 — hy) here, this reduces to

(1= 50) [#)}+ -

We are now in a position to derive a more transparent sufficient version of Assumption II for
the present context, in terms of the first absolute moment of the number distribution about its
mean:

— 0.

v() =B[N —m@)| | Xo=ul=)_ |n—m@)|p,(u).
0

Theorem 3. Suppose that the magnitudes X; are i.i.d. with common exponential distribution
with parameter 8, and that the conditional mean m(u) and first absolute moment v(u) of the
total number N exist. Then Assumption 11 holds, and hence also Theorem 1, provided that
m(u) — oo and

v(u)

m(u)

— 0, u — o0. (8)

If, in particular, the second moment of the number of points N in the sequence is finite, so that
its standard deviation o (u) exists, then (8) is satisfied whenever

o (u)

m(u)

, u — 00.

Proof. First suppose that condition (8) holds and, for given A > 0, consider the difference
Z 2\"
m{(1- u)—E[|{1-—= X0)=u
m(u) N
z \" 2\"
=|E[[1- —1-—=
H-ma) 3) |

o0 z n z n
s%jm(u)(l—m) —(1—;).
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Using the factorization
X" — yn =(x — y)(xn—l +xn—2y N yn—l)
and the fact that x and y are both bounded by unity here, the last sum is bounded by

2y npau)
0

Writing z = 1, and recalling that 7, is bounded, the right-hand side converges to O by the
assumption of the theorem, and, hence,

(=) )0 5)

On the other hand, since, for any finite n, Pr{N > n | Xo = u} — 1, and, hence, since
[1 —z/n]" ~ e~ * for large n, while I, remains bounded,

o)
ol ()| oo

from which Assumption II follows by continuity of the logarithmic function and the fact that
I, is also bounded away from 0.
The final statement follows from the inequality, valid for E[X] = O,

var(X) = E[|X|*] > E[|X|]*.

n—m(u) zv(u)

mu)

Z

= > paw)ln = m(u)| =
0

T mu)

nm(u)

— 0.

X(0) = u:|

— 0.

X(0) = ui| — exp[—1I,]

Hence, also

— 0,

This theorem has the general character of an Abelian theorem, with condition (8) as the
direct statement and condition (4) as the averaged form. This suggests that the two statements
are close to equivalent, with the converse true under some additional constraints. Indeed, if we
keep the same assumptions, and suppose in addition that

log{G, (1 —n)}
nm(u)
uniformly in u as n — O, then it is not difficult to show that the distribution F,(y) of A,

converges as in (6) if and only if (7) holds.
Itis of interest to see how Theorem 3 works for some special classes of distribution. Suppose,
for example, that the number distributions are negative binomial with PGFLs of the general

form w
1—pG) \™
I, (z) = (—
1= pu)z
where p(u) and r(u) are parameters depending on the initial magnitude #. The mean and the
variance are respectively given by

-0

+1

_ pr@) _ pr?
1—pQ’ 1—pQ) ’
sothato (u)/m(u) = 1/+/p(u)r(u). Thus, both conditions of Theorem 3 are satisfied provided

that p(u)r(u) — oo. Since p(u) is bounded above by 1, this requires that r(#) — oo, which
cannot be achieved by merely requiring that p(u) — 1.

m(u) o2 (u)
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3.3. Clusters in the form of a Poisson cluster process

Here we consider the application of Theorem 1 to situations where the overall cluster is
itself a Poisson cluster process; thus, it is made up of subclusters along the magnitude axis
(and possibly also in time, although we do not consider the time dimension explicitly). Such a
process is characterized by a PGFL of the form

Gu(h) = exp[ /0 (G™(h | y) — Du'(dy | u)], )

where pf(dy | u) governs the Poisson process of cluster centers, while an individual cluster,
with center at y, has PGFL G™(h | y) (cf. Daley and Vere-Jones (2003, Section 6.3)). The
overall first moment measure in this case is given by

Mi(dx | u) = /0 M"(dx | iy | ),

where M (dx | y) is the first moment measure of the cluster member process with center at y.

Now take logarithms of (9) and expand G™ (h | x) about A(x) = 1 in terms of the factorial
moment measures of the cluster member process. The first two of these, M"(dy | x) and
Mfg] (dy; x dy»2 | x) , respectively correspond to the probabilities of finding a cluster member
at y, and two cluster members at y; and y,, given that the cluster center is at x. A wide range
of possible behaviors can be obtained, depending on the relation of these cluster points to the
cluster center. Rather than trying to formulate a specific theorem, we indicate some of the
possibilities which can arise.

1. If there is a positive probability that the cluster will contain two or more events in the
vicinity of the cluster center, then the clustering tendency will be carried forward to events
of arbitrarily large magnitude and the Poisson approximation embodied in Assumption II,
as well as Theorem 1 itself, will fail.

2. If the locations (magnitudes) of cluster members are independent of the location of the
cluster center, then we are essentially back in the situation considered in the previous
subsection where the cluster structure and the magnitude distribution are separated.
A Bith’s law can hold under suitable conditions on the total size of the cluster as a
function of the initial value u.

3. In general, the inequality (see Daley and Vere-Jones (2007, Corollary 9.5.VII))

log(G™ (1 — h) | x)) — / h)MP(dy | x)

1
= / / B My x dys | x),

valid provided that the second moment measure M [’5‘] of the cluster member process exists,
can be used to frame conditions for the validity of a Bath’s law in terms of the second-
order properties of the cluster member process. For example, versions of Theorem 1 can
be obtained by requiring that the double integral on the right-hand side above converges
to O faster than I, when k,, satisfies (3). We have not found a simple and natural condition
of this kind, however, and therefore we desist from considering this option in more detail.
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3.4. The ETAS model

The most interesting example of a Poisson cluster process is the self-exciting or ETAS model,
which has a branching process interpretation. However, the approach suggested in the previous
section fails, as we shortly show, although a direct argument based on the branching structure
is still possible.

The cluster here consists of the total offspring from all generations. Since each offspring
generates further total offspring according to the same probability law, the PGFL for the total
offspring, excluding the initial ancestor, satisfies the relation

Gh|u)y=Gih(MGH |y) | u), (10)

where G (h | u) is the PGFL for the first generation offspring, which in the ETAS model is
a Poisson process with intensity measure having exactly the separable form of Assumption 1.
Equation (10) therefore defines a Poisson cluster process, the cluster center process having the
identical structure to the total cluster with the addition of the initial point.

To keep the discussion as simple as possible, suppose, as in the ETAS model, that G,
corresponds to a Poisson process with factorizable intensity measure

w(dx | u) = Ae* Be P* dx,

so that
Gi(h | u) = exp[—Ave (1 — h(x))Be P* dx].
R+

Let us first consider the moment measures of such a process. The first moment measure of
the total population (all generations accumulated) generated by a single ancestor of size u is
then given by

Mi(dx |u) =1+ p(dx | w) +p*pdx | u)+pxp*spdx | w)+---,

where the symbol ‘*’ denotes the operation

wxv(dx | u) = //L(dx | wyv(dw | u).

In the special case considered, w * p(dx | u) exists and equals pu(dx | u), provided that

o < B, where
A

T wp
Similar simplifications apply to the higher-order convolutions. In this case, therefore, the

series defining the first moment measure converges if and only if p < 1, the latter also being
the condition for the process to be subcritical. When it is satisfied,

P

dx | u
My |y = LD,
l—p
and therefore it retains the separable form required for Assumption I.
The second moment measure can also be obtained by summing the contributions from
one, two, three, ... generations. Even the contribution from two generations raises a further
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constraint, for it includes a term corresponding to the situation where one initial offspring at z
gives rise to a pair of offspring at x and y, leading to an integral of the form

/u(dz | wyu(dx | 2)u(dy | 2) = A3,33e°”‘e_ﬁ("ﬂ)/ez‘“e_’BZ dz,

which converges only if 8 < «/2. Similarly, on considering a chain of three offspring, we find
terms which converge only if & < /3, so that, overall, the series defining the second moment
will converge only in the trivial case, o = 0.

Arguments based on the existence of second moments therefore fail for the ETAS and similar
Hawkes’ processes. However, Zhuang and Ogata (20006) (see also Saichev and Sornette (2005))
have developed a more explicit analysis for the ETAS model, which can be adapted for our
purposes. Relation (10) for the PGFL here takes the form of the functional equation

G| u = exp[—Ae“”/ (1 =hx)G | x))ﬂe_ﬂx dxi|. (11)
R+
Write ® = ®(h | u) for the integral

/ (1= hx)G(h | x))Be P¥dx
R+

appearing in the exponential term, so that, on substituting for G (4 | x) inside the integral, we
see that, for given u and h, ® satisfies the recurrence relation

o= / (1 — h(x) exp[—Ae** @])Be™P* dx.
R+
‘We rewrite this in the form
® = / (1 —h(x)Be P dx + / h(x)(1 — exp[—Ae®* ®])Be P* dx
Rt Rt

and seek conditions under which the second integral, say I, converges to 0 with # more rapidly
than the first integral, say /1. Then only /; needs to be considered as we let u — oo.
In the application to Bath’s law we take h(x) = H (x — (a/B)u — y) and, for brevity, write
r = «/B and assume that r < 1. Then I reduces to
o
Be P¥dx = e PUuty) — g—au=py,
ru+y

Also, using the inequality 1 — e M < M, I, is bounded by

ru+y 00 A
/ Ae®* PBe ¥ dx < dA / Be B=¥qy = @ ,
0 0

l—r
the integrals converging provided that § > « and leading to an initial bound of the form

e—otu-i-y
b <

l—p

provided that the criticality parameter p = A/(1 —r) < 1.
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To proceed further, we examine I, more carefully; following Zhuang and Ogata (2006) we
write v = e** and bound the integral by

1 o0
=7 )
Then making the further substitution w = A®v, we find that
o
I < (constant)CDI/’/ (1 — e )y /0 qy,
0

Since 0 < r < 1, the integral converges and ®Ur = o(d) asu — oo and ® — 0. Thus, the
first integral dominates, as required, and we have established the following theorem.

Theorem 4. Let{Xo, X1, ..., XN} be afinite cluster (parent and total offspring) from an ETAS
process with o < B and p < 1. Then, using the notation of Theorem 1, as Xo = u — 00,

F.(y) —> exp[—ae_ﬁy], —00 <y < 00.

Assumption I fails in the cases in which p > 1, because the overall first moment M for the
total cluster is then infinite. An interesting question is whether a form of Béth’s law continues
to hold in the critical case with @« < B. The functional equation (11) continues to hold, but the
first-order terms in ® then cancel, so that the solution corresponds to branch-point behavior,
and further analysis is required.

4. Seismological background and interpretation

We briefly consider the applicability and interpretation of the preceding results in the
seismological context. A fuller discussion is in preparation for the companion paper Vere-
Jones et al. (2008).

Aftershock data from a global or regional catalogue is subject to important limitations: the
data on very large earthquakes is limited by the time frame of the study, and the data on small
earthquakes is limited by network coverage and sensitivity. The definition of an aftershock
sequence, or other cluster, is fraught with difficulties and disagreements; commonly, some
arbitrary elements enter into the definitions.

Even bearing in mind the above difficulties, it is generally possible to group the events in
a shallow earthquake catalogue into nonoverlapping clusters, or sequences, with one or more
members. The majority of sequences with at least two members have a well-defined initial event
and a well-defined largest event (often but not always the initial event), which is commonly
followed by a sequence of smaller events with frequency decreasing in time until the terms of
the sequence are indistinguishable from the general background activity. Some other types of
sequences, such as swarms and multiplets, are also observed, particularly in volcanic regions.

Such empirically determined aftershock sequences then form the data to which the results
of the preceding section may be applicable. Both the number of events in the sequence N,
and the value of the difference A, may be recorded for each sequence and plotted against the
magnitude u of the initial event, or (more commonly) of the largest event. Empirical studies
of this kind form the basis of papers cited previously, such as Utsu (1961), Vere-Jones (1969),
Lombardi (2002), and many others.

The exponential form of the productivity function is generally easy to confirm empirically,
whether the size of the sequence is plotted against the magnitude of the initial event or that
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of the largest event. However, there may be some outliers in the form of extremely long
aftershock sequences, often caused by the occurrence of unusually large later events in the
original sequence, which then set off their own supplementary aftershock sequences.

Determining the empirical distribution of A, presents somewhat greater difficulties. Firstly,
it is necessary to firmly adhere to a common lower magnitude threshold, say M., and to
include all sequences with u above the threshold. Selecting just the sequences initiated by
large events, and neglecting the others, leads to significant bias; see, e.g. Vere-Jones (1969) and
Lombardi (2002) for further discussion of this point.

In the seismological context it is traditionally

B,=—A,=u—M*

which is studied, at least when u > M*. Because of the sign change, the limiting distribution
for B, assuming that Theorem 1 holds and & = B, has the form

Pr{B, < y} = 1 — exp[—Ae?].

Moreover, because of the existence of the lower threshold M, for any finite u, the distribution of
B, is bounded above by u — M., where it has an atom taking up (approximately) the remaining
mass in the limit distribution. The empirical distribution usually displayed corresponds to
the renormalized form after removing this atom. Empirical results to date have not generally
discriminated between contexts where & = 8 or otherwise.

When u < M, the initial event is commonly considered a foreshock and B,, is replaced by
M, — M,iz), where M@ is the second largest magnitude of the events in the sequence. Thus,
the study in Vere-Jones et al. (2006) breaks with tradition in taking the magnitude u of the initial
event as the classifying variable, even when the initial event is not the largest event. Another
difficulty is that, unless « = 8, we should expect the distribution of B, to be shifted a distance

5y = (3 - 1>(u — M) (12)
p

from the double exponential form predicted in the case in which @ = 8. Unless there is enough
data to examine individual values of u, the observed distribution for B,, will therefore be a
mixture of shifted versions of the double exponential, leading to a broadening of the modal
peak, as in the discussion of Theorem 2.

Issues of this kind are discussed briefly in Vere-Jones et al. (2006) and will be treated at
greater length in Vere-Jones et al. (2008). The broad conclusions from those studies may be
summarized as follows.

1. In general, the double exponential form in Theorem 1, or more properly the generalized
form described in Theorem 2, provides a plausible candidate for the distribution of the
Bath’s law difference B,. For fixed u, or at least restricted ranges of u, the visual
appearance is convincing, and can be extended, with suitable adjustments, even to cases
where o < B.

2. A key role is played by the probability that the initiating event is followed by a larger
event, or, more loosely, is a foreshock. For the double exponential distribution, the limit
form of this probability is given by F, (0) = 1 —e™ and, therefore, uniquely determines
parameter A. Provided that u here is interpreted as the number of magnitude units above
the threshold, this probability is independent of the magnitude u of the initiating event
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if @ = B, but otherwise has to be adjusted as in (12). Typical values of this probability
(assuming that o ~ B) lie around 5% (see, e.g. Felzer et al. (2004)), so that A ~ 0.051.

3. The mode and other measures of location of the limit distribution for F; (y) in Theorem 1
are also determined by parameter A. For example, the mode occurs when

d —px
—log f(x) =—p+ ABe™"" =0,
dx
thatis, when x = log A/B. Parameter 8 is commonly around log, 10 = 2.3, correspond-
ing to a Gutenberg—Richter b-value of around 1. Thus, we should expect the mode to

occur at approximately
3
A~ — ~1.29,
2.3
with similar values for the median and mean. Broadly similar behavior is retained even
after mixing over A, providing that the mixture distribution is not too extreme. The

quoted values are in satisfactory agreement with observed values for Béth’s law.

4. Observed values of o and § are often similar, but not necessarily equal. Dependence of
foreshock probabilities on « do show the linear relation implicit in (12). Most large-scale
studies suggest that 8 > «. However, in fitting the ETAS model to individual sequences,
situations where o > f are not uncommon, even though this implies that the resulting
model must be unstable if applied on a large scale.

5. Concluding remarks

The paper shows that a form of the extreme value theorem can be used to explain the
appearance of a Bath’s law feature under a wide range of conditions. Two features, the
exponential distribution for magnitudes and the exponential productivity law for the numbers
of events, seem crucial for the appearance of such a feature. The implication is that it is to these
underlying features, rather than to Bath’s law itself, that physical theories should be addressed.
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