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Abstract. We consider groupoids constructed from a finite number of commuting local
homeomorphisms acting on a compact metric space and study generalized Ruelle operators
and C∗-algebras associated to these groupoids. We provide a new characterization
of 1-cocycles on these groupoids taking values in a locally compact abelian group,
given in terms of k-tuples of continuous functions on the unit space satisfying certain
canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory
for dynamical systems of several commuting operators (k-Ruelle triples and commuting
Ruelle operators). Results on KMS states onC∗-algebras constructed from these groupoids
are derived. When the groupoids being studied come from higher-rank graphs, our results
recover existence and uniqueness results for KMS states associated to the graphs.
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1. Introduction
Let X be a compact Hausdorff space and σ : X → X a local homeomorphism of X onto
itself. The so-called Deaconu–Renault groupoid and its associated C∗-algebra correspond-
ing to the pair (X, σ) were first studied by Deaconu in [7] based on a construction of
Renault in [22] in the setting of groupoids of Cuntz algebras. Deaconu adapted Renault’s
construction by replacing the shift map on the infinite sequence space with a local
homeomorphism. Renault further generalized this construction to local homeomorphisms
defined on open subsets in [23]. The étale groupoid associated to a finite family of
commuting local homeomorphisms of a compact metric space has gone by various names
including Deaconu–Renault groupoids of higher rank and the semidirect product groupoid
corresponding to the action of the semigroup N

k [10]. In [26], these groupoids were
generalized to the setting of partial semigroup actions. Our main purpose in this paper
is the study of these groupoids, their associated C∗-algebras, and KMS states which arise
naturally on a specific class of related dynamical systems. This is a sufficiently broad
class to include higher-rank graph C∗-algebras associated to finite k-graphs. We develop
cohomological methods to characterize 1-cocycles on these C∗-algebras, which in turn
give rise to one-parameter automorphism groups. This leads us to study the KMS states on
these C∗-algebras.

KMS states have their origin in equilibrium statistical mechanics and have long been
a very fruitful tool in the study of operator algebras. For the precise definition of KMS
states see [12] and the references contained therein. In this paper, we study KMS states
for groupoids associated to a finite family of commuting local homeomorphisms of a
compact metric space by further developing a Ruelle–Perron–Frobenius (RPF) theory of
dynamical systems of several commuting operators. Although an RPF theory for free
abelian semigroups has been introduced by Carvalho, Rodrigues, and Varandas in [4,
5], their main emphasis was on skew products, random walks, and topological entropy,
whereas our emphasis here will be on the connection to the C∗-algebras and the use of
the Ruelle–Perron–Frobenius operator to prove the existence of measures with appropriate
properties (hence states with related properties).

In the groupoid perspective, as first explained by Renault in [22], time evolutions
(dynamics) on the reduced C∗-algebra of a groupoid G are implemented by continuous
real-valued 1-cocycles on G and the task of understanding the KMS states for these
dynamics on C∗

r (G) requires, at a minimum, identifying the measures on the unit space
of G that are quasi-invariant. There are now refinements of Renault’s result; see, for
example, work by Neshveyev [20] and Thomsen [30]. More recently, Christensen’s paper
[6] combines quasi-invariant measures with a certain group of symmetries to describe
KMS states on groupoidC∗-algebras for locally compact second countable Hausdorff étale
groupoids.

Our analysis of the KMS states on groupoids associated to a finite family of commuting
local homeomorphisms of a compact metric space stems from a new characterization of
their continuous real-valued 1-cocycles, which in a nutshell are determined completely by
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a k-tuple of continuous real-valued functions on the unit space of the groupoid satisfying
canonical identities. In so doing, we give an isomorphism between the first monoid
cohomology of Nk with coefficients in the module C(X, H) of continuous functions on
X with values in H, where H is a locally compact abelian group, and the first continuous
cocycle groupoid cohomology taking values in H .

We base our constructions on the established analysis of KMS states on Deaconu–
Renault groupoids of [9, 13, 17, 24], together with an extended Ruelle–Perron–Frobenius
theory for dynamical systems of several commuting operators, modelled on the
one-dimensional theory of Ruelle [27] and Walters [31].

In [17], Kumjian and Renault associated KMS states to Ruelle operators constructed
on a groupoid arising from a single expansive map and, in [13], Ionescu and Kumjian
related the associated states to Hausdorff measures, which led to applications to KMS
states on Cuntz algebras, C∗-algebras arising from directed graphs, and C∗-algebras
associated to fractafolds. In addition, Ruelle operators were used in [2]. In this paper, we
generalize some of these results to groupoids associated to a finite family of commuting
local homeomorphisms of a compact metric space. In particular, we deduce that in order
for the adjoint of the Ruelle operator associated to a finite family of commuting local
homeomorphism to have an eigenmeasure, it is necessary and sufficient that the adjoint of
the Ruelle operator corresponding to a non-trivial product of the local homeomorphisms
have that same eigenmeasure, thus reducing matters to the one-dimensional case studied
by Walters.

Ruelle operators are important tools in mathematical physics, particularly ther-
modynamics, and yield a formulation of a ‘continuous’ extension of the seminal
Perron–Frobenius theorem. Ruelle’s classical result, known as the ‘Ruelle–Perron–
Frobenius (RPF) theorem’, gives a sufficient condition for a Ruelle triple to satisfy
the unique positive eigenvalue condition [27, 28]. In [32], building on earlier work of
Bowen, Walters gave criteria for the RPF theorem to hold for more general Ruelle triples
(X, σ , ϕ) merely demanding that X be a metric space, σ be positively expansive and
exact, and ϕ satisfy a smoothness condition. We extend the RPF theorem to certain Ruelle
triples of type (X, σ , ϕ) := (X, σi , ϕi)ki=1, where the σi form a commuting family of local
homeomorphisms which are positively expansive and exact, and the ϕi satisfy the Walters
conditions.

To derive our generalization of the the RPF theorem, we first need to construct
continuous 1-cocycles on the groupoid G(X, σ) arising from a k-tuple of commuting local
homeomorphisms on X with values in R. In order to study this in the greatest possible
generality, we first study the problem of calculatingH 1(Nk , A), where A is an N

k-module.
In Theorem 3.4, we are able to give an explicit formula for all elements of Z1(Nk , A) from
k-tuples in Ak satisfying what we call the ‘module cocycle condition’ and describe which
of these are coboundaries. In the case k = 1, this formula is similar to the formula given
in [8].

We apply this theorem by starting with a k-tuple of commuting local homeomorphisms
of X and using them to give C(X, H) an N

k-module structure for any locally compact
abelian group H . We then provide an explicit isomorphism between H 1(Nk , C(X, H))
and the first cohomology groupH 1

cont(G(X, σ), H) of the groupoid G(X, σ). Specializing
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to the case where H = R, we obtain explicit formulas for elements of Z1
cont(G(X, σ), R)

that we use in the generalized RPF theorem.
Recently there has been great interest (cf. [1, 12, 18]) in the KMS states associated

to one-parameter dynamical systems on C∗(�), where � is a higher-rank graph and
the dynamics arises either from the canonical gauge action of T

k on C∗(�) or from
a generalized gauge action. In particular, for a finite strongly connected k-graph, in
[1, 12, 18], one can endow C∗(�) with a (generalized) gauge dynamics and show the
existence of unique KMS states. Here, we are able to recover some of the results in [1,
12, 18] from a different perspective, using the Ruelle–Perron–Frobenius theorem and the
generalized gauge dynamics that we obtain from our description of Z1

cont(G(X, σ), R)
given in Proposition 3.10.

We now outline the structure of the paper. Section 2 introduces classical Ruelle triples,
triples that satisfy the unique positive eigenvalue condition (see Definition 2.3), and Ruelle
operators. These are basic objects that we will generalize to higher dimensions in §4. We
also review several essential results of Walters, Bowen, and Ruelle in this section. In §3,
we review the construction of the groupoid G(X, σ) associated to a finite family σ of
commuting local homeomorphisms of a compact metric space X, and then briefly review
level-one semigroup cohomology and continuous groupoid cohomology and relate the
two. We also give an algebraic way of constructing all continuous 1-cocycles in both the
semigroup and groupoid cases. Our main interest are continuous real-valued 1-cocycles
on G(X, σ). In §4, we introduce k-Ruelle dynamical systems, the related families of
commuting Ruelle operators and their duals, and their eigenmeasures. In §5, we use
the results of the previous sections to consider the Radon–Nikodym problem for these
groupoids, which provides a link between quasi-invariant measures for the groupoids
G(X, σ) and KMS states for a generalized gauge dynamics. In particular, we prove that
if the generalized Ruelle operator associated to a k-Ruelle system has an eigenmeasure
with eigenvalue one, then there exists a KMS state for the generalized gauge dynamics
coming from certain groupoid 1-cocycles related to the groupoidC∗-algebra. Finally, in §6,
we apply the results obtained thus far to answer some existence and uniqueness questions
concerning KMS states for a generalized gauge dynamics associated to higher-rank graphs.

1.1. Notation and conventions. In the rest of the paper, we will use the following
notational conventions. We denote by N the semigroup of natural integers {0, 1, 2, . . .}
and by N>0 the set of positive elements of N. For fixed k ∈ N>0, we denote by N

k the
semigroup of all ordered k-tuples of elements of N and by [k] the set [k] = {1, . . . , k}. We
define the length |n| of an element n = (n1, . . . , nk) ∈ N

k by |n| := n1 + · · · + nk .
For every compact Hausdorff space X, and topological locally compact group H, we let

C(X, H) be the group of continuous functions from X to H. In many instances H = R in
this paper. We will also letM(X) denote the Banach space of finite signed Borel measures
on the Borel subsets of X, which is isometrically isomorphic to the dual space C(X, R)′
of C(X, R).†

† By [34, pp. 91–92], any measure on a locally compact and second countable space that is finite on compact
sets is Radon and hence regular.
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For every (locally) compact Hausdorff étale groupoid G, there is a standard dense linear
embedding of Cc(G) into C∗

r (G). The groupoids that we study are amenable, so, unless
there is a danger of confusion, we shall identify f ∈ Cc(G) with its image (also denoted
by f ) in C∗

r (G) ∼= C∗(G).
In what follows, X will always denote a (non-empty) compact Hausdorff topological

space.

2. Ruelle triples and Ruelle operators
We begin by defining Ruelle triples and Ruelle operators (sometimes called transfer
operators), which were introduced in [27] in the case of totally disconnected spaces and
generalized to arbitrary compact metric spaces by Walters in [31, 32]. These will be the
basic objects of concern in this paper. Ruelle operators are important tools in mathematical
physics, particularly thermodynamics, and yield a formulation of a ‘continuous’ extension
of the classical Perron–Frobenius theorem. In [17], Kumjian and Renault associated KMS
states to Ruelle operators constructed on a groupoid arising from a single expansive map
on a compact metric space, which led to applications to KMS states on Cuntz C∗-algebras
and C∗-algebras associated to higher-rank graphs.

Definition 2.1. (Ruelle triples and operators)

(1) A Ruelle triple is an ordered triple (X, T , ϕ), where:
(a) X is a compact metric space;
(b) T : X → X is a surjective local homeomorphism;
(c) ϕ : X → R is a continuous function, that is, ϕ ∈ C(X, R).

(2) The Ruelle operator associated to a Ruelle triple (X, T , ϕ) is the bounded linear
operator

LX,T ,ϕ : C(X, R) → C(X, R)

defined by, for all f ∈ C(X, R), for all x ∈ X,

[LX,T ,ϕ(f )](x) :=
∑

y∈T −1[{x}]
eϕ(y)f (y). (1)

Our goal is to extend some results from [13, 17, 25] from a single local homeomorphism
to commuting k-tuples of local homeomorphisms on X in part by employing cohomologi-
cal methods. The following lemma follows from [10, Proposition 2.2].

LEMMA 2.2. (Composition of Ruelle operators) Let (X, S, ϕ) and (X, T , ψ) be Ruelle
triples. Then (X, S ◦ T , ϕ ◦ T + ψ) is a Ruelle triple and

LX,S,ϕ ◦LX,T ,ψ = LX,S◦T ,ϕ◦h+ψ .

We will now define an important subclass of Ruelle triples, those for which the positive
eigenvalue problem for the dual Ruelle operator has a unique solution. These Ruelle triples
enjoy important fixed-point properties and admit generalizations to dynamical systems that
will be described in §4.
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Definition 2.3. A Ruelle triple (X, T , ϕ) is said to satisfy the unique positive eigenvalue
condition if there exists a unique ordered pair (λ, μ) such that:
(1) λ is a positive real number;
(2) μ is a Borel probability measure on X;
(3) if we denote by (LX,T ,ϕ)

∗ :M(X) →M(X) the dual of the Ruelle operatorLX,T ,ϕ ,
then

(LX,T ,ϕ)
∗(μ) = λμ.

Ruelle’s classical result, known as the ‘Ruelle–Perron–Frobenius (RPF) theorem’,
generalizes the seminal Perron–Frobenius theorem for primitive matrices to subshifts of
finite type and gives a sufficient condition for a Ruelle triple to satisfy Definition 2.3
[27, 28]. The RPF theorem below is taken from [9, Theorem 2.2].

To introduce the required notation to state the RPF theorem, fixing k ∈ N>0, let A =
(Ai,j )i,j∈[k] be an n× n zero–one matrix with no row or column of zeros and let (�A, σ)
be the associated (one-sided) subshift of finite type, where �A is the compact topological
subspace of the infinite product space

∏
j∈N[k] defined by

�A :=
{
x = (x0, x1, x2, . . .) ∈

∏
j∈N

[k]
∣∣∣∣ Axi ,xi+1 = 1 for all i ≥ 0

}

and σ : �A → �A is the ‘left shift’ given by

σ(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

Moreover, given a real number β ∈ (0, 1), we define a compatible metric d on �A

by setting, for x, y ∈ �A and x 	= y, d(x, y) = βN(x,y), where N(x, y) is the least
integer N ∈ N such that xi 	= yi . Furthermore, min(∅) := ∞ by convention; in this case
d(x, y) = 0.

We can now state the Ruelle–Perron–Frobenius theorem as presented by Exel; see
[9, Theorem 2.2] and [9, Proposition 2.3].

THEOREM 2.4. (Ruelle–Perron–Frobenius theorem) With notation as above, let ϕ be a
continuous real-valued function defined on �A. Suppose that:
(1) there exists a positive integer m such that Am > 0 (in the sense that all entries are

positive); and
(2) ϕ is Hölder-continuous.
Then there exist a strictly positive function h ∈ C(�A, R), a Borel probability measure μ
on �A, and a positive real number λ such that:
(a) (L�A,σ ,ϕ)(h) = λh; and
(b) (L�A,σ ,ϕ)

∗(μ) = λμ.
In particular, (�A, σ , ϕ) also satisfies the unique positive eigenvalue condition of
Definition 2.3.

In the following, we will also refer to the Ruelle–Perron–Frobenius theorem as the
RPF theorem. In [32, 33], Walters gave criteria for the RPF theorem to hold for more
general Ruelle triples (X, T , ϕ), which was modified by Kumjian and Renault in [17],
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requiring that X be a metric space, T be positively expansive and exact, and ϕ obey some
summability condition. We will now detail these results.

Definition 2.5. Let (X, T , ϕ) be a Ruelle triple and let d be the metric on X. Consider the
three conditions listed below.
(1) T is positively expansive, that is, there is an ε > 0 such that for all distinct x, y ∈ X,

there exists an n ∈ N such that d(T n(x), T n(y)) ≥ ε.
(2) T is exact, that is, for every non-empty open subset U of X, there exists an n ∈ N

such that T n[U ] = X.
(3) There exist a compatible metric d ′ on X and positive numbers δ > 0 and C >

0 with the property that for all n ∈ N>0 and for all x, y ∈ X, we have that
d ′(T i(x), T i(y)) ≤ δ for all i ∈ {0, 1, . . . , n− 1} implies that∣∣∣∣

n−1∑
i=0

ϕ(T i(x))− ϕ(T i(y))

∣∣∣∣ ≤ C.

We say that (X, T , ϕ) satisfies the Walters conditions if it satisfies Conditions (1) and
(2) above, and it satisfies the Bowen condition [3] if it satisfies Condition (3) above.
Moreover, T is positively expansive if and only if there is an open neighbourhood U of
�(X), the diagonal ofX, such that for all distinct x, y ∈ X, there exists an n ∈ N such that
(T n(x), T n(y)) /∈ U .

In all of our examples the function ϕ is Hölder continuous, and that together with
Condition (1) implies the Bowen condition, as noted in the following well-known
proposition, whose proof is sketched in [17, p. 2071].

PROPOSITION 2.6. Let (X, T , ϕ) be a Ruelle triple with T positively expansive. If ϕ is
Hölder-continuous with respect to a compatible metric d on X, then Condition (3) of
Definition 2.5 is satisfied for d by ϕ with respect to T .

The main results of [14, 32] yield the following theorem.

THEOREM 2.7. A Ruelle triple satisfies the unique positive eigenvalue condition of
Definition 2.3 if it satisfies the conditions in Definition 2.5.

In [14], Jiang and Ye stated analogous conditions for weakly contractive iterated
function systems for which results similar to Theorem 2.7 hold.

3. Continuous 1-cocycles on semigroups and continuous 1-cocycles on G(X, σ)
3.1. Semigroup cocycles. We now discuss semigroup cocycles with values in a semi-
group module A with the aim of explicitly constructing all Nk1-cocycles with values in
the N

k-module A.

Definition 3.1. (Semigroup cocycles) Let S be a semigroup and A an S-module, so that
A is an abelian group and there exists a homomorphism π : S → End(A). When there is
no danger of confusion, for s ∈ S and α ∈ A, we denote by sα ∈ A the element [π(s)](α)
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of A. Define Z1(S, A) to be the set of A-valued 1-cocycles on S, that is, Z1(S, A) is the
set of functions

Z1(S, A) := {γ : S → A | γ (st) = γ (s)+ sγ (t) for all s, t ∈ S}.
A function γ : S → A is said to be an A-valued 1-coboundary on S if there is an α ∈ A
such that γ (s) = α − sα for all s ∈ S, in which case we write γ = γα . LetB1(S, A) denote
the collection of all A-valued 1-coboundaries on S.

Routine computations show that Z1(S, A) forms a group under addition, that every
1-coboundary is a 1-cocycle, and that B1(S, A) is a subgroup of Z1(S, A). We verify that
every 1-coboundary is in fact a 1-cocycle. Let α ∈ A and s, t ∈ S; then

γα(st) = α − (st)α = α − [π(st)](α) = α − [π(s)](α)+ [π(s)](α)− [π(s)]([π(t)](α))

= α − sα + sα − [π(s)]([π(t)](α)) = α − sα + sα − s(tα)

= γα(s)+ sγα(t).

Hence, B1(S, A) ⊆ Z1(S, A). Moreover, we define the first semigroup cohomology of S
with coefficients in A by H 1(S, A) := Z1(S, A)/B1(S, A).

For the special case S = N
k , k ∈ N>0, the following definition provides an important

example of an S-module.

Definition 3.2. Let σ = (σi)i∈[k] be a k-tuple of commuting surjective local homeomor-
phisms on the locally compact Hausdorff spaceX. LetH be a topological locally compact
abelian group. Define an N

k-module structure on A = C(X, H) by setting

[πn(f )](x) := f (σn(x))

for all n ∈ N
k , f ∈ C(X, H), and x ∈ X.

The next condition will be crucial in constructing 1-cocycles on N
k .

Definition 3.3. (Module cocycle condition) Let A be an N
k-module and let a = (ai)i∈[k]

be a k-tuple of elements of A. We say that (ai)i∈[k] satisfies the module cocycle condition
if for all i, j ∈ [k], i 	= j ,

ai + eiaj = aj + ej ai , (2)

where {ei}i∈[k] are the canonical generators of Nk .

THEOREM 3.4. Let A be an N
k-module.

(1) Suppose that the k-tuple a = (ai)i∈[k] ∈ Ak satisfies the module cocycle condition
of equation (2). Then there is a unique cocycle ca ∈ Z1(Nk , A) satisfying, for every
� ∈ [k],

ca(e�) = a�. (3)
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The cocycle ca is given by the following formula:

ca(n) :=
n1−1∑
i=0

ei1a1 + en1
1

n2−1∑
i=0

ei2a2 + · · · + en1
1 en2

2 · · · enk−1
k−1

nk−1∑
i=0

eikak . (4)

(2) The correspondence between the k-tuples a = (ai)i∈[k] ∈ Ak satisfying the module
cocycle condition and the associated cocycles ca ∈ Z1(Nk , A) is a bijection.

(3) Such a 1-cocycle ca ∈ Z1(Nk , A) corresponds to a coboundary in B1(Nk , A) if and
only there exists α ∈ A such that ai = α − eiα for i ∈ [k].

Proof. Proof of (1). We subdivide the proof into two parts. We will first prove that the
formula for ca in equation (4) gives a 1-cocycle on N

k satisfying the conditions of equation
(3). Then we will prove the uniqueness.

For the first part of the proof, we will proceed by induction. For a fixed N ∈ N our
induction statement is that for any t , m, n ∈ N

k , with |t | ≤ N and |m+ n| ≤ N , we have

ca(t) =
t1−1∑
i=0

ei1a1 + et11

t2−1∑
i=0

ei2a2 + · · · + et11 et22 · · · etk−1
k−1

tk−1∑
i=0

eikak and (5)

ca(m+ n) = ca(m)+m ca(n). (6)

The base case N = 1 is easily checked as it amounts to, for all � ∈ [k],

ca(e�) = e0
1 · · · e0

�−1e0
�a� = a�, and

ca(e�) = ca(e�)+ ca(e�) ca(0) ca(e�) = ca(0)+ 0 ca(e�).

For the inductive step, we now suppose that the cocycle formula in equation (5) holds for
all t ∈ N

k , with |t | ≤ N , and that equation (6) holds for all n, m ∈ N
k with |n+m| ≤ N .

We need to show that equation (5) holds for all ca(t), with |t | ≤ N + 1, and that equation
(6) holds for all n, m ∈ N

k with |n+m| ≤ N + 1. To do so, fix m, n ∈ N with |m+ n| =
N and choose any � ∈ [k] so that (m+ n+ e�) ∈ N

k , which implies that |m+ n+ e�| =
N + 1.

Assume first that m = 0. Then, since |n| = N , the induction hypothesis (particularly
equation (5)) implies that

ca(e�) + e� ca(n) = ca(e�) + e�
( n1−1∑

i=0

ei1a1 + · · · + en1
1 en2

2 · · · enk−1
k−1

nk−1∑
i=0

eikak
)

.

(7)

Now note that for j < �, the module cocycle condition of equation (2) implies that

e�
nj−1∑
i=0

eij aj =
nj−1∑
i=0

eij (e�aj ) =
nj−1∑
i=0

eij (aj + ej a� − a�) =
nj−1∑
i=0

eij aj + enjj a� − a�.

(8)
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Next, we will we use equation (8) to replace the terms ≤ � in equation (7) with equivalent
expressions, to get

ca(e�)+ e�ca(n) = a� +
( n1−1∑

i=0

ei1a1 + en1
1 a� − a�

)

+ en1
1

( n2−1∑
i=0

ei2a2 + enjj a� − a�

)

+ · · · + en1−1
1 en2

2 · · · en�−1
�−1

( n�∑
i=0

ei�(a�)− a�

)

+ · · · + e�en1−1
1 en2

2 · · · enk−1
k−1

nk−1∑
i=0

eikak . (9)

By using the telescopic properties of equation (9) above, one easily sees that ca(e�)+
e�ca(n) is equal to

n1−1∑
i=0

ei1a1 + en1
1

n2−1∑
i=0

ei2a2 + · · · + en1
1 en2

2 · · · en�−1
�−1

×
n�∑
i=0

ei�a� + · · · + en1
1 en2

2 · · · enk−1
k−1

nk−1∑
i=0

eikak ,

which equals ca(e� + n). That is, we have proven that, for n ∈ N, |n| = N , and any � ∈ [k],

ca(e�) + e� ca(n) = ca(e� + n). (10)

Moreover, by using equation (5) to replace ca(n) with the right-hand side of that
equation in the above expression, a straightforward calculation shows that equation (5)
holds for t = n+ e�.

We now suppose that m, n ∈ N
k with |m+ n| = N + 1 and |m| > 0 with positive �th

coordinatem� for some � ∈ [k]. Definem′ := m− e� ∈ N
k and note that |e� +m′ + n| =

|m+ n| − 1 = (N + 1)− 1 = N . Therefore, by equation (10), we get

ca(m+ n) = ca(e� +m′ + n) = ca(e�)+ e� ca(m′ + n).

By using the induction hypothesis twice, we now get

ca(m+ n) = ca(e�)+ e�(f (m′)+m′ca(n)) = ca(e�)+ e�ca(m′)+ (e� +m)ca(n)

= ca(e� +m′)+ (e� +m)ca(n) = ca(m)+m ca(n).

Moreover, by using equation (5) to replace in the above expression ca(m) and ca(n) with
the right-hand side of that equation, a straightforward calculation shows that equation (5)
holds for t = m+ n.

This completes the inductive step and so we have proven that the formula for ca in
equation (4) gives a 1-cocycle on N

k satisfying the conditions of equation (3).
We now prove the uniqueness. Let ca be as described above and let f be any other

1-cocycle on N
k such that f (ei ) = ai for i ∈ [k]. Now we proceed by induction on the
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length |n| of n. The base case that ca(n) = f (n) for all n ∈ N
k with |n| ≤ 1 follows from

the definitions of ca and f .
For the inductive step, assume that ca(r) = f (r) for all r ∈ N

k with |r| ≤ N and
suppose that |n| = n1 + n2 + · · · + nk = N and |m| = m1 +m2 + · · · +mk = N + 1,
which implies that m = n+ e� for some �. By using the inductive hypothesis and the
module cocycle condition of equation (2), we then get

f (m) = f (e� + n) = ca(e�)+ e�ca(n) = ca(m).

Proof of (2). We have already proven in (1) that the correspondence a → ca is injective.
To prove that a → ca is a surjection onto Z1(Nk , A), let us take c ∈ Z1(Nk , A) and set
ai := c(ei ). It is then easy to check that the k-tuple (ai)i∈[k] satisfies the module cocycle
condition.

Proof of (3). Suppose that the k-tuple a = (ai)i∈[k] ∈ Ak gives rise to a coboundary ca .
Then by definition there exists α ∈ A such that for all i ∈ [k],

ai = ca(ei ) = α − eiα.

The other direction is clear.

Remark 3.5. In the most important of our uses of the above result, Theorem 3.4 applies to
the N

k-module A = C(X, R) as in Definition 3.2.

3.2. Continuous 1-cocycles on G(X, σ). In this subsection, our objective is to give an
algebraic way of constructing all continuous H -valued 1-cocycles, where H is a locally
compact abelian group, on groupoids associated to a finite family of commuting local
homeomorphisms of a compact metric space. In later sections we will mainly be interested
in the case H = R. We begin by recalling the definition of these groupoids.

Definition 3.6. [7, 10] Let σ = (σi)i∈[k] be a k-tuple of commuting surjective local
homeomorphisms on the compact Hausdorff space X. We regard σ as an action of N

k

on X by the formula σn = σ
n1
1 . . . σ

nk
k , where n = (ni)i∈[k] ∈ Nk . The transformation

groupoid (also called the semidirect product groupoid of the action) G(X, σ) is defined by

G(X, σ) := {(x, p − q, y) ∈ X × Z
k ×X | p, q ∈ N

k and σp(x) = σq(y)}.
We identify X with the unit space of G(X, σ) via the map x 
→ (x, 0, x). The struc-
ture maps are given by r(x, n, y) = x, s(x, n, y) = y, (x, m, y)−1 = (y, −m, x), and
(x, m, y)(y, n, z) = (x, m+ n, z). A basis for the topology onG(X, σ) is given by subsets
of the form

Z(U , V , m, n) := U × {p − q} × V ,

where U , V are open in X and σp[U ] = σq [V ]. We will denote by G(X, σ)(2) the set of
composable pairs of G(X, σ).

The number k is called the rank of G(X, σ).

It is well known that G(X, σ) is an étale locally compact Hausdorff amenable groupoid
(cf. [7, 26]).
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Definition 3.7. (Continuous groupoid 1-cocycles) Let G be a topological groupoid and H
be a topological locally compact abelian group. A continuous H -valued 1-cocycle on G is
a continuous function c : G→ H such that for any (γ , γ ′) in G(2), we have

c(γ γ ′) = c(γ )+ c(γ ′).

In other words, c is just a continuous groupoid homomorphism from G to H . We will
denote by Z1

cont(G, H) the set of continuous H -valued 1-cocycles on G.

It is well known that Z1
cont(G, H) is a group under pointwise addition and that

B1
cont(G, H), the collection of continuous functions c : G→ H such that there is a

continuous function f : G(0) → H such that for all γ ∈ G, c(γ ) = f (r(γ ))− f (s(γ )), is
a subgroup of Z1

cont(G, H). We define the first continuous cocycle groupoid cohomology
of G by

H 1
cont(G, H) := Z1

cont(G, H)/B1
cont(G, H).

Our goal is to give an algebraic characterization of the cocycles in Z1
cont(G(X, σ), H) for

G(X, σ) expressed in terms of their coordinate-defining functions as given in (2) below.
To do so, we will introduce the following definition, which details a special case of the
module cocycle condition.

Definition 3.8. (The cocycle condition) Let H be a topological locally compact abelian
group. Fix k ∈ N and let (X, σ , ϕ) be an ordered triple with:
(1) X a compact metric space;
(2) σ = (σi)i∈[k] a k-tuple of commuting surjective local homeomorphisms of X;
(3) ϕ = (ϕi)i∈[k] a k-tuple of elements from C(X, H).
Then (X, σ , ϕ) is said to satisfy the cocycle condition of order k if, for all i, j ∈ [k],

ϕi + ϕj ◦ σi = ϕj + ϕi ◦ σj . (11)

Note that equation (11) is a special case of the module cocycle condition of Definition 3.3.
When the order k is understood, we will omit it and just say that (X, σ , ϕ) satisfies the
cocycle condition. Moreover, with a slight abuse of notation, when X and σ are understood,
we will also say that ϕ satisfies the cocycle condition.

Example 3.9. With notation as in Definition 3.8, if ϕi is constant for each i, then (X, σ , ϕ)
satisfies the cocycle condition.

The cocycle condition will be the characterizing feature for Ruelle triples in the case of
a finite family of commuting endomorphisms; see Definition 4.1.

We now show that every groupoid cocycle c ∈ Z1
cont(G(X, σ), H) arises from a k-tuple

of functions (ϕi)i∈[k] satisfying the cocycle condition as above, and conversely.

PROPOSITION 3.10. (Cocycle characterization) Let (X, σ , ϕ) be a triple that satisfies
conditions (1), (2), and (3) of Definition 3.8. Then statements (1) and (2) below are
equivalent.
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(1) Algebraic characterization: (X, σ , ϕ) satisfies the cocycle condition.
(2) There exists a unique cX,σ ,ϕ ∈ Z1

cont(G(X, σ), H) such that c(x, ei , σi(x)) = ϕi(x)

for all i ∈ [k] and x ∈ X.
Moreover, every c ∈ Z1

cont(G(X, σ), H) arises as a cX,σ ,ϕ for some k−tuple ϕ satisfying
the cocycle condition. In addition, c ∈ Z1

cont(G(X, σ), H) is a 1-coboundary if and only if
there exists ψ ∈ C(X, H) such that c(x, ei , σi(x)) = ψ(x)− ψ(σi(x)) for all i, j ∈ [k].

Proof. (1) �⇒ (2): Assume (1). Since ϕ = (ϕ)i∈[k] satisfies the cocycle condition, by
Proposition 3.4, there is a unique 1-cocycle cϕ on N

k , taking values in the N
k-module

C(X, H), that satisfies c(ei ) = ϕi for i ∈ [k]. Define cX,σ ,ϕ ∈ Z1
cont(G(X, σ), H), for all

m, n ∈ N
k , by

cX,σ ,ϕ(x, m− n, y) := [cϕ(m)](x)− [cϕ(n)](y).

We must show that cX,σ ,ϕ is well defined, that is, if there exist p, q ∈ N
k with

(x, m− n, y) = (x, p − q, y) ∈ G(X, σ), so that σm(x) = σn(y) and σp(x) = σq(y),
then

cX,σ ,ϕ(x, m− n, y) = cX,σ ,ϕ(x, p − q, y).

For, note that since m− n = p − q, we have, for all i ∈ [k],

m(i)− n(i) = p(i)− q(i), m(i)− p(i) = n(i)− q(i).

Define r ∈ N
k by

r = (r(1), r(2), . . . , r(k)), where

r(i) =
{
p(i)−m(i) = q(i)− n(i) if p(i)−m(i) > 0,

0 if p(i)−m(i) ≤ 0.

It then follows that m+ r = m ∨ p and n+ r = q ∨ p, where, for α, β ∈ N
k , we shall

denote by α ∨ β the element of Nk obtained by taking the maximum of the corresponding
coordinates in α and β. Similarly to r, one can also define t ∈ N

k such that p + t = m ∨ p
and q + t = n ∨ q. Hence, m+ r = p + t and n+ r = q + t .

We now use the cocycle identity for cϕ to get, for all (x, m− n, y) = (x, p − q, y) ∈
G(X, σ),

[cϕ(m+ r)](x)− [cϕ(n+ r)](y) = [cϕ(m)](x)+ [cϕ(r)](σm(x))

− ([cϕ(n)](y)+ [cϕ(r)](σn(y)))

= [cϕ(m)](x)− [cϕ(n)](y)

+ [cϕ(r)](σm(x))− [cϕ(r)](σn(y))

and, because σm(x) = σn(y), the last two terms cancel each other out.
In the same way we show that [cϕ(p + t)](x)− [cϕ(q + t)](y) = [cϕ(p)](x)−

[cϕ(q)](y).
Therefore, cX,σ ,ϕ(x, m− n, y) = cX,σ ,ϕ(x, p − q, y), so cX,σ ,ϕ is well defined. More-

over, using the fact that cϕ is a cocycle, it easily follows that cX,σ ,ϕ is a cocycle. The fact
that cX,σ ,ϕ is continuous follows from the fact that cϕ takes values in C(X, H).
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A straightforward calculation shows that cX,σ ,ϕ is unique. Indeed, any c ∈
Z1

cont(G(X, σ), H) is completely determined by ϕi(x) := c(x, ei , σ ei (x)), i ∈ [k], and
c = cX,σ ,ϕ , where ϕ = (ϕi) satisfies the cocycle condition.
(2) �⇒ (1): Assume (2). Then we have, for all i, j ∈ [k] and x ∈ X, that

(x, ei , σi(x))(σi(x), ej , σj (σi(x))) = (x, ei + ej , σj (σi(x)))

= (x, ej + ei , σi(σj (x)))
= (x, ej , σj (x))(σj (x), ei , σi(σj (x)))

and, consequently, for all x ∈ X,

ϕi(x)+ ϕj (σi(x)) = cX,σ ,ϕ(x, ei , σi(x))+ cX,σ ,ϕ(σi(x), ej , σj (σi(x)))

= cX,σ ,ϕ((x, ei , σi(x))(σi(x), ej , σj (σi(x))))

= cX,σ ,ϕ(x, ej , σj (x))+ cX,σ ,ϕ(σj (x), ei , σi(σj (x)))
= ϕj (x)+ ϕi(σj (x)),

which yields (1).
The statement about coboundaries is easily checked.

In the particular setting of a groupoid G(X, σ), with A = C(X, H) endowed with an
N
k-module structure as in Definition 3.2 and Remark 3.5, Theorem 3.4 specializes to

outline the relationship between Z1
cont(G(X, σ), H) and N

k-cocycles with values in A.

COROLLARY 3.11. Let G(X, σ) be a groupoid associated to a k-tuple σ of commuting
local homeomorphisms of a compact metric space X, and endow A = C(X, H) with the
structure of an N

k-module as in Definition 3.2. Then there is an isomorphism

� : Z1(Nk , A) −→ Z1
cont(G(X, σ), H), �(cϕ) := cX,σ ,ϕ ,

where, by means of Theorem 3.4, cϕ ∈ Z1(Nk , A) is determined by the k-tuple ϕ =
(ϕi)i∈[k] ∈ Ak and cX,σ ,ϕ is the continuous groupoid cocycle associated to (X, σ , ϕ) as
in Proposition 3.10.

Moreover, � restricts to an isomorphism between coboundary groups and in addition
induces a first cohomology group isomorphism

� : H 1(Nk , A) ∼= H 1
cont(G(X, σ), H).

Proof. It is clear that � preserves the group operations between Z1(Nk , A) and
Z1

cont(G(X, σ), H), and Theorem 3.4 shows that� is a bijection. So,� is an isomorphism.
It only remains to show that � induces an isomorphism between B1(Nk , A) and
B1

cont(G(X, σ), H). For, assume that cϕ is a coboundary, that is, there exists f ∈ A such
that cϕ = γf , which implies that ϕi = f − eif for all i ∈ [k]. Define, for all i ∈ [k],

ϕi(x) = f (x)− (eif )(x) = f (x)− f (σ ei (x)).

Then the cocycle cf := �(cϕ) is given by, on (x, l, y) ∈ G(X, σ) for l = m− n with
σm(x) = σm(y),

cf (x, l, y) = f (x)− f (y),
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which is obviously the coboundary corresponding to f ∈ C(X, H). It is clear that � is
one-to-one and onto from B1(Nk , C(X, H)) to B1

cont(G(X, σ), H). By the fundamental
theorem for group homomorphisms, � also induces an isomorphism

H 1(Nk , C(X, H)) ∼= H 1
cont(G(X, σ), H).

3.3. Cocycles and Ruelle operators. We now use Proposition 3.10 to deduce properties
of Ruelle operators corresponding to k-tuples ϕ = (ϕi)i∈[k] satisfying the cocycle con-
dition. Recall that by Definition 2.1, the Ruelle operator associated to the Ruelle triple
(X̃, σ̃ , φ̃) is denoted by L

X̃,σ̃ ,φ̃ .

THEOREM 3.12. Let X be a compact Hausdorff space, σ = (σi)i∈[k] be a k-tuple of
commuting local homeomorphisms of X, and ϕ = (ϕi)i∈[k] be a k-tuple of elements of
A = C(X, R).
(1) Assume that ϕ satisfies the cocycle condition and let cϕ ∈ Z1(Nk , A) be the cocycle

corresponding to ϕ as in Theorem 3.4. Then the assignment

� : Nk → End(C(X, R)), �(n) := LX,σn,cϕ(n)

is a semigroup homomorphism.
(2) If the k-tuple of Ruelle operators (LX,σ ei ,ϕi )i∈[k] commutes, then ϕ satisfies the

cocycle condition.

Proof. For the proof of (1), see Lemma 2.2, which relies on [10, Proposition 2.2] (this
latter reference was pointed out to us by the referee, whom we thank for it).

To prove (2), let i, j ∈ [k], x ∈ X, and z = (σi ◦ σj )(x). As the set

S = (σi ◦ σj )−1[{z}] = (σj ◦ σi)−1[{z}]
is finite, we can use Urysohn’s lemma to find an f ∈ C(X, R) such that f (x) = 1 and
f (y) = 0 for all y ∈ S \ {x}. Then

eϕi(σj (x))+ϕj (x) = [(LX,σi ,ϕi ◦LX,σj ,ϕj )(f )](z)

= [(LX,σj ,ϕj ◦LX,σi ,ϕi )(f )](z)

= eϕj (σi (x))+ϕi(x),

which implies that ϕi(σj (x))+ ϕj (x) = ϕj (σi(x))+ ϕi(x). As x ∈ X is arbitrary, we
have proved equation (11).

4. k-Ruelle dynamical systems
We now introduce the main objects of our study: k-Ruelle dynamical systems, which are
higher-rank analogues of Ruelle triples.

Definition 4.1. (k-Ruelle dynamical systems) A k-Ruelle dynamical system is an ordered
triple (X, σ , ϕ) that satisfies conditions (1), (2), and (3) of Definition 3.8 and the cocycle
condition. For a k-Ruelle dynamical system (X, σ , ϕ), we will denote by cX,σ ,ϕ the unique
c ∈ Z1

cont(G(X, σ), H) such that for all i ∈ [k] and x ∈ X, we have

c(x, ei , σi(x)) = ϕi(x).

Note that the existence of such a 1-cocycle is guaranteed by Proposition 3.10.
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In Definition 4.1, we could have replaced the cocycle condition by any of its equivalent
formulations in Proposition 3.10. However, the cocycle condition usually is the easiest of
the three equivalent conditions in Proposition 3.10 to verify and work with.

In analogy with triples that satisfy the unique positive eigenvalue condition of
Definition 2.3, we have the following definition.

Definition 4.2. A k-Ruelle dynamical system (X, σ , ϕ) is said to admit a unique solution
for the positive eigenvalue problem of the dual of the Ruelle operator if there exists a
unique ordered pair (λX,σ ,ϕ , μX,σ ,ϕ) with the following properties.
(1) λX,σ ,ϕ = (λ

X,σ ,ϕ
i )i∈[k] is a k-tuple of positive real numbers.

(2) μX,σ ,ϕ is a Borel probability measure on X.
(3) If (LX,σi ,ϕi )

∗ denotes the dual of the Ruelle operator, then, for each i ∈ [k],

(LX,σi ,ϕi )
∗(μX,σ ,ϕ) = λ

X,σ ,ϕ
i μX,σ ,ϕ .

The next result is the k-tuple version of Theorem 2.4.

THEOREM 4.3. A k-Ruelle dynamical system (X, σ , ϕ) satisfies Definition 4.2 if there
exists n ∈ N

k \ {0} such that (X, σn, cϕ(n)) satisfies the unique positive eigenvalue
condition of Definition 2.3.

Proof. Suppose that there is an n ∈ N
k \ {0} such that (X, σn, cϕ(n)), with ϕi = cϕ(ei),

is a triple that satisfies the unique positive eigenvalue condition of Definition 2.3.
Theorem 3.12 tells us that, for all i ∈ [k], LX,σ ei ,ϕi and LX,σn,cϕ(n) commute, which
implies that L∗

X,σ ei ,ϕi
and L∗

X,σn,cϕ(n) also commute, and that

(LX,σn,cϕ(n))
∗((LX,σi ,ϕi )

∗(μ)) = (LX,σi ,ϕi )
∗((LX,σn,cϕ(n))

∗(μ))
= (LX,σi ,ϕi )

∗(λμ) = λ(LX,σi ,ϕi )
∗(μ).

Hence, (LX,σi ,ϕi )
∗(μ) is an eigenmeasure of (LX,σn,cϕ(n))

∗ with eigenvalue λ. As we have
for all f ∈ C(X, R≥0) that∫

X

f d(LX,σi ,ϕi )
∗(μ) =

∫
X

LX,σi ,ϕi (f ) dμ ≥ 0,

it follows that (LX,σi ,ϕi )
∗(μ) is a non-negative measure on X. Furthermore, by the

surjectivity of σi , ∫
X

1X d(LX,σi ,ϕi )
∗(μ) =

∫
X

LX,σi ,ϕi (1X) dμ > 0,

where we denote by 1X the characteristic function of X. It follows that

(LX,σi ,ϕi )
∗(μ)∫

X

LX,σi ,ϕi (1X) dμ
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is a probability eigenmeasure of (LX,σn,cϕ(n))
∗ with eigenvalue λ. Since (X, σn, cϕ(n))

satisfies Definition 2.3, we must have(
λ,

(LX,σi ,ϕi )
∗(μ)∫

X

LX,σi ,ϕi (1X) dμ

)
= (λ, μ),

which yields

(LX,σi ,ϕi )
∗(μ) =

( ∫
X

LX,σi ,ϕi (1X) dμ
)
μ.

Now, if α = (αi)i∈[k] is a k-tuple in R>0, and ν a probability Borel measure on X such
that for all i ∈ [k],

(LX,σi ,ϕi )
∗(ν) = αiν,

then, by Theorem 3.12, we get, if we set α = (α1, . . . , αk),

(LX,σn,cϕ(n))
∗(ν) = αnν.

As αn > 0 and (X, σn, cϕ(n)) satisfies Definition 2.3, we also obtain (αn, ν) = (λ, μ),
so ν = μ. Hence, for all i ∈ [k],

αiμ =
( ∫

X

LX,σi ,ϕi (1X) dμ
)
μ,

which yields αi = ∫
X
LX,σi ,ϕi (1X) dμ for all i ∈ [k].

We will now give two examples of k-Ruelle dynamical systems.

Example 4.4. For k ∈ N>1, let X := Z
N>0
k be equipped with the product topology, where

Zk := Z/kZ. It is well known that the cylinder sets of X form a basis for the topology on
X; recall that every finite word α ∈ (Zk)m defines an associated cylinder setZ[α] by

Z[α] := {x ∈ X | (xj )j=1,...,m = α}.
Define a commuting k-tuple σ = (σi)i∈[k] of surjective local homeomorphisms on X by

for all i ∈ [k] for all x ∈ X : σi(x) := (xn+1 + (i − 1))n∈N>0 .

We want to verify Definition 2.5. To do so, we first check that σi is positively expansive
and exact for each i ∈ [k], and subsequently verify that ϕ is Hölder-continuous.

A straightforward calculation shows that, if we define U := {(x, y) ∈ X ×X | x1 =
y1}, then

�(X) ⊆ U =
⋃
i∈[k]

Z[i] ×Z[i].

To deduce that σi is positively expansive for each i ∈ [k], simply observe that if x, y ∈ X
are distinct, then (σm−1

i (x), σm−1
i (y)) /∈ U , where m := min({n ∈ N>0 | xn 	= yn}).

Now we will show that σi is exact for each i ∈ [k]. Let U ⊆ X be a non-empty open set.
Since the cylinder sets form a basis for the topology on X, there is a cylinder setZ[α] ⊆ U ,
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with |α| = m, for some m ∈ N>0. Then σmi [U ] ⊃ σmi [Z[α]] = X, which means that σi is
exact for each i ∈ [k].

Let d : X ×X → R≥0 denote the compatible metric on X defined by, for all x, y ∈ X,

d(x, y) := 2− min({n∈N>0 | xn 	=yn}),

where min(∅) := ∞ by convention.
Now let (ai)i∈[k] ∈ R

k and define ϕ : X → R by, for all i ∈ [k], for all x ∈ X,

ϕ(x) := ai ⇐⇒
k∑
n=1

xn = i − 1 (mod k).

Clearly, ϕ is continuous. Indeed, we note that the value of ϕ at x ∈ X depends only on the
first k components of x, so that if x, y ∈ X and d(x, y) < 2−k , then ϕ(x) = ϕ(y), so that
|ϕ(x)− ϕ(y)| = 0 in that case. One therefore computes, for all x, y ∈ X,

|ϕ(x)− ϕ(y)| ≤ 2k( max
i,j∈[k]

|ai − aj |)d(x, y),

which implies that ϕ is Hölder-continuous with respect to d .
Let (ci)i∈[k] ∈ R

k . Then, for all i, j ∈ [k] and for all x ∈ X,

(ϕ + ci1X)(σj (x))− (ϕ + cj1X)(σi(x))= (ϕ(σi(x))+ ci)− (ϕ(σj (x))+ cj )=ci − cj ,

the final equality holding because ϕ(σi(x)) = ϕ(σj (x)). Therefore, (X, (σi)i∈[k],
(ϕ + ci1X)i∈[k]) is a Ruelle dynamical system and, since the Ruelle triple (X, σi , ϕi)
satisfies the conditions of Definition 2.5 for each i ∈ [k], we conclude that (X, (σi)i∈[k],
(ϕ + ci1X)i∈[k]) satisfies the unique positive eigenvalue condition of Definition 2.3.

The next example exhibits a dynamical system on a non-Cantor space admitting a unique
solution to the positive eigenvalue problem.

Example 4.5. Let n = (ni)i∈[k] be a k-tuple, ni ∈ Z \ {0, ±1}, and define a commuting
k-tuple σ = (σi)i∈[k] of surjective local homeomorphisms on T by, for all i ∈ [k] and for
all z ∈ T, σi(z) := zni . The local homeomorphism σi is expansive for each i ∈ [k] by [29,
top of p. 176]. Now let U be a non-empty open subset of T. Then there exist α, β ∈ R such
that α < β and

{eiθ ∈ T | α < θ < β} ⊆ U .

Let i ∈ [k] and let m ∈ N be such that 2π ≤ m|ni |(β − α). Then

σmi [U ] ⊇ σmi [{eiθ ∈ T | α < θ < β}] = {eimniθ ∈ T | α < θ < β}
= {eiθ ∈ T | θ between mniα and mniβ} = T,

so σi is exact.
Let d denote the metric on T, defined by, for all α, β ∈ R,

d(eiα , eiβ) = inf{|α − (β + nπ)| : n ∈ Z}.
The metric d generates the standard topology on T.
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Define a k-tuple ϕ = (ϕi)i∈[k] in C(X, C) by, for all i ∈ [k], for all z ∈ T, ϕi(z) =
zni − z. A straightforward calculation shows that ϕi is Hölder-continuous with respect to
d for each i ∈ [k] and that the (C-valued) cocycle condition ϕi + ϕj ◦ σi = ϕj + ϕi ◦ σj
holds.

Now let f : C → R be a continuous additive map (e.g., f (z) = Re(z)). As f is then
Hölder-continuous with respect to the Euclidean metrics on C and R, f ◦ ϕi is also
Hölder-continuous with respect to d and, by the additivity of f , for every i, j ∈ [k],

(f ◦ ϕi)+ (f ◦ ϕj ) ◦ σi = f ◦ (ϕi + ϕj ◦ σi) = f ◦ (ϕj + ϕi ◦ σj )
= (f ◦ ϕj )+ (f ◦ ϕi) ◦ σj ,

so that (T, σ , (f ◦ ϕi)i∈[k]) is a Ruelle dynamical system. As the Ruelle triple
(T, σi , f ◦ ϕi) satisfies the conditions in Definition 2.5 for each i ∈ [k], we conclude
that (T, σ , (f ◦ ϕi)i∈[k]) has a unique eigenmeasure as in Definition 4.2.

Example 4.6. Fixing d ∈ N, where d > 1, define two commuting local homeomorphisms
σ1 and σ2 of T2 by, for all z1, z2 ∈ T,

σ1(z1, z2) := (zd1 , zd2 ), σ2(z1, z2) := (z1z
−1
2 , z1z2).

Since all the eigenvalues of the associated matrices Mσ1 := [
d 0
0 d

]
and Mσ2 := [ 1 −1

1 1

]
have modulus larger than one, σ1 and σ2 are toral endomorphisms that are positively
expansive and exact (see [19, Proof of Theorem 1]). In this case, we can choose the
functions ϕj := cj1T2 to be constant functions. Therefore, the Ruelle triple (T2, σi , ci1T2)

satisfies the conditions of Definition 2.5 for each i ∈ {1, 2}.

The next example is a combination of Examples 4.5 and 4.4.

Example 4.7. Let X := Z
N>0
k with k ∈ N>1. Fixing I ∈ [k] and J ∈ N>1, define local

homeomorphisms σI , σJ : X × T → X × T by the following formula. For all (x, z) ∈
X × T, set

σI (x, z) := ((xn+1 + (I − 1))n∈N>0 , z),

σJ (x, z) := (x, zJ ).

It is clear that σI and σJ commute and one calculates that the composition σI ◦ σJ is
positively expansive and exact. By proceeding as in Examples 4.5 and 4.4, and using
Theorem 4.3 with k = 2 and (n1, n2) = (1, 1), the resulting Ruelle triple satisfies the
conditions in Definition 2.5.

Example 4.8. We will now compute Ruelle eigenvalues and eigenmeasures for the
k-Ruelle dynamical system (X, σ , ϕ), with X = ∏

j∈N{0, 1}, where {0, 1} = Z2, and
σ = (σ1, σ2) is defined by, for x = (xn)n∈N,

σ1(x) := (xn+1)n∈N, σ2(x) := (xn + 1)n∈N.
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Moreover, for a, b, c ∈ R, define ϕ = (ϕ1, ϕ2) by the following equation, where below
addition is considered modulo two:

ϕ1(x) :=
{
a if x0 + x1 = 0,

b if x0 + x1 = 1,
ϕ2(x) := c. (12)

Firstly, it is a simple exercise to determine that the eigenvalues λ1, λ2 of the associated
Ruelle operator are given by λ1 = ea + eb and λ2 = ec, and thatμ(Z(0)) = μ(Z(1)) = 1

2 .
Moreover, the eigenmeasure μ on all of the cylinder sets can be computed by using

induction, thus proving that μ is defined on the cylinder sets of X according to the
following probability diagram and formula. We leave the details of this calculation to the
reader.

0

0

0

ea

ea+eb

1

eb

ea+eb

ea

ea+eb

1

0

eb

ea+eb

1

ea

ea+eb

eb

ea+eb

1
2

1

0

0

ea

ea+eb

1

eb

ea+eb

eb

ea+eb

1

0

eb

ea+eb

1

ea

ea+eb

ea

ea+eb

1
2

μ(Z(x0x1 · · · xn)) = 1
2

n−1∏
j=0

eψ(xj+xj+1)

ea + eb
, (13)

where ψ : {0, 1} → {a, b} is defined by ψ(0) := a and ψ(1) := b.
In the above formula, note that when n = 0, the resulting product is empty and so by

convention equal to 1. Therefore, μ(Z(x0)) = 1
2 for all x0 ∈ {0, 1}.

5. The Radon–Nikodym problem and KMS states
This section addresses the Radon–Nikodym problem for groupoids associated to a finite
family of commuting local homeomorphisms of a compact metric space, which provides
a link between quasi-invariant measures for these groupoids and KMS states for a
generalized gauge dynamics on the associated C∗-algebra. As a result, there will be a
heavier emphasis on measure theory and topology than the previous sections.

Definition 5.1. (Pull-back and quasi-invariant measures) Let μ be a Borel probability
measure defined on the Borel sets of the compact metric space X with associated
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Borel σ -algebra B(X) and let σ = (σi)i∈[k] be a commuting k-tuple of surjective local
homeomorphisms on X. Define regular Borel measures s∗μ and r∗μ on G(X, σ) by, for
all B ∈ B(G(X, σ)),

(s∗μ)(B) :=
∫
X

( ∑
γ∈G(X,σ)x

1B(γ )
)

dμ(x),

(r∗μ)(B) :=
∫
X

( ∑
γ∈G(X,σ)x

1B(γ )
)

dμ(x),

where we denote by G(X, σ)x (respectively G(X, σ)x) the set of arrows in G(X, σ) with
source x (respectively range x). We then say that μ is quasi-invariant for G(X, σ) if s∗μ
and r∗μ are equivalent to one another, in which case a Radon–Nikodym derivative for μ
is any measurable function on G(X, σ) in the same equivalence class (with respect to the
equivalence relation module sets of measure zero) as dr∗μ/ds∗μ [22, §3].

The following lemma will be used in the proof of Theorem 5.3. Its proof follows from
the definition of local homeomorphism and the fact that X is compact.

LEMMA 5.2. Let T : X → Y be a local homeomorphism of topological spaces from the
compact metric space X to the metric space Y . Then supy∈Y Card(T −1[{y}]) < ∞.

The following theorem is a generalization of Proposition 4.2 of [24] from
Deaconu–Renault groupoids to groupoids G(X, σ) and characterizes the solutions of
the Radon–Nykodym problem in this general setting. Its proof is quite technical, although
in part it is possible to rely on the steps given in Renault’s proof in [24].

THEOREM 5.3. Let (X, σ , ϕ) be a k-Ruelle dynamical system, which satisfies the con-
ditions of Definition 4.2, and μ a Borel probability measure on X. Then the following
statements are equivalent.
(1) μ is quasi-invariant for G(X, σ) and the Radon–Nikodym derivative dr∗μ/ds∗μ is

the continuous function ecX,σ ,ϕ on G(X, σ).
(2) (LX,σi ,ϕi )

∗(μ) = μ for each i ∈ [k].

Proof. Assume that (1) holds and fix i ∈ [k]; then μ is quasi-invariant for the subgroupoid

G(X, σi) := {(x, �ei , y) | x, y ∈ X, m, n ∈ N, � = m− n, σmi (x) = σni (y)}
of G(X, σ) determined by the singly generated system (X, σi). Thus, by Proposition 4.2
of [24] and using its notation, we have that tLϕi (μ) = μ, which in our notation means that
(LX,σi ,ϕi )

∗(μ) = μ. So, (1) �⇒ (2).
Conversely, assume that (2) holds. We first briefly explain why μ is quasi-invariant for

G(X, σ). A straightforward calculation shows that for all i ∈ [k], f ∈ C(X, R), and x ∈ X,
we have ∫

X

f d((σi)∗μ) =
∫
X

fLX,σi ,ϕi (1X) dμ.
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The Riesz representation theorem then implies that for all A ∈ B(X),

((σi)∗μ)(A) =
∫
X

1ALX,σi ,ϕi (1X) dμ,

which yields (σi)∗μ = μ ◦ σ−1
i � μ for i ∈ [k]. On the other hand, μ � μ ◦ σ−1

i for
i ∈ [k] by Proposition 4.2 of [24]. By Lemma 5.2, we now get that for all B ∈ B(G(X, σ))
and some N ∈ N>0,

μ(s[B]) ≤ (s∗μ)(B) ≤ Nμ(s[B]),

which implies that μ(s[B]) = 0 if and only if (s∗μ)(B) = 0; using a similar technique, we
can also prove that μ(r[B]) = 0 if and only if (r∗μ)(B) = 0. Finally, by the monotonicity
and countable additivity of μ, we have for all B ∈ B(G(X, σ)) that

μ(s[B]) ≤ μ

( ⋃
m,n∈Nk

(σm)−1[σn[r[B]]]
)

= 0,

so that ifμ(r[B]) = 0, thenμ(s[B]) = 0, and the same method shows that ifμ(s[B]) = 0,
then μ(r[B]) = 0. All of these facts taken together imply that for a fixed B ∈ B(G(X, σ)),
we have (r∗μ)(B) = 0 if and only if (s∗μ)(B) = 0, so r∗μ and s∗μ are equivalent Borel
measures on G(X, σ). Therefore, μ is quasi-invariant for G(X, σ).

Now, by (2), we have for all f ∈ C(X, R) and every i ∈ [k], that∫
X

f dμ =
∫
X

f d(LX,σi ,ϕi )
∗(μ) =

∫
X

LX,σi ,ϕi (f ) dμ

=
∫
X

( ∑
y∈σ−1

i [{x}]
eϕi(y)f (y)

)
dμ(x)

=
∫
X

( ∑
γ∈G(X,σ)x

eϕi(r(γ ))f (r(γ ))1Si (γ )
)

dμ(x)

=
∫
G(X,σ)

eϕi(r(γ ))f (r(γ ))1Si (γ ) d(s∗μ)(γ )

=
∫
G(X,σ)

ecX,σ ,ϕ(γ )f (r(γ ))1Si (γ ) d(s∗μ)(γ )

=
∫
G(X,σ)

f (r(γ ))1Si (γ )e
cX,σ ,ϕ(γ ) d(s∗μ)(γ ).

From the above equations, it follows that the Radon–Nikodym derivative of r∗μ with
respect to s∗μ must be equal to ecX,σ ,ϕ(γ ) for almost all γ ∈ Si . By [22, Proposition I.3.3],
D is a measurable R \ {0}-valued 1-cocycle on G(X, σ), and D =a.e. e

cX,σ ,ϕ , which is
continuous by assumption. Therefore, ecX,σ ,ϕ is a continuous Radon–Nikodym cocycle
associated to the quasi-invariant measure μ and we have established (2) �⇒ (1).

We now illustrate a particular problem of existence of KMS states arising in the context
of G(X, σ). In the following example there are no KMS states associated to the dynamics,
even though one of the associated local homeomorphisms acting on X is expansive and
exact.
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Example 5.4. Recall that the Cuntz algebra ON , where N ≥ 2, is the C∗-algebra associ-
ated to the groupoid arising from the action of the standard shift σN on XN := ∏

j∈N[N].
In [21], Olesen and Pedersen proved that for N ≥ 2 there is exactly one KMS state for
ON with respect to the canonical gauge action αN of R on ON associated to the cocycle
determined by ϕN = 1. This KMS state arises at the inverse temperature value β = ln(N).

Now take X = X2 ×X3 and define σ = (σ2, σ3), where σj is the standard shift on Xj ;
also, set ϕ = (ϕ2, ϕ3)with ϕ2 = 1 and ϕ3 = 1. Note that the shift corresponding to (1, 1) ∈
N

2 is expansive and exact. Consider the automorphism group α = α2 ⊗ α3 defined on
the C∗-algebra corresponding to (X, σ , ϕ), which is the tensor product O2 ⊗ O3 of the
C∗-algebras O2 and O3. Suppose that for some β ∈ R, there is a state ω on this tensor
product C∗-algebra that satisfies the KMS condition for the automorphism group α. Then,
by the Olesen–Pedersen result, ω restricted to the C∗-subalgebra O2 ⊗ C IdO3 satisfies the
KMS condition for α only at β = ln(2), whereas ω restricted to the subalgebra C IdO2 ⊗O3

satisfies the KMS condition for α only at β = ln(3). Therefore, by the aforementioned
result of Olesen and Pedersen [21], there cannot be any KMS states for the C∗-algebra
O2 ⊗ O3 associated to (X, σ , ϕ) for the automorphism group α = α1 ⊗ α2.

We are now in a position to introduce the generalized gauge dynamics of a k-Ruelle
dynamical system, which satisfies the conditions of Definition 4.2.

Definition 5.5. (Generalized gauge dynamics) The generalized gauge dynamics of a
k-Ruelle dynamical system (X, σ , ϕ), which satisfies the conditions of Definition 4.2, is
by definition the R-dynamical system (C∗(G(X, σ)), αX,σ ,ϕ) defined by

(α
X,σ ,ϕ
t (f ))(γ ) := eitcX,σ ,ϕ(γ )f (γ )

for all f ∈ Cc(G(X, σ)), γ ∈ G(X, σ), and t ∈ R, where here we are implicitly using the
canonical embedding of Cc(G(X, σ)) into C∗

r (G(X, σ)).

The following result may be found in [22]; see also the discussion preceding
Proposition 3.2 of [17].

PROPOSITION 5.6. [22] Let (X, σ , ϕ) be a k-Ruelle dynamical system that satisfies the
conditions of Definition 4.2 and let β ∈ R. Then, for every quasi-invariant measure μ for
(X, σ) with continuous Radon–Nikodym derivative e−βcX,σ ,ϕ , there exists a KMSβ -state ω
for the generalized gauge dynamics of (X, σ , ϕ) that is uniquely determined by

ω(f ) =
∫
X

f (x, 0, x) dμ

for all f ∈ Cc(G(X, σ)).

It is not necessarily the case that for every KMSβ -state for the generalized gauge
dynamics of a k-Ruelle dynamical system, which satisfies the conditions of Definition 4.2,
(X, σ , ϕ) originates from a quasi-invariant measure for (X, σ) with e−βcX,σ ,ϕ as a con-
tinuous Radon–Nikodym derivative, as described above. However, Kumjian and Renault
showed in [17, Proposition 3.2] that this is indeed the case if c−1

X,σ ,ϕ[{0}] is a principal
subgroupoid of G(X, σ).

Using Proposition 5.6, we can now prove the following result.
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THEOREM 5.7. Let (X, σ , ϕ) be a k-Ruelle dynamical system, which has a unique
eigenmeasure as in Definition 4.2, and β ∈ R \ {0} be such that (LX,σi ,βϕi )

∗(μ) = μ for
each i ∈ [k], where μ is an eigenmeasure for the corresponding Ruelle operator with
eigenvalue one; see Definition 2.1(2). Then there exists a KMSβ state as in Proposition 5.6
for the generalized gauge dynamics corresponding to (X, σ , βϕ).

Even if the k-Ruelle dynamical system does not satisfy the conditions of Definition 4.2
so that there does not exist an eigenmeasure for the dual of the Ruelle operator with
eigenvalue one, we can sometimes modify the 1-cocycle ϕ to obtain a new 1-cocycle ς
that does satisfy those hypotheses. The next result was motivated by [12, Proposition 4.4],
which was in turn based on [18, Remark 5.25 and Proposition 5.8].

COROLLARY 5.8. Let (X, σ , ϕ) be a k-Ruelle dynamical system satisfying the conditions
in Definition 4.2. For i ∈ [k] and x ∈ X, define

ςi(x) := ln(λX,σ ,ϕ
i )− ϕi(x) and ς := (ςi)i∈[k].

Then (X, σ , ς) is a k-Ruelle dynamical system and μX,σ ,ς is a quasi-invariant measure for
(X, σ) with continuous Radon–Nikodym derivative e−cX,σ ,ς . Moreover, μX,σ ,ς = μX,σ ,ϕ ,
so that μX,σ ,ς corresponds by Proposition 5.6 to a KMS state for the generalized gauge
dynamics of (X, σ , ς).

Proof. Since the (ϕi)i∈[k] satisfies the cocycle condition, it is easily checked that
(ςi)i∈[k] = (ln(λX,σ ,ϕ

i )− ϕi)i∈[k] satisfies the cocycle condition, so that (X, σ , ς) is a
k-Ruelle dynamical system. Similarly, (X, σ , −ς) is a k-Ruelle dynamical system too.

Suppose that (αi)i∈[k] is a k-tuple in N>0 and ν is a Borel probability measure on X
such that (LX,σi ,−ςi )∗(ν) = αiν for all i ∈ [k]. Then, for each i ∈ [k], the equalities

LX,σi ,−ςi = L
X,σi ,ϕi−ln(λX,σ ,ϕ

i )
= e− ln(λX,σ ,ϕ

i )LX,σi ,ϕi = 1

λ
X,σ ,ϕ
i

LX,σi ,ϕi

imply that

(LX,σi ,ϕi )
∗(ν) = (λ

X,σ ,ϕ
i LX,σi ,−ςi )∗(ν) = λ

X,σ ,ϕ
i (LX,σi ,−ςi )∗(ν) = λ

X,σ ,ϕ
i αiν.

As (X, σ , ϕ) satisfies Definition 2.3, it follows that ν = μX,σ ,ϕ and αi = 1 for each i ∈ [k],
so (X, σ , −ς) satisfies Definition 2.3 too. Moreover, by Definition 4.2, we have μX,σ ,ς =
μX,σ ,ϕ .

Now, as (LX,σi ,−ςi )∗(μX,σ ,ϕ) = μX,σ ,ϕ for all i ∈ [k], Theorem 5.3 tells us that
μX,σ ,ϕ is quasi-invariant for (X, σ)with continuous Radon–Nikodym derivative ecX,σ ,−ς =
e−cX,σ ,ς . Therefore, by Proposition 5.6, μX,σ ,ϕ corresponds to a KMS state for the
generalized gauge dynamics of (X, σ , ς).

The following corollary is thus clear.

COROLLARY 5.9. Let (X, σ , ϕ) be a k-Ruelle dynamical system, which satisfies the
conditions of Definition 4.2, and let β ∈ R \ {0}. Define (with notation as in Definition 4.2),
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for i ∈ [k] and x ∈ X,

ςi(x) := ln(λX,σ ,ϕ
i )− ϕi(x)

β
and ς := (ςi)i∈[k].

Then (X, σ , ς) also satisfies the conditions of Definition 4.2 and μX,σ ,ς = μX,σ ,ϕ is a
quasi-invariant measure for (X, σ) with continuous Radon–Nikodym derivative e−βcX,σ ,ς .
Consequently, μX,σ ,ϕ corresponds by Proposition 5.6 to a KMSβ state for the generalized
gauge dynamics of (X, σ , ς).

6. KMS states associated to higher-rank graphs
In this section, we shall use the results obtained thus far to answer existence and uniqueness
questions on KMS states for generalized gauge dynamics associated to finite higher-rank
graphs.

In what follows, Nk is viewed as a countable category with a single object 0 and
composition of morphisms implemented by +.

Definition 6.1. (k-Graphs [15]) A higher-rank graph � of rank k or, more briefly, a
k-graph is a countable category� equipped with a functor d : � → N

k—called the degree
functor—such that the factorization property holds: for every λ ∈ � and m, n ∈ N

k such
that d(λ) = m+ n, there are unique μ, ν ∈ � that satisfy the following conditions:
(1) d(μ) = m and d(ν) = n;
(2) λ = μν.

For notational convenience, we will adopt the following k-graph-theoretic terminology.
Given a k-graph � with degree functor d , for each n ∈ N

k , let �n := d−1[{n}]. The
elements of �0 are called the vertices of � and it can be shown that Obj(�) = �0. The
elements of �ei , for ei a canonical generator of Nk , are called the edges of �. Also, let

v� :={λ ∈ � | r(λ)=v}, v�n :={λ ∈ �n | r(λ)=v},
v�w :={λ ∈ � | s(λ)=w and r(λ)=v}, v�nw :={λ ∈ �n | s(λ)=w and r(λ)=v}.

A k-graph� is called finite if Card(�n) < ∞ for all n ∈ N
k;� is said to be source-free

if v�n 	= ∅ for all n ∈ N
k and v ∈ �0; and � is said to be row-finite if v�n is finite for

all n ∈ N
k and v ∈ �0.

Moreover, a k-graph morphism from a k-graph � to another �′ is a degree-preserving
functor f : � → �′.

Definition 6.2. (Strong connectivity and primitivity [1, 15, 16]) Let � be a k-graph. Then
� is said to be strongly connected if v�w 	= ∅ for all v, w ∈ �0, while � is said to be
primitive if there is an n ∈ N

k \ {0} such that v�nw 	= ∅ for all v, w ∈ �0. Evidently,
primitivity is a stronger condition than strong connectivity.

Remark 6.3. Note that Nk may itself be regarded as a k-graph with one vertex. It is called
the trivial k-graph and is both finite and primitive.
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Example 6.4. (See Example 1.7(ii) of [15]) Consider the countable category �k whose
underlying set is

�k := {(m, n) ∈ N
k × N

k | m ≤ n}
and whose range map, source map, and morphisms are defined as follows.
• If (m, n) ∈ �k , then s(m, n) := (n, n) and r(m, n) := (m, m), so that ((k, l), (m, n)) ∈

�2
k is composable if and only if l = m.

• If (l, m), (m, n) ∈ �k , then (l, m)(m, n) := (l, n).
If we equip �k with the degree functor d : �k → N

k defined by d(m, n) := n−m for
(m, n) ∈ �k , then �k is a k-graph. Note that �k is both source-free and row-finite but
neither finite nor strongly connected.

For the remainder of this section, we shall make the following standing assumptions:

The k-graph � is source-free, finite, primitive, and non-empty. (14)

We will now detail more k-graph structures.

Definition 6.5. (Infinite path space [15]) Let � be a k-graph satisfying the standing
assumptions of (14). The infinite path space of �, denoted by �∞, is defined by

�∞ := {f : �k → � | f is a k-graph morphism}.
As � is source-free and finite, �∞ becomes a non-empty compact Hausdorff space when
given the topology generated by the base consisting of cylinder sets, that is, non-empty
compact subsets of the formZ(λ) for all λ ∈ �, where

Z(λ) := {x ∈ �∞ | x(0, d(λ)) = λ}.
We can then define a commuting k-tuple σ = (σi)i∈[k] of local homeomorphisms of

�∞ by setting, for all i ∈ [k], x ∈ �∞, and (m, n) ∈ �k ,
[σi(x)](m, n) := x(m+ ei , n+ ei ).

We call the k-tuple σ the shift on � and it is easy to see that, for all l ∈ N
k , x ∈ �∞, and

(m, n) ∈ �k ,
[σ l(x)](m, n) = x(m+ l, n+ l).

Furthermore, it can be shown that σi is surjective for each i ∈ [k]. We refer the reader to
[15] for details.

We now state the following lemma, whose standard proof we omit; see, for example,
[11, Proposition 2.15].

LEMMA 6.6. Let � be a k-graph satisfying the standing assumptions of (14). Define ρ� :
�∞ ×�∞ → R≥0, where, for all x, y ∈ �∞, we set ρ�(x, y) := 2−Nxy with

Nxy := min({n ∈ N | x(np, (n+ 1)p) 	= y(np, (n+ 1)p)}).
Here, we have arbitrarily chosen p ∈ N

k to satisfy (1)i∈[k] ≤ p. Furthermore, min(∅) :=
∞ by convention. Then ρ� is a metric on �∞ compatible with the cylinder set topology.
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LEMMA 6.7. Let � be a k-graph satisfying the standing assumptions of (14). For any
p ∈ Nk satisfying (1)i∈[k] ≤ p, the local homeomorphism σp is positively expansive and
exact.

Proof. If x, y ∈ �∞ are distinct, then x(np, (n+ 1)p) 	= y(np, (n+ 1)p) for some n ∈
N. From this, one easily verifies that ρ�((σp)n(x), (σp)n(y)) = 1. Hence, σp is positively
expansive.

To prove exactness, for fixed λ ∈ �, we will show that σnp[Z(λ)] = �∞ for some
n ∈ N. For, as � is primitive, there exists q ∈ N

k \ {0} such that v�qw 	= ∅ for all
v, w ∈ �0. Now choose n ∈ N such that d(λ)+ q ≤ np and y ∈ �∞. As� is source-free,
there exists μ ∈ s(λ)�np−d(λ)−q . Next, for any ν ∈ s(μ)�qy(0, 0), (λ, μ, ν) forms a
composable triple. Since y(0, 0) = s(λμν), Proposition 2.3 of [15] implies that there exists
x ∈ �∞ such that y = σd(λμν)(x) = σnp(x) with

λμν = x(0, np) = x(0, d(λ)) x(d(λ), np − q) x(np − q, np).

By the factorization property, we get x(0, d(λ)) = λ, so x ∈ Z(λ). Hence, y ∈ σnp[Z(λ)]
and, since y ∈ �∞ is arbitrary, we obtain σnp[Z(λ)] = �∞. Therefore, σnp is exact.

As for Ruelle dynamical systems, there is a version of the RPF theorem for k-graphs.

THEOREM 6.8. Let � be a k-graph satisfying the standing assumptions of (14). Assume
that ϕ = (ϕi)i∈[k] is a k-tuple of continuous real-valued functions on �∞ satisfying the
cocycle condition and let cϕ denote the associated 1-cocycle. If there exists a p ∈ N

k with
(1)i∈[k] ≤ p such that cϕ(p) : �∞ → R is Hölder-continuous with respect to ρ�, then the
triple (�∞, σ , ϕ) satisfies the conditions in Definition 4.2.

Proof. By Lemma 6.6, and Lemma 6.7, the Ruelle triple (�∞, σp, cϕ(p)) satisfies the
conditions in Definition 2.5, so, by Theorems 2.7 and 4.3, the result follows.

Note that Proposition 4.3, Theorem 2.4 and Theorem 6.8 will guarantee the existence
of a Borel measure μϕ on �∞. We will now establish some useful properties of this
measure.

PROPOSITION 6.9. Let � be a k-graph satisfying the standing assumptions of (14).
Suppose that (�∞, σ , ϕ) with ϕ = (ϕi)i∈[k] a k-tuple of continuous real-valued functions
on �∞ satisfying the cocycle condition. Let cϕ denote the associated 1-cocycle. If
(�∞, σ , ϕ) is a k-Ruelle dynamical system satisfying the conditions in Definition 4.2,
then, for all λ ∈ �,

μϕ(Z(λ)) = (λϕ)−d(λ)
∫
Z(s(λ))

ecϕ(d(λ)) dμϕ(x),

where to simplify the notation we denote by λϕ (respectively μϕ) the k-tuple of eigenvalues
(respectively the eigenmeasure) associated to the k-Ruelle dynamical system (�∞, σ , ϕ).
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Proof. Fix an arbitrary λ ∈ �. For every i ∈ [k], we have (L�∞,σi ,ϕi )
∗(μϕ) = λ

ϕ
i μ

ϕ .
Hence,

(L�∞,σd(λ),cϕ(d(λ)))
∗(μϕ) = (λϕ)d(λ)μϕ ,

so, integrating 1Z(λ) ∈ C(�∞, R) with respect to the equal measures on the left- and
right-hand sides of the above equation and using the definition of (L�∞,σd(λ),cϕ(d(λ)))

∗
yields ∫

�∞

[ ∑
y∈�∞

σd(λ)(y)=x

e[cϕ(d(λ))](y)1Z(λ)(y)
]

dμϕ(x) = (λϕ)d(λ)μϕ(Z(λ)).

If x ∈ �∞ \Z(s(λ)), then there does not exist a y ∈ Z(λ) such that σd(λ)(y) = x, so∑
y∈�∞

σd(λ)(y)=x

e[cϕ(d(λ))](y)1Z(λ)(y) = 0.

It follows that ∫
�∞

[ ∑
y∈�∞

σd(λ)(y)=x

e[cϕ(d(λ))](y)1Z(λ)(y)
]

dμϕ(x)

=
∫
Z(s(λ))

[ ∑
y∈�∞

σd(λ)(y)=x

e[cϕ(d(λ))](y)1Z(λ)(y)
]

dμϕ(x).

Given an x ∈ Z(s(λ)), there exists precisely one y ∈ Z(λ) such that σd(λ)(y) = x,
namely, λx. Consequently,∫

Z(s(λ))

[ ∑
y∈�∞

σd(λ)(y)=x

e[cϕ(d(λ))](y)1Z(λ)(y)
]

dμϕ(x)

=
∫
Z(s(λ))

e[cϕ(d(λ))](λx)1Z(λ)(y) dμϕ(x).

Therefore, ∫
Z(s(λ))

e[cϕ(d(λ))](λx) dμϕ(x) = (λϕ)d(λ)μϕ(Z(λ))

and a simple rearrangement of terms yields the proposition.

We list an important positivity property of the measure μϕ in the event that (�∞, σ , ϕ)
satisfies the conditions in Definition 4.2.

COROLLARY 6.10. Let � be a k-graph satisfying the standing assumptions of (14).
Suppose that (�∞, σ , ϕ) is a k-Ruelle dynamical system that satisfies the conditions of
Definition 4.2. Then μϕ(Z(λ)) > 0 for every λ ∈ �.
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Proof. Suppose by way of contradiction that there exists λ ∈ � such that μϕ(Z(λ)) = 0.
By Lemma 6.7, if (1)i∈[k] ≤ p, then σp is positively expansive and exact. But then there
exists n ∈ N such that σnp[Z(λ)] = �∞. We now use Proposition 4.2 of [24] again to
deduce that

μϕ(�∞) = μϕ(σnp[Z(λ)]) = μϕ(Z(λ)) = 0.

Since μϕ(�∞) = 1, this gives us a contradiction.

Recall that if � is a k-graph and H is an abelian group, a map h : � → H is called a
categorical 1-cocycle if h(λμ) = h(λ)+ h(μ) whenever (λ, μ) is composable. In the case
when H = R and the image of h lies entirely inside the non-negative real numbers, h was
called an ‘R+-functor’ in [12].

Next, observe that, if h is a categorical 1-cocycle taking values in R, then a routine
calculation shows that the k-tuple of functions ϕh,θ := (ϕ

h,θ
i )i∈[k], where ϕh,θ

i : �∞ → R

is defined for all i ∈ [k] and x ∈ �∞ by

ϕ
h,θ
i (x) = −θh(x(0, ei )), (15)

satisfies the cocycle condition and therefore determines a groupoid 1-cocycle onG(�∞, σ)
taking values in R by Lemma 3.12; we will call this cocycle cϕh,θ . Hence, (�∞, σ , cϕh,θ )

is a k-Ruelle dynamical system.
Example 5.4 has shown that an automorphism group on a C∗-algebra coming from

(X, σ , ϕ) need not have a KMS state. However, by using Corollary 5.8 and other results,
we can construct a new cocycle from ϕ giving rise to a different dynamics for which a KMS
state does exist. The following theorem was first proved in a different way in Proposition
4.4 in [12].

THEOREM 6.11. [12] Let � be a k-graph satisfying the standing assumptions of (14). Let
h : � → R be a non-negative categorical 1-cocycle and let θ be a positive real number.
Let ϕh,θ = (ϕ

h,θ
i )i∈[k] be as defined in equation (15). Then (�∞, σ , ϕh,θ ) is a k-Ruelle

dynamical system that satisfies the conditions in Definition 4.2 and, for each β ∈ R \ {0},
so does (

�∞, σ ,
(

1
β
(ln(λϕ

h,θ

i )− ϕ
h,θ
i )

)
i∈[k]

)
.

The associated generalized state ω on C∗
r (G(�∞, σ)) ∼= C∗(�) uniquely determined by

for all f ∈ Cc(G(�∞, σ)) : ω(f ) =
∫
�∞

f (x, 0, x) dμϕ
h,θ
(x)

is a KMSβ state for the dynamics determined by the cocycle ς given by

ς :=
(

1
β
(ln(λϕ

h,θ

i )− ϕ
h,θ
i )

)
i∈[k]

;

moreover, μς = μϕ
h,θ

.
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Proof. Fix an arbitrary n ∈ N
k . We will first prove that the function f : �∞ → R defined

by, for all x ∈ �∞,

f (x) := h(x(0, n))

is Hölder-continuous with respect to ρ�. As�n is finite, h clearly achieves both a minimum
valuem and a maximum valueM on�n. ChooseN ∈ N such that n ≤ Np with (1)i∈[k] ≤
p. For x, y ∈ �∞ such that ρ�(x, y) < 1/2N , for all j ∈ [N],

x(jp, (j + 1)p) = y(jp, (j + 1)p),

so x(0, Np) = y(0, Np), which yields x(0, n) = y(0, n) by the factorization property.
Consequently, for all x, y ∈ �∞,

|f (x)− f (y)| = |h(x(0, n))− h(y(0, n))| ≤ N(M −m)ρ�(x, y).

As n ∈ N
k is arbitrary, it follows that ϕh,θ

i is Hölder-continuous with respect to ρ� for each
i ∈ [k].

A straightforward calculation demonstrates that cϕh,θ (p) is Hölder-continuous with
respect to ρ�; therefore, by applying Theorem 6.8, we conclude that (�∞, σ , ϕh,θ ) satisfies
the conditions in Definition 4.2.

Applying Theorem 6.8, we conclude that (�∞, σ , ϕh,θ ) satisfies the conditions in
Definition 4.2.

It now follows from Corollary 5.8 that(
�∞, σ ,

(
1
β
(ln(λϕ

h,θ

i )− ϕ
h,θ
i )

)
i∈[k]

)

also satisfies the conditions in Definition 4.2, with μς = μϕ
h,θ

, by Corollary 5.8. By
Proposition 5.6, the state ω on C∗(G(�∞, σ)) ∼= C∗(�) that is uniquely determined by,
for all f ∈ Cc(G(�∞, σ)),

ω(f ) =
∫
�∞

f (x, 0, x) dμϕ
h,θ
(x),

with notation as in Proposition 6.9, is a KMSβ state for the generalized gauge dynamics of
this particular dynamical system.

The following corollary gives more information about the eigenmeasure μϕ
h,θ

and
relates it to the eigenvalues of the Ruelle–Perron–Frobenius operator.

COROLLARY 6.12. Let � be a k-graph satisfying the standing assumptions of (14) and let
h : � → R≥0, θ ∈ R \ {0}, and ϕh,θ be as in Theorem 6.11; let cϕh,θ denote the associated
cocycle. Then, for all λ ∈ �,

μϕ
h,θ
(Z(λ)) = (λϕ

h,θ
)−d(λ)e−θh(λ)μϕh,θ

(Z(s(λ))),
where ϕh,θ is the k-tuple of elements of C(�∞, R) that is defined for all i ∈ [k] and x ∈
�∞ by

ϕ
h,θ
i (x) := −θh(x(0, ei )).
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Proof. We already know from Theorem 7.9 that for all n ∈ N
k and x ∈ �∞,

cϕh,θ (n) = −θh(x(0, n)).

Hence, for every λ ∈ �, if x ∈ Z(s(λ)), we have

[cϕh,θ (d(λ))](λx) = −θh((λx)(0, d(λ))) = −θh(λ).
Consequently, by Proposition 6.9, for all λ ∈ �,

μϕ
h,θ
(Z(λ)) = (λϕ

h,θ
)−d(λ)

∫
Z(s(λ))

e
[c
ϕh,θ (d(λ))](λx) dμϕ

h,θ
(x)

= (λϕ
h,θ
)−d(λ)

∫
Z(s(λ))

e−θh(λ) dμϕ
h,θ
(x)

= (λϕ
h,θ
)−d(λ)e−θh(λ)

∫
Z(s(λ))

1 dμϕ
h,θ
(x)

= (λϕ
h,θ
)−d(λ)e−θh(λ)μϕh,θ

(Z(s(λ))).
The corollary is therefore proven.
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