Bull. Austral. Math. Soc. Vol. 44 (1991) [501-509]

DUALITY IN NONCONVEX VECTOR MINIMUM PROBLEMS

T.R. GULATI AND NADIA TALAAT

A nonlinear vector minimum problem is considered. Duality theorems are proved for Mond-Weir type dual and their application to a certain nonlinear fractional vector minimum problem is discussed.

1. Introduction

Consider the vector minimum problem:

(P) minimise
$$f(x)$$
 subject to $g(x) \leq 0$

where $f: \mathbb{R}^n \to \mathbb{R}^k$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are differentiable functions. Wolfe and Mond-Weir type duality for (P) has been discussed in several papers [1, 7, 8, 9, 10] using different concepts of optimality, namely: weak efficient (or weak minimum), efficient (or nondominated or noninferior or Pareto optimal) and properly efficient solutions.

Weir [8] proved weak and strong duality theorems for Mond-Weir [5] type dual of (P). In the strong duality theorem he obtained an efficient solution of the dual from a properly efficient solution of the primal problem. Bector et al [1] also discussed a similar result under stronger convexity assumptions. The duality results in Singh [7] and Weir and Mond [10] are for efficient and weak efficient solutions respectively. The converse duality theorems in [1, 7] are proved using Kuhn-Tucker type necessary conditions of Singh [6] and therefore need a constraint qualification.

In the present paper we also discuss duality results for Mond-Weir type dual of (P). Our results are different than those in [1, 7, 8, 10]. The strong duality theorem provides a properly efficient solution of the dual while in the converse duality theorem a weak efficient solution of the dual gives a properly efficient solution of the primal problem. Moreover, the converse duality theorem is proved using Fritz John necessary conditions [2] which do not need a constraint qualification.

Received 22 December 1990

The second author would like to thank the Government of India for providing her financial support under Indo-ARE Cultural Exchange Programme.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

2. PRELIMINARIES

The following convention of vectors in \mathbb{R}^n will be followed throughout this paper: $x \leq y \Leftrightarrow x_i \leq y_i$, i = 1, 2, ..., n; $x \leq y \Leftrightarrow x \leq y$, $x \neq y$; $x < y \Leftrightarrow x_i < y_i$, i = 1, 2, ..., n. $\nabla g(x)$ will denote the $m \times n$ Jacobian matrix of g at x, the index set $K = \{1, 2, ..., k\}$ and $K_i = K - \{i\}$. For other notations and definitions we refer to Mangasarian [4].

Geoffrion [3] introduced the following scalar parametric problem:

(
$$P_{\lambda}$$
) minimise $\lambda^T f(x)$ subject to $g(x) \leq 0$

and related its optimal solution to a properly efficient solution of (P) as follows:

LEMMA 1. Let $\lambda > 0$ be fixed. If \overline{x} is an optimal solution of (P_{λ}) , then \overline{x} is a properly efficient solution of (P).

The Comprehensive Theorem in Geoffrion [3] includes the following necessary and sufficient conditions for problem (P):

LEMMA 2. (Kuhn-Tucker type necessary conditions). Let \overline{x} be a properly efficient solution of problem (P) and let g satisfy the Kuhn-Tucker constraint qualification at \overline{x} . Then there exist $\overline{\lambda} \in \mathbb{R}^k$, $\overline{\mu} \in \mathbb{R}^m$ such that

$$\overline{\lambda}^{T} \nabla f(\overline{x}) + \overline{\mu}^{T} \nabla g(\overline{x}) = 0$$
$$\overline{\mu}^{T} g(\overline{x}) = 0$$
$$\overline{\lambda} > 0, \overline{\mu} \ge 0.$$

LEMMA 3. (Kuhn-Tucker type sufficient conditions). Let f and g be convex. If there exist $\overline{\lambda} \in \mathbb{R}^k$ and $\overline{\mu} \in \mathbb{R}^m$ such that

$$\overline{\lambda}^{T} \nabla f(\overline{x}) + \overline{\mu}^{T} \nabla g(\overline{x}) = 0$$
$$\overline{\mu}^{T} g(\overline{x}) = 0$$
$$\overline{\lambda} > 0, \ \overline{\mu} \ge 0,$$

then \overline{x} is a properly efficient solution of (P).

3. DUALITY

In relation to (P) we consider the following Mond-Weir type dual:

(D) maximise
$$f(y)$$

(1) subject to
$$\lambda^T \nabla f(y) + \mu^T \nabla g(y) = 0$$

$$\mu^T g(y) \geqq 0$$

$$\lambda > 0, \quad \mu \geqq 0.$$

THEOREM 3.1. (Weak Duality). Let x be feasible for (P) and (y, λ, μ) be feasible for (D). If $\lambda^T f$ is pseudoconvex and $\mu^T g$ is quasiconvex at y, then

(4)
$$\lambda^T f(x) \geqq \lambda^T f(y).$$

PROOF: Since $g(x) \leq 0$ and $\mu \geq 0$,

$$\mu^T q(x) \leq 0 \leq \mu^T q(y).$$

Using quasiconvexity of $\mu^T g$ at y, we get

$$\mu^T \nabla g(y)(x-y) \leq 0.$$

Therefore from equation (1)

$$\lambda^T \nabla f(y)(x-y) \geq 0.$$

But $\lambda^T f$ is pseudoconvex at y. Hence

$$\lambda^T f(x) \geqq \lambda^T f(y).$$

REMARK 1. It may be noted that the inequality (4) implies $f(x) \nleq f(y)$.

THEOREM 3.2. Let \overline{x} be feasible for (P) and $(\overline{y}, \overline{\lambda}, \overline{\mu})$ be feasible for (D) such that

(5)
$$\overline{\lambda}^T f(\overline{x}) = \overline{\lambda}^T f(\overline{y}).$$

If $\overline{\lambda}^T f$ is pseudoconvex and $\overline{\mu}^T g$ is quasiconvex at \overline{y} , then \overline{z} is properly efficient for (P).

PROOF: Let x be any feasible solution for (P). From the weak duality theorem,

$$\overline{\lambda}^T f(x) \ge \overline{\lambda}^T f(\overline{y}).$$

Using (5), we get

$$\overline{\lambda}^T f(x) \ge \overline{\lambda}^T f(\overline{x}).$$

Thus \overline{x} is optimal for $(P_{\overline{\lambda}})$. Hence by Lemma 1, \overline{x} is properly efficient for (P).

THEOREM 3.3. Let \overline{x} be feasible for (P) and $(\overline{y}, \overline{\lambda}, \overline{\mu})$ be feasible for (D) such that

$$(6) f(\overline{x}) = f(\overline{y}).$$

If $\lambda^T f$ is pseudoconvex and $\mu^T g$ is quasiconvex at y for each dual feasible (y, λ, μ) , then $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is properly efficient for the dual problem (D).

PROOF: First we show that $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is efficient for (D). Assume that it is not efficient, then there exists (y^*, λ^*, μ^*) feasible for (D) such that

$$f_r(y^*) > f_r(\overline{y})$$
 for some $r \in K$
 $f_i(y^*) \ge f_i(\overline{y})$ for all $i \in K_r$.

Therefore

or using (6),
$$\lambda^{*T} f(y^*) > \lambda^{*T} f(\overline{y})$$
$$\lambda^{*T} f(y^*) > \lambda^{*T} f(\overline{x}),$$

a contradiction to the weak duality theorem. Hence $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is efficient for (D). Assume now that it is not properly efficient. Then there exists a dual feasible solution (y^*, λ^*, μ^*) and an $i \in K$ such that $f_i(y^*) > f_i(\overline{y})$ and

$$f_i(y^*) - f_i(\overline{y}) > M(f_j(\overline{y}) - f_j(y^*))$$

for all M > 0 and all $j \in K_i$ satisfying $f_j(\overline{y}) > f_j(y^*)$. This means that $f_i(y^*) - f_i(\overline{y})$ can be made arbitrary large whereas $f_j(\overline{y}) - f_j(y^*)$ is finite for all $j \in K_i$. Therefore

 $\lambda_i^*(f_i(y^*) - f_i(\overline{y})) > \sum_{j \in K_i} \lambda_j^*(f_j(\overline{y}) - f_j(y^*))$ $\lambda^{*T} f(y^*) > \lambda^{*T} f(\overline{y}).$

Using (6), we get

OI

$$\lambda^{*T} f(y^*) > \lambda^{*T} f(\overline{x}).$$

This again contradicts the weak duality theorem. Hence $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is a properly efficient solution for (D).

THEOREM 3.4. (Strong Duality). Let \overline{x} be a properly efficient solution of Problem (P) and let g satisfy the Kuhn-Tucker constraint qualification at \overline{x} . Then there exists $(\overline{\lambda}, \overline{\mu})$, such that $(\overline{y} = \overline{x}, \overline{\lambda}, \overline{\mu})$ is a feasible solution for (D) and the objective values of (P) and (D) are equal. Also, if $\lambda^T f$ is pseudoconvex and $\mu^T g$ is quasiconvex at y for every dual feasible solution (y, λ, μ) , then $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is a properly efficient solution for (D).

PROOF: Since \overline{x} is a properly efficient solution for (P) at which the Kuhn-Tucker constraint qualification is satisfied, by Lemma 2 there exist $\overline{\lambda} \in R^k$ and $\overline{\mu} \in R^m$ such that

$$\overline{\lambda}^T \nabla f(\overline{x}) + \overline{\mu}^T \nabla g(\overline{x}) = 0$$
$$\overline{\mu}^T g(\overline{x}) = 0$$
$$\overline{\lambda} > 0, \quad \overline{\mu} \ge 0.$$

Therefore $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is feasible for (D). Also, the two vector objectives are equal. Hence, by Theorem 3.3, $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is a properly efficient solution for (D).

THEOREM 3.5. (Converse Duality). Let $(\overline{y}, \overline{\lambda}, \overline{\mu})$ be a weak efficient solution for (D), the $n \times n$ Hessian matrix $\nabla^2 (\overline{\lambda}^T f(\overline{y}) + \overline{\mu}^T g(\overline{y}))$ be positive or negative definite and $\nabla f_i(\overline{y})$, i = 1, 2, ..., k be linearly independent. If $\lambda^T f$ is pseudoconvex and $\mu^T g$ is quasiconvex at \overline{y} , then \overline{y} is a properly efficient solution for (P).

PROOF: Since $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is a weak efficient solution for (D), by Theorem 1 [2] there exist $\overline{u} \in \mathbb{R}^k$, $\overline{v} \in \mathbb{R}^n$, $\overline{w} \in \mathbb{R}$, $\overline{\eta} \in \mathbb{R}^k$ and $\overline{v} \in \mathbb{R}^m$ such that

(7)
$$\overline{u}^T \nabla f(\overline{y}) + \overline{v}^T \nabla^2 \left(\overline{\lambda}^T f(\overline{y}) + \overline{\mu}^T g(\overline{y}) \right) + \overline{w} \, \overline{\mu}^T \nabla g(\overline{y}) = 0$$

$$(8) \qquad [\nabla f(\overline{y})]\overline{v} + \overline{\eta} = 0$$

(9)
$$[\nabla g(\overline{y})]\overline{v} + \overline{w}g(\overline{y}) + \overline{\nu} = 0$$

$$\overline{w}[\overline{\mu}^T g(\overline{y})] = 0$$

$$\overline{\eta}^T \overline{\lambda} = 0$$

$$\overline{\nu}^T \overline{\mu} = 0$$

(13)
$$(\overline{u}, \overline{w}, \overline{\eta}, \overline{\nu}) \ge 0, \qquad (\overline{u}, \overline{v}, \overline{w}, \overline{\eta}, \overline{\nu}) \ne 0.$$

Now $\overline{\lambda} > 0$, $\overline{\eta}^T \overline{\lambda} = 0 \Rightarrow \overline{\eta} = 0$. Therefore from (8)

$$(14) [\nabla f(\overline{y})]\overline{v} = 0$$

which with equation (1) gives

(15)
$$\overline{\mu}^T \nabla g(\overline{y}) \overline{v} = 0.$$

On multipling (7) by \overline{v} from the right and using equations (14) and (15), we get

(16)
$$\overline{v}^T \left[\nabla^2 \left(\overline{\lambda}^T f(\overline{y}) + \overline{\mu}^T g(\overline{y}) \right) \right] \overline{v} = 0.$$

Since $\nabla^2 \left(\overline{\lambda}^T f(\overline{y}) + \overline{\mu}^T g(\overline{y}) \right)$ is assumed to be positive or negative definite, equation (16) gives $\overline{v} = 0$.

Now suppose $\overline{w} = 0$. Therefore from equation (9), $\overline{\nu} = 0$. Also, equation (7) gives

(17)
$$\overline{u}^T \nabla f(\overline{y}) = 0.$$

Since $\nabla f_i(\overline{y})$ are assumed to be linearly independent, (17) implies $\overline{u} = 0$. Thus we get

$$(\overline{u}, \overline{v}, \overline{w}, \overline{\eta}, \overline{\nu}) = 0,$$

a contradiction to (13). Hence $\overline{w} > 0$.

Now from equation (9),

$$g(\overline{y})=\frac{-\overline{\nu}}{\overline{w}}\leqq 0.$$

Therefore \overline{y} is a feasible solution for (P), and Theorem 3.2 implies that \overline{y} is a properly efficient solution for (P).

The following result gives sufficient conditions for a weak efficient solution of the dual problem (D) to be properly efficient. It follows immediately from Theorems 3.3 and 3.5.

COROLLARY. Let $(\overline{y}, \overline{\lambda}, \overline{\mu})$ be a weak efficient solution for (D) and let the hypotheses of Theorem 3.5 be satisfied. If $\lambda^T f$ is pseudoconvex and $\mu^T g$ is quasiconvex at y for each dual feasible (y, λ, μ) , then $(\overline{y}, \overline{\lambda}, \overline{\mu})$ is a properly efficient solution of the dual problem (D).

REMARK 2. It may be noted that in Weir and Mond [10] the dual variable $\lambda \geq 0$. Therefore, their implication $w^T \lambda_0 = 0 \Rightarrow w = 0$ in the converse duality theorem is erroneous.

THEOREM 3.6. (Strict Converse Duality Theorem). Let \overline{x} and $(\overline{y}, \overline{\lambda}, \overline{\mu})$ be feasible solutions for (P) and (D) respectively such that

(18)
$$\overline{\lambda}^T f(\overline{x}) = \overline{\lambda}^T f(\overline{y}).$$

If $\overline{\lambda}^T f$ is strictly pseudoconvex and $\overline{\mu}^T g$ is quasiconvex at \overline{y} , then $\overline{x} = \overline{y}$ and \overline{y} is properly efficient for (P).

PROOF: We will assume $\overline{x} \neq \overline{y}$ and exhibit a contradiction.

Since \overline{x} and $(\overline{y}, \overline{\lambda}, \overline{\mu})$ are feasible for (P) and (D) respectively, we have

$$\overline{\mu}^T g(\overline{x}) \leq 0 \leq \overline{\mu}^T g(\overline{y}).$$

The quasiconvexity of $\overline{\mu}^T g$ at \overline{y} implies

(19)
$$\overline{\mu}^T \nabla g(\overline{y})(\overline{x} - \overline{y}) \leq 0.$$

Equations (1) and (19) imply

$$\overline{\lambda}^T \nabla f(\overline{y})(\overline{x} - \overline{y}) \geqq 0.$$

But $\overline{\lambda}^T f$ is strictly pseudoconvex at \overline{y} . Hence

$$\overline{\lambda}^T f(\overline{x}) > \overline{\lambda}^T f(\overline{y}),$$

a contradiction to (18). Hence $\overline{x} = \overline{y}$. Proper efficiency of \overline{y} for (P) now follows from Theorem 3.2.

4. APPLICATION

We now apply our results to obtain a dual for the following nonlinear fractional vector minimum problem:

(FP) minimise
$$f(x) = \left[\frac{\phi_1(x)}{\psi(x)}, \frac{\phi_2(x)}{\psi(x)}, \dots, \frac{\phi_k(x)}{\psi(x)}\right]$$
 subject to $g(x) \leq 0, \quad x \in S$

where

- (i) $S \subseteq \mathbb{R}^n$ is an open convex set,
- (ii) $\phi: S \to \mathbb{R}^k$, $g: S \to \mathbb{R}^m$ are differentiable convex functions on S and $\psi: S \to \mathbb{R}$ is a differentiable concave function on S, and
- (iii) $\phi(x) \ge 0$ and $\psi(x) > 0$ on S.

Therefore for each $\lambda > 0$, $\lambda^T f$ is pseudoconvex and since g is convex, convexity hypotheses in this paper are satisfied. Hence the dual problem (D) becomes

maximise
$$f(y) = \left[\frac{\phi_1(y)}{\psi(y)}, \frac{\phi_2(y)}{\psi(y)}, \dots, \frac{\phi_k(y)}{\psi(y)}\right]$$

subject to $\sum_{i=1}^k \lambda_i \left[\frac{\nabla \phi_i(y)}{\psi(y)} - \frac{\phi_i(y)}{\psi^2(y)} \nabla \psi(y)\right] + \mu^T \nabla g(y) = 0$
 $\mu^T g(y) \ge 0, \quad \lambda > 0, \ \mu \ge 0, \ y \in S.$

On simplification, we get the following dual for (FP):

(FD) maximise
$$f(y)$$
 subject to
$$\lambda^T \nabla \phi(y) - \left(\sum_{i=1}^k v_i\right) \nabla \psi(y) + w^T \nabla g(y) = 0$$

$$w^T g(y) \ge 0$$

$$\lambda_i \phi_i(y) - v_i \psi(y) = 0, \quad i = 1, 2, \dots, k$$
 $\lambda > 0, \ v \ge 0, \ w \ge 0, \ y \in S$

where λ , $v \in \mathbb{R}^k$ and $w \in \mathbb{R}^m$.

In particular when k = 1, we get the following pair of scalar nonlinear program and its dual

Primal Problem:

minimise
$$\frac{\phi(x)}{\psi(x)}$$

subject to $g(x) \ge 0$, $x \in S$

Dual Problem:

maximise
$$f(y)=rac{\phi(y)}{\psi(y)}$$
 subject to $abla \phi(y)-v\,
abla \psi(y)+w^T
abla g(y)=0 \ w^Tg(y)\geq 0 \ \phi(y)-v\psi(y)=0 \ v,\,w\geq 0,\,y\in S$

where $\phi: S \to R$ and $v \in R$. Other notations are as in (FD).

REMARK 3. If ψ is linear, then $\phi(x) \ge 0$ is not required and the dual variable v in the above dual problems is unrestricted in sign.

REFERENCES

- [1] C.R. Bector, S. Chandra and M.V. Durgaprasad, 'Duality in pseudolinear multiobjective programming', Asia-Pacific J. Oper. Res. 5 (1988), 150-159.
- [2] B.D. Craven, 'Lagrangian conditions and quasiduality', Bull. Austral. Math. Soc. 16 (1977), 325-339.
- [3] A.M. Geoffrion, 'Proper efficiency and the theory of vector maximization', J. Math. Anal. Appl. 22 (1968), 618-630.
- [4] O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).
- [5] B. Mond and T. Weir, 'Generalized concavity and duality', in Generalized concavity in optimization and economics, Editors S. Schaible and W.T. Ziemba, pp. 263-279 (Academic Press, New York, 1981).
- [6] C. Singh, 'Optimality conditions in multiobjective differentiable programming', J. Optim. Theory Appl. 53 (1987), 115-123.
- [7] C. Singh, 'Duality theory in multiobjective differentiable programming', J. Inform. Optim. Sci. 9 (1988), No. 2, 231-240.
- [8] T. Weir, 'Proper efficiency and duality for vector valued optimization problems', J. Austral. Math. Soc., Series A 43 (1987), 21-34.
- [9] T. Weir and V. Jeyakumar, 'A class of nonconvex functions and mathematical programming', Bull. Austral. Math. Soc. 38 (1988), 177-189.

[10] T. Weir and B. Mond, 'Generalized convexity and duality in multiple objective programming', Bull. Austral. Math. Soc. 39 (1989), 287-299.

Department of Mathematics University of Roorkee Roorkee India 247667 Department of Mathematics University of Alexandria Egypt