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DUALITY IN NONCONVEX VECTOR MINIMUM PROBLEMS

T.R. GULATI AND NADIA TALAAT

A nonlinear vector minimum problem is considered. Duality theorems are proved
for Mond-Weir type dual and their application to a certain nonlinear fractional
vector minimum problem is discussed.

1. INTRODUCTION

Consider the vector minimum problem:
(P) minimise f(z) subject to g(z) £0

where f: R* — R* and g: R® — R™ are differentiable functions. Wolfe and Mond-
Weir type duality for (P) has been discussed in several papers [1, 7, 8, 9, 10] using
different concepts of optimality, namely: weak efficient (or weak minimum), efficient
(or nondominated or noninferior or Pareto optimal) and properly efficient solutions.

Weir [8] proved weak and strong duality theorems for Mond-Weir [5] type dual of
(P). In the strong duality theorem he obtained an efficient solution of the dual from a
properly efficient solution of the primal problem. Bector et al[1] also discussed a similar
result under stronger convexity assumptions. The duality results in Singh [7] and Weir
and Mond [10] are for efficient and weak efficient solutions respectively. The converse
duality theorems in [1, 7] are proved using Kuhn-Tucker type necessary conditions of
Singh [6] and therefore need a constraint qualification.

In the present paper we also discuss duality results for Mond-Weir type dual of
(P). Our results are different than those in [1, 7, 8, 10]. The strong duality theorem
provides a properly efficient solution of the dual while in the converse duality theorem
a weak efficient solution of the dual gives a properly efficient solution of the primal
problem. Moreover, the converse duality theorem is proved using Fritz John necessary
conditions [2] which do not need a constraint qualification.
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2. PRELIMINARIES

The following convention of vectorsin R™ will be followed throughout this paper:
zSyezSy,i=12...,nzyzly, zFy; z<yez <y,
i=1,2,...,n. Vg(z) will denote the m x n Jacobian matrix of g at z, the index set
K ={1,2,...,k} and K; = K — {i}. For other notations and definitions we refer to
Mangasarian [4].

Geoffrion [3] introduced the following scalar parametric problem:
(Pr) minimise AT f(z) subject to g(z) < 0

and related its optimal solution to a properly efficient solution of (P) as follows:

LEMMA 1. Let A > 0 be fixed. If 7 is an optimal solution of (P,), then T is a
properly efficient solution of (P).

The Comprehensive Theorem in Geoffrion [3)] includes the following necessary and
sufficient conditions for problem (P):

LEMMA 2. (Kuhn-Tucker type necessary conditions). Let T be a properly effi-
cient solution of problem (P) and let g satisfy the Kuhn-Tucker constraint qualification
at Z. Then there exist A € R*, & € R™ such that

X'V f(z) + BT Vg(z) = 0
ETg(z) =0
X>0,7220.

LEMMA 3. (Kuhn-Tucker type sufficient conditions). Let f and g be convex. If
there exist A € R* and & € R™ such that

then T is a properly efficient solution of (P).

3. DuaLITY

In relation to (P) we consider the following Mond-Weir type dual:

(D) maximise f(y)

(1) subject to ATVf(y) +uTVg(y) =0
2) nTg(y) 20
3) A>0, p20.
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THEOREM 3.1. (Weak Duality). Let z be feasible for (P) and (y, A, u) be
feasible for (D). If AT f is pseudoconvex and uTg is quasiconvex at y, then

(4) AT (=) 2 AT f(y).
PROOF: Since g(z) <0 and p 20,
pT9() S 02 uTe(y).
Using quasiconvexity of uTg at y, we get
#TVg(y)(z —y) L 0.

Therefore from equation (1)
ATV f(y)z—y) 2 0.

But ATf is pseudoconvex at y. Hence

XTf(z) 2 AT f(y).

REMARK 1. It may be noted that the inequality (4) implies f(z) £ f(y).

THEOREM 3.2. Let T be feasible for (P) and (g, A, &) be feasible for (D) such
that

T .. ~T,_
() A f(E) =X (@)
i’ f is pseudoconvex and ETg is quasiconvex at §, then Z is properly efficient for
(P).
PROOF: Let z be any feasible solution for (P). From the weak duality theorem,
T =T ,,_
A f(z) 2 X f(9)-
Using (5), we get
<T =T, _
A f(z) 2 X f(=)
Thus Z is optimal for (FP5). Hence by Lemma 1, Z is properly efficient for (P). 0

THEOREM 3.3. Let T be feasible for (P) and (¥, X, &) be feasible for (D) such
that

(6) f(z) = £(3)-
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If AT f is pseudoconvex and uTg is quasiconvex at y for each dual feasible (y, X, p),
then (7, X, f&) is properly efficient for the dual problem (D).

PROOF: First we show that (7, A, B) is efficient for (D). Assume that it is not

efficient, then there exists (y*, A*, u*) feasible for (D) such that

f~(¥*) > fr(3) for some r € K

fi(y*) 2 £fi(g) for all i € K,.
Therefore
MTf(y") > 2T f(3)
XTfy*) > T (=),
a contradiction to the weak duality theorem. Hence (y, X, ﬁ) is efficient for (D).
Assume now that it is not properly eflicient. Then there exists a dual feasible solution
(v*, A*, p*) and an i € K such that f;(y*) > fi(¥) and

fily®) - fi(y) > M(£;(¥) - £i(v"))

for all M > 0 and all j € K; satisfying fj(¥) > fj(y*). This means that fi(y*)— fi(¥)
can be made arbitrary large whereas f;(7) — fj(y*) is finite for all j € K;. Therefore

M) - £@) > ) M) - Hi"))

or JEK;
XTf(y') > AT ().

or using (6),

Using (6), we get

XTf(y*) > 3T f(z).
This again contradicts the weak duality theorem. Hence (37, X, Ti) is a properly efficient
solution for (D). 1]

THEOREM 3.4. (Strong Duality). Let T be a properly efficient solution of Prob-
lem (P) and let g satisfy the Kuhn-Tucker constraint qualification at Z. Then there
exists (X, ';I) , such that (y =z, A, ) is a feasible solution for (D) and the objective
values of (P) and (D) are equal. Also, if AT f is pseudoconvex and uTg is quasiconvex
at y for every dual feasible solution (y, A, u), then (5, X, ﬁ) is a properly efficient
solution for (D).

PROOF: Since Z is a properly efficient solution for (P) at which the Kuhn-Tucker
constraint qualification is satisfied, by Lemma 2 there exist A € R* and i € R™ such

that
Y VS(E)+ETVg(E) =0
E'g(z)=0
x>0, E20.
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Therefore (Z, X, &) is feasible for (D). Also, the two vector objectives are equal. Hence,
by Theorem 3.3, (%, X, &) is a properly efficient solution for (D). 0

THEOREM 3.5. (Converse Duality). Let (¥, X, &) be a weak efficient solution
for (D), the nxn Hessian matrix V? (XTf(ﬂ) + ;TTg(ﬂ)) be positive or negative definite
and Vfi(§),i=1,2, ..., k be linearly independent. If AT f is pseudoconvex and uTg
is quasiconvex at §, then § is a properly efficient solution for (P).

PROOF: Since (7, A, &) is a weak efficient solution for (D), by Theorem 1 (2]
there exist Z € R*, 5 € R*, W € R, 7€ R* and ¥ € R™ such that

(7 TTVf(7) + 572 (X £(3) + ET9(3)) + TE V() = 0
(8) Vi@l +7=0
(9) (Ve(®)o +wg(y) +7 =0
(10) B[ 9(7) =0
(11) 7TA=0
(12) TE=0
(13) (w,w,7,7v) 20, 0,7, W, 7, V) #0.

Now X > 0, 57X =0 = 77 = 0. Therefore from (8)
(14) Vi@ =0
which with equation (1) gives
(15) ATVg(g)s = 0.
On multipling (7) by T from the right and using equations (14) and (15), we get

(16) 57 (v? (X (3) + B79(@))5 = 0.

Since V? (XT f@)+ ;TTg(ﬁ)) is assumed to be positive or negative definite, equa-
tion (16) gives v = 0.

Now suppose w = 0. Therefore from equation (9), 7 = 0. Also, equation (7) gives
(17) ' Vf(g)=0.
Since V fi(y) are assumed to be linearly independent, (17) implies 7 = 0. Thus

we get

https://doi.org/10.1017/50004972700029993 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700029993

506 T.R. Gulati and N. Talaat [6]

a contradiction to (13). Hence w > 0.
Now from equation (9),

9(¥) == =0

el|

[+9)

Therefore 3 is a feasible solution for (P), an
efficient solution for (P).

The following result gives sufficient conditions for a weak efficient solution of the

Theorem 3.2 implies that ¥ is a properly

dual problem (D) to be properly efficient. It follows immediately from Theorems 3.3
and 3.5. 0

COROLLARY. Let (3, A, &) be a weak efficient solution for (D) and let the hy-
potheses of Theorem 3.5 be satisfied. If AT f is pseudoconvex and uTg is quasiconvex

at y for each dual feasible (y, A, p), then (ﬂ, X, ";I) is a properly efficient solution of
the dual problem (D).

REMARK 2. It may be noted that in Weir and Mond [10] the dual variable A > 0.
Therefore, their implication wTAg = 0 = w = 0 in the converse duality theorem is
erroneous.

THEOREM 3.6. (Strict Converse Duality Theorem). Let = and (3, A, &) be
feasible solutions for (P) and (D) respectively such that

(18) X f(=) =X £(3).

5T . — . . — — — — .
If X" f is strictly pseudoconvex and G'g is quasiconvex at G, then T = 3 and ¥ is
properly efficient for (P).

PRrROOF: We will assume T # 3§ and exhibit a contradiction.
Since Z and (g, A, &) are feasible for (P) and (D) respectively, we have

ET9(z) S0 S Ee(9).
The quasiconvexity of Z7g at 7 implies
(19) E'Vy(@)z-7) 0.
Equations (1) and (19) imply
XViEE-9) 20
But XT f is strictly pseudoconvex at y. Hence
X 5@)> X f(@),

a contradiction to (18). Hence Z = §. Proper efficiency of § for (P) now follows from
Theorem 3.2. 0
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4. APPLICATION

We now apply our results to obtain a dual for the following nonlinear fractional
vector minimum problem:

$1(z) ¢2(z) $x(z)
(=)’ P(z) 7 Y(z)
subject to g(z) £0, z€ S

(FP) minimise f(z) =

where

(i) S C R™ is an open convex set,
(ii) ¢:S — R*, g: § — R™ are differentiable convex functions on S and
%: S — R is a differentiable concave function on §, and
(ii) ¢(z) 20 and ¥(z) >0 on S.
Therefore for each A > 0, ATf is pseudoconvex and since g is convex, convexity
hypotheses in this paper are satisfied. Hence the dual problem (D) becomes

biy) daly) iy
W) ) )

V¢:(y) ¢i(y) T —
subject to Z/\ [ @) () ¢v(y)] +n1 Vg(y)=0

B y(y)zm A>0,p20,y€S.

maximise f(y) =

On simplification, we get the following dual for (FP):

(FD) maximise  f(y)
subject to
k

ATV ¢(y) - (E ) Vi(y) + wTVg(y) =0

wTgy) 20

Aidi(y) —vi(y) =0, i=1,2,...,k
A>0,v20, w20, y€S

where X, v € R* and w € R™.
In particular when k = 1, we get the following pair of scalar nonlinear program
and its dual
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Primal Problem:

$(=)
¥(z)
subject to g(z) 2 0, zeS

minimise

Dual Problem:

¢(y)

maximise  f(y) = =

$(y)

subject to
Vé(y) —v Vi(y) + w Vg(y) =0
wig(y) 20
$(y) —v(y) =0
v,w20,yes

where ¢: S — R and v € R. Other notations are as in (FD).

REMARK 3. If ¢ is linear, then ¢(z) 2 0 is not required and the dual variable v in
the above dual problems is unrestricted in sign.

(1]
(2]
(3]
(4]
(8]
(6]
(7]
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(9]
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