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We establish asymptotic formulas for all the eigenvalues of the linearization problem
of the Neumann problem for the scalar field equation in a finite interval{

ε2uxx − u + u3 = 0, 0 < x < 1,

ux(0) = ux(1) = 0.

In the previous paper of the third author [T. Wakasa and S. Yotsutani, J. Differ.
Equ. 258 (2015), 3960–4006] asymptotic formulas for the Allen–Cahn case
ε2uxx + u − u3 = 0 were established. In this paper, we apply the method developed
in the previous paper to our case. We show that all the eigenvalues can be classified
into three categories, i.e., near −3 eigenvalues, near 0 eigenvalues and the other
eigenvalues. We see that the number of the near −3 eigenvalues (resp. the near 0
eigenvalues) is equal to the number of the interior and boundary peaks (resp. the
interior peaks) of a solution for the nonlinear problem. The main technical tools are
various asymptotic formulas for complete elliptic integrals.
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1. Introduction and main results

We are concerned with the Neumann problem of a reaction–diffusion
equation {

ε2uxx(x) + f(u(x)) = 0, 0 < x < 1,
ux(0) = ux(1) = 0

(1.1)

and its linearized eigenvalue problem associated with a positive solution u(x){
ε2ϕxx(x) + fu(u(x))ϕ(x) = −λϕ(x), 0 < x < 1,
ϕx(0) = ϕx(1) = 0,

(1.2)

where ε > 0 is a parameter and f is smooth enough. We denote F (u) by

F (u) =
∫ u

0

f(s) ds.

Precise information of eigenvalues is crucial not only in a stability analysis of a sta-
tionary solution of the associated parabolic problem but also in a study of dynamics.
The goal of the present paper is to obtain a rather explicit expression of all the
eigenvalues of (1.2) in the case

f(u) = −u+ u3.

The equation ε2uxx − u+ up = 0, p > 1, is called the scalar field equation which
appears in the study of a standing wave of a nonlinear Schrödinger equation [2],
of elastic curves in differential geometry [6] and of the Gierer–Meinhardt model
in mathematical biology [5]. This equation has attracted much attention for these
three decades. A complete bifurcation diagram of the positive solutions for (1.1)
with f(u) = −u+ up, p > 1, was obtained in [7, 16]. See Fig. 1. Let p > 1 and
εn :=

√
p− 1/nπ. For each n � 1, (1.1) has exactly two n-mode solutions u±n,ε if

0 < ε < εn. Here,

u+
n,ε(0) = min

0�x�1
u+

n,ε(x), u−n,ε(0) = max
0�x�1

u−n,ε(x).

In particular, if n = 2k + 1, then both u+
n,ε and u−u,ε have k interior peaks and 1

boundary peak. On the other hand, if n = 2k, then u+
n,ε (resp. u−n,ε) has k interior

peaks and no boundary peak (resp. k − 1 interior peaks and 2 boundary peaks).
Each peak becomes sharp as ε→ 0.

Hereafter, we consider the case f(u) = −u+ u3. Then

εn =
√

2
nπ

.

All the solutions of (1.1) can be written in terms of elliptic functions:
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Figure 1. The complete bifurcation diagram for (1.1) with f(u) = −u + u3.

Proposition 1.1. Let n � 1 be fixed and let 0 < ε < εn. Let kε = kn,ε ∈ (0, 1) be
a solution of √

2 − k2K(k) =
1
nε
. (1.3)

Note that kε is uniquely determined. Then u+
n,ε and u−n,ε can be written as follows:

u±n,ε(x) =

√
2

2 − k2
ε

DN±
n (x, kε), (1.4)

where

DN+
n (x, kε) := dn(K(kε)(1 + nx), kε), DN−

n (x, kε) := dn(nK(kε)x, kε).

The proof of proposition 1.1 is given in §2.
In this paper, we frequently use Jacobi’s elliptic functions sn(x, k) and dn(x, k)

and complete elliptic integrals K(k), E(k) and Π(ν, k). The definitions and various
properties are summarized in Appendix A of the present paper.

The linearized eigenvalue problem (1.2) associated with u±n,ε is as follows:{
ε2ϕxx(x) + fu(u±n,ε(x))ϕ(x) = −λϕ(x), 0 < x < 1,
ϕx(0) = ϕx(1) = 0.

(LP±)

Hereafter, λ±j,ε, j � 0 denotes the j + 1-th eigenvalue of (LP±) and ϕ±
j,ε denotes an

associated eigenfunction. It is well known that each eigenvalue λ±j,ε is simple.
The following three exact eigenvalues of (LP±) were obtained in the previous

paper of the third author [11]:
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Proposition 1.2. Let n � 1,

SN+
n (x, k) := sn(K(k)(1 + nx), k), SN−

n (x, k) := sn(nK(k)x, k),

CN+
n (x, k) := cn(K(k)(1 + nx), k), CN−

n (x, k) := cn(nK(k)x, k).

The following hold:

(i) The problem (LP+) has the following two pairs of eigenvalues and
eigenfunctions:

λ+
0,ε = −1 − 2

√
1 − k2

ε + k4
ε

2 − k2
ε

, ϕ+
0,ε(x) = 1

−
(
1 + k2

ε −
√

1 − k2
ε + k4

ε

)
SN+

n (x, kε)2,

λ+
n,ε = −1 +

2
√

1 − k2
ε + k4

ε

2 − k2
ε

, ϕ+
n,ε(x) = −1

+
(
1 + k2

ε +
√

1 − k2
ε + k4

ε

)
SN+

n (x, kε)2.

Moreover, if n is even, then (LP+) has one more pair:

λ+
n/2,ε = −3(1 − k2

ε)
2 − k2

ε

, ϕ+
n/2,ε(x) = SN+

n (x, kε)DN+
n (x, kε).

(ii) The problem (LP−) has the following pairs of eigenvalues and eigenfunctions:

λ−0,ε = −1 − 2
√

1 − k2
ε + k4

ε

2 − k2
ε

, ϕ−
0,ε(x) = 1

−
(
1 + k2

ε −
√

1 − k2
ε + k4

ε

)
SN−

n (x, kε)2,

λ−n,ε = −1 +
2
√

1 − k2
ε + k4

ε

2 − k2
ε

, ϕ−
n,ε(x) = −1

+
(
1 + k2

ε +
√

1 − k2
ε + k4

ε

)
SN−

n (x, kε)2.

Moreover, if n is even, then (LP−) has one more pair:

λ−n/2,ε = − 3
2 − k2

ε

, ϕ−
n/2,ε(x) = CN−

n (x, kε)DN−
n (x, kε).

Singularly perturbed problems have attracted great attention, because of a wide
variety of applications. It follows from (1.3) that a singularly perturbed problem
corresponds to the case where k is close to 1. The main result of the paper is the
following asymptotic formula of the other eigenvalues as k → 1 :

Theorem 1.3. Let n � 1 and j > 0 be fixed. Let kε be as in proposition 1.1. The
following hold for (LP±):
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(i) For 0 < j < n/2,

λ±j,ε = −3 + 3(1 − k2
ε) +

3
4

(
sin2 jπ

n
− 5
)

(1 − k2
ε)2+o

(
(1 − k2

ε)2
)

as kε→1.

(ii) For n/2 < j < n,

λ±j,ε = −3
(

sin2 jπ

n

)
(1 − k2

ε) + o(1 − k2
ε) as kε → 1.

(iii) For j > n,

λ±j,ε = 1 +
(j − n)2π2

n2

1
K(kε)2

+ o

(
1

K(kε)2

)
as kε → 1,

where K(kε) → ∞ as kε → 1.

Combining proposition 1.2 and theorem 1.3, we can relate locations of eigenvalues
with the number of the peaks of u±n,ε as follows: All the eigenvalues can be classified
into three categories, i.e.,

⎧⎪⎨
⎪⎩

(a) near −3 eigenvalues which converge to −3 as kε → 1,
(b) near 0 eigenvalues which converge to 0 as kε → 1,
(c) the other eigenvalues which converge to 1 as kε → 1.

(1.5)

The number of the near −3 eigenvalues is equal to the number of the interior and
boundary peaks of u±n,ε. The number of the near 0 eigenvalues is equal to the number
of the interior peaks of u±n,ε.

Example 1.4.

(i) The solution u+
10,ε has 5 interior peaks and no boundary peak. Hence, (LP+)

has 5 eigenvalues near −3 and 5 eigenvalues near 0 when ε > 0 is small. On
the other hand, u−10,ε has 4 interior peaks and 2 boundary peaks. Hence (LP−)
has 6 eigenvalues near −3 and 4 eigenvalues near 0 when ε > 0 is small.

(ii) Each of u+
11,ε and u−11,ε has 5 interior peaks and 1 boundary peak. Hence,

(LP±) has 6 eigenvalues near −3 and 5 eigenvalues near 0 when ε > 0 is
small.
In figures 2–4 profiles of eigenfunctions on (LP±) with u±10,ε and profiles of
eigenfunctions on (LP+) with u+

11,ε are shown. In each figure (a-0), (a-1) and
(a-2) belong to category (a) in (LP±), and so on.
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Figure 2. Profiles of eigenfunctions for (LP+) with u+
10,ε(x); (a-0) ϕ+

0 , (a-1) ϕ+
1 , (a-2)

ϕ+
2 , (b-0) ϕ+

5 , (b-1) ϕ+
6 , (b-2) ϕ+

7 , (c-0) ϕ+
10, (c-1) ϕ+

11 and (c-2) ϕ+
12 .

Figure 3. Profiles of eigenfunctions for (LP−) with u−
10,ε(x); (a-0) ϕ−

0 , (a-1) ϕ−
1 , (a-2)

ϕ−
2 , (a-5) ϕ−

5 , (b-1) ϕ−
6 , (b-2) ϕ−

7 , (c-0) ϕ−
10, (c-1) ϕ−

11 and (c-2) ϕ−
12.
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Figure 4. Profiles of eigenfunctions for (LP+) with u+
11,ε(x); (a-0) ϕ+

0 , (a-1) ϕ+
1 , (a-2)

ϕ+
2 , (a-5) ϕ+

5 , (b-1) ϕ+
6 , (b-2) ϕ+

7 , (c-0) ϕ+
11, (c-1) ϕ+

12 and (c-2) ϕ+
13.

Let us consider the stretched problem{
ũyy − ũ+ ũ3 = 0, −x�,ε

ε < y <
1−x�,ε

ε ,

ũy

(−x�,ε

ε

)
= ũy( 1−x�,ε

ε ) = 0

and the limit problem {
ūyy − ū+ ū3 = 0, −∞ < y <∞,

ū ∈ L2(R).
(1.6)

Here ũ(y) := u(x), y := (x− x�,ε)/ε and x�,ε ∈ (0, 1) is a position of an �-th interior
peak. Then ū(y) =

√
2

cosh(y) is a solution of (1.6) which has a one-peak at y = 0. The
associated eigenvalue problem is as follows:{

ϕ̄yy + (−1 + 3ū2)ϕ̄ = −λϕ̄, −∞ < y <∞,

ϕ̄ ∈ H1(R).
(1.7)

It is known that the spectral set consists of two eigenvalues −3 and 0 and the
continuous spectrum [1,∞). The near −3 eigenvalues of (LP±) come from the
−3 eigenvalue of (1.7). Figures 2–4 indicate that an eigenfunction in category (a)
can be approximated by a linear combination of translations of a compressed first
eigenfunction of (1.7). The near 0 eigenvalues of (LP±) come from a translation
invariance of the one-peak solution ū(y), which is indicated by a shape of an eigen-
function of category (b), e.g., (b-0), (b-1) and (b-2) of figure 2. Specifically, an
eigenfunction is close to cu′(x), c ∈ R, near each peak of u(x). The other eigen-
values converge to 1 which is an end point of [1,∞). The spectrum 1 of (1.7) is
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not an eigenvalue, since a corresponding eigenfunction is not in H1(R). Indeed, a
graph of an eigenfunction of category (c) in figures 2–4 is close to cos(mπx) for
most x ∈ (0, 1), and hence its stretched function is not in H1(R) or 0.

Remark 1.5. If n is odd, then the eigenvalue sets of (LP+) and (LP−) are the same,
i.e., λ+

j,ε = λ−j,ε for all j � 0, since u−n,ε(x) = u+
n,ε(1 − x). However, if n is even, then

λ+
j,ε = λ−j,ε for j �= n/2, but λ+

n/2,ε �= λ−n/2,ε. In the even case the number of all the
peaks of u+

n,ε is different from that of u−n,ε.

Corollaries 1.6 and 1.7 are asymptotic formulas with respect to e−2/nε.

Corollary 1.6. Let n � 1 be fixed. The following hold for (LP±):

(i) λ±0,ε = −3 + 48 e−
2

nε + o(e−
2

nε ) as ε→ 0.

(ii) If n is even, then as ε→ 0,

λ+
n/2,ε = −48 e−

2
nε + o(e−

2
nε ), λ−n/2,ε = −3 + 48 e−

2
nε + o(e−

2
nε ).

(iii) λ±n,ε = 1 − 48 e−
2

nε + o(e−
2

nε ) as ε→ 0.

Corollary 1.7. Let n � 1 and j � 0 be fixed. The following hold for (LP±):

(i) For 0 < j < n/2,

λ±j,ε = −3 +
{

1 + 4
(

sin2 jπ

n

)
e−

2
nε + o(e−

2
nε )
}

(λ±0,ε + 3) as ε→ 0.

(ii) For n/2 < j < n,

λ±j,ε = −48
(

sin2 jπ

n

)
e−

2
nε + o(e−

2
nε ) as ε→ 0.

(iii) For j > n,

λ±j,ε = 1 + (j − n)2π2ε2 + o(ε2) as ε→ 0.

It follows from corollary 1.7 (i) that λ±j,ε, 0 < j < n/2, can be also written as
follows:

λ±j,ε = −3 + 48 e−
2

nε + o(e−
2

nε ) as ε→ 0.

However a j-dependence does not appear in the first two terms.
Let us recall known results. It is difficult to obtain exact expressions of eigen-

values of an elliptic differential operator even if a domain is a finite interval. Only
few examples are known for elliptic differential operators with variable coefficients.
A model case is the linearization problem for the Allen–Cahn equation (1.1) with
f(u) = u− u3. The problem (1.1) with f(u) = u− u3 has n-mode solutions u±n,ε for
small ε > 0 which has n transition layers in the interval. In [4] the so-called very
slow dynamics of a transition layer solution of an associated parabolic problem were
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studied. Then the first n eigenvalues of (LP±), {λ±j,ε}n−1
j=0 , play a crucial role. It was

shown in [4, Corollary 4.2] that for 0 � j < n,

λ±j,ε = O(e−d/ε) with some d > 0. (1.8)

These near 0 eigenvalues come from translation invariance of each transition layer.
Later exact expressions of three special eigenvalues λ±j,ε, j = 0, n, 2n, were obtained
in [9]. Using these three exact eigenvalues, one can obtain

λ±0,ε = −96 e−
√

2
nε + o(e−

√
2

nε ) as ε→ 0,

λ±n,ε =
3
2
− 12 e−

1√
2nε + o(e−

1√
2nε ) as ε→ 0,

λ±2n,ε = 2 + 96 e−
√

2
nε + o(e−

√
2

nε ) as ε→ 0.

Note that these three eigenvalues correspond to λ±j,ε, j = 0, n/2, n, in our case
f(u) = −u+ u3. Then an exact representation formula of eigenvalues for general f ,
which is lemma 2.2 in our case, was obtained in [12]. The authors of [12] applied it
to the case f(u) = sinu and obtained an asymptotic formula for every eigenvalue.
After that in [14] asymptotic formulas of all the eigenvalues for the Allen–Cahn
case f(u) = u− u3 were established. Specifically,

for 0 < j < n, λ±j,ε = −96
(

cos2
jπ

2n

)
e−

√
2

nε + o(e−
√

2
nε ) as ε→ 0,

for n < j < 2n, λ±j,ε =
3
2
− 12

(
cos

(j − n)π
n

)
e−

1√
2nε + o(e−

1√
2nε ) as ε→ 0,

for j > 2n, λ±j,ε = 2 + (j − 2n)2π2ε2 + o(ε2) as ε→ 0.

These formulas show that (1.8) holds for 0 � j < n.
Detailed studies of all the eigenfunctions were made for the case f(u) = sinu

in [13] and for the case f(u) = u− u3 in [15]. The authors of [8] obtained exact
eigenvalues and eigenfunctions of a one-dimensional Gel’fand problem f(u) = eu,
using the method developed in [12]. In this paper, we apply the method developed in
[14] to the scalar field equation (1.1) with f(u) = −u+ u3 to establish asymptotic
formulas. This method seems to work for other nonlinearities and other boundary
conditions. They may be future works.

The paper consists of five sections. In §2 we prove proposition 1.1. We
obtain asymptotic formulas for three special eigenvalues λ±0,ε, λ

±
n/2,ε and λ±n,ε

(corollary 1.6). We recall an exact representation formulas for the case f(u) =
−u+ u3 in lemma 2.2. In particular, the other eigenvalues are given by a unique
solution of

A0(k, λj) =
jπ

n
for j �= 0, n/2, n,

where A0 is given in lemma 2.2. Let μ := (2 − k2)λ. We use μ instead of λ, since
various formulas becomes simple. We define A(k, μ) := A0(k, λ). We see in lemma
2.3 that the characteristic function A(k, μ) can be written in terms of the complete
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Figure 5. A graph of A(k, μ) with k = 3/4. A(k, μ) is defined on Σ and monotone
increasing in μ.

elliptic integral of the third kind. In § 3 we study the shape of the graph of A(k, μ),
since the graph of A(k, μ) is directly related to the j + 1-th eigenvalue by the
equation

A(k, μ) =
jπ

n
for j �= 0, n/2, n. (1.9)

Specifically, we show that A(k, μ) is increasing in μ and that for each j, (1.9) has a
unique solution. See figure 5 in § 2 for a graph of A(k, μ). In § 4 we prove theorem 1.3
and corollary 1.7, using results proved in § 3. In Appendix A we recall definitions
and basic properties of Jacobi’s elliptic functions sn(x, k), cn(x, k) and dn(x, k).
Then we recall basic properties of the complete elliptic integrals K(k), E(k) and
Π(ν, k). We also recall various asymptotic formulas for K(k) and Π(ν, k) which are
used in proofs of lemmas in § 3 and theorem 1.3.

2. Preliminaries

2.1. Exact solutions of the nonlinear problem

Proof of proposition 1.1. Let y = dn(x, k). Then, y(x) satisfies y′′ − (2 − k2)y +
2y3 = 0. We can find a solution, assuming u(x) = c0y(c1x) and fixing c0 and c1.
However, we take a different approach here.

We apply a change of variables τ =
√

1 − k2s2 to (A.1). We have

x =
∫ sn(x,k)

0

ds√
(1 − s2)(1 − k2s2)

=
∫ 1

dn(x,k)

dτ√
(1 − τ2)(k2 − 1 + τ2)

, (2.1)
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where (A.2) is used. Let dn−1(y, k) denote the inverse function of y = dn(x, k).
Substituting x = dn−1(y, k) into (2.1), we obtain

dn−1(y, k) =
∫ 1

y

dτ√
(1 − τ2)(k2 − 1 + τ2)

. (2.2)

We consider only the case u−n,ε(x), since the case u+
n,ε(x) is similar. For simplicity,

u stands for u−n,ε. By (1.1) we have

ε2u′2

2
− u2

2
+
u4

4
= −α

2

2
+
α4

4
,

where

α := u(0) = max
0�x�1

u(x)(>1).

Since 2ε2u′2 = (α2 − u2)(α2 − 2 + u2), we have

x√
2ε

=
∫ x

0

−u′ dx√
(α2 − u2)(α2 − 2 + u2)

,

where we use the fact that u′(x) < 0 for 0 < x < 1/n. Let k be defined by the
relation

α =

√
2

2 − k2
.

Using a change of variables τ := u/α, we have

x√
2ε

=
∫ α

u(x)

du√
(α2 − u2)(α2 − 2 + u2)

=
1
α

∫ 1

u(x)
α

dτ√
(1 − τ2)

(
1 − 2

α2 + τ2
)

=

√
2 − k2

2

∫ 1

√
2−k2

2 u(x)

dτ√
(1 − τ2)(k2 − 1 + τ2)

=

√
2 − k2

2
dn−1

(√
2 − k2

2
u(x), k

)
,

where (2.2) is used in the last equality. Thus,

u(x) =

√
2

2 − k2
dn
(

x

ε
√

2 − k2
, k

)
. (2.3)

Since K(k) is a half-period of dn(x, k) and 1/n is a half-period of u(x), we have

1
nε

√
2 − k2

= K(k),

and hence (1.3) is obtained. Substituting ε = 1/
√

2 − k2nK(k) into (2.3), we have
(1.4). �
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2.2. Three special eigenvalues

Proposition 1.2 says that there are three (resp. two) exact eigenvalues of (LP±)
if n is even (resp. odd). These three or two eigenvalues are special and play a key
role in this paper. Proposition 1.2 can be proved by direct calculation. We define
λ±(k) by

λ+ := −1 +
2
√

1 − k2 + k4

2 − k2
, λ− := −1 − 2

√
1 − k2 + k4

2 − k2
. (2.4)

Then it is obvious that λ±0,ε = λ− and λ±n,ε = λ+.

Lemma 2.1. Let kn,ε be the unique solution of (1.3). Then,

1 − k2
n,ε = 16 e−

2
nε + o(e−

2
nε ) as ε→ 0.

Proof. By lemma A.3 we have

(1 − k2)K(k) +
1
2
(1 − k2) log(1 − k2) − 2(1 − k2) log 2 = o(1) as k → 1,

and hence (1 − k2)K(k) → 0 as k → 1. By (1.3) we have

− 2√
2 − k2nε

= − 2
nε

+
2(1 − k2)K(k)√

2 − k2 + 1
= − 2

nε
+ o(1) as ε→ 0.

Using K(k) = 1/
√

2 − k2nε, we have

1 − k2 = exp (−2K(k) + 4 log 2 + o(1)) = 16 exp
( −2√

2 − k2nε
+ o(1)

)

= 16 exp
(−2
nε

+ o(1)
)

= 16 exp
(
− 2
nε

)
(1 + o(1)) as ε→ 0.

We obtain the desired result. �

Using lemma 2.1, we obtain asymptotic expansions of three special eigenvalues.

Proof of corollary 1.6. First we prove (i) and (iii). By lemma 2.1 we have

2
√

1 − k2 + k4

2 − k2
= 2 − 3(1 − k2) + o(1 − k2) = 2 − 48 e−

2
nε + o(e−

2
nε ) as ε→ 0.

Then

λ±0,ε = λ−= − 1 − 2
√

1 − k2 + k4

2 − k2
= −3 + 48 e−

2
nε + o

(
e−

2
nε

)
as ε→ 0,

λ±n,ε = λ+= − 1 +
2
√

1 − k2 + k4

2 − k2
= 1 − 48 e−

2
nε + o

(
e−

2
nε

)
as ε→ 0.
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Next we prove (ii). If n is even, then

λ+
n/2,ε = −3(1 − k2)

2 − k2
= −3(1 − k2) + o(1 − k2) = −48 e−

2
nε + o(e−

2
nε ) as ε→ 0,

λ−n/2,ε = − 3
2 − k2

= −3 + 3(1 − k2)

+ o(1 − k2) = −3 + 48 e−
2

nε + o(e−
2

nε ) as ε→ 0. �

2.3. Exact representation of the other eigenvalues

Before we consider the scalar field equation, let us briefly explain a theory for a
general nonlinear term developed in Wakasa–Yotsutani [12].

Let u(x) be a solution of (1.1), and let α denote the maximum value of u(x).
Substituting ϕ(x) =

√
ψ(x) into the equation in (1.2), we see that ψ(x) satisfies

ε2(2ψψ′′ − ψ′2) + 4(f ′(u) + λ)ψ2 = 0.

Let us consider the following function:

Ψ(x) := ε2(2ψψ′′ − ψ′2) + 4(f ′(u) + λ)ψ2. (2.5)

We have

Ψ′(x) = 2ψ
{
ε2ψ′′′ + 4(f ′(u) + λ)ψ′ + 2f ′′(u)u′ψ

}
.

We look for a solution of the equation

ε2ψ′′′ + 4(f ′(u) + λ)ψ′ + 2f ′′(u)u′ψ = 0 (2.6)

of the form ψ(x) = h(u(x)), where h( · ) is an unknown positive function. Substi-
tuting ψ(x) = h(u(x)) into (2.6), we obtain a key equation

2(F (α) − F (u))h′′′(u) − 3f(u)h′′(u) + (3f ′(u) + 4λ)h′(u) + 2f ′′(u)h(u) = 0,
(2.7)

where we use the following relations:

ε2u′2 = 2(F (α) − F (u)) and ε2u′′ = −f(u).

We assume that an exact expression h(u) of a positive solution of (2.7) can be
obtained. Then, h(u) is also a solution of (2.6). Thus, Ψ′(x) ≡ 0 and Ψ is constant.
Substituting h(u) into (2.5), we see that there exists ρ ∈ R such that

Ψ(x) = (F (α) − F (u))(4hh′′ − 2h′2) − 2f(u)hh′ + 4(f ′(u) + λ)h2 =: 4ρ. (2.8)

Now, we construct an eigenfunction of the form

ϕ(x) =
√
h(u(x))W (θ(x)), (2.9)
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using a solution h(u) of (2.7). Here, W ( · ) and θ(x) are defined later. Using (2.8),
we have

ε2
d2
√
h(u(x))
dx2

+ f ′(u)
√
h(u(x)) + λ

√
h(u(x))

=
1

4h3/2

{
(F (α) − F (u))(4hh′′ − 2h′2) − 2f(u)hh′ + 4(f ′(u) + λ)h2

}
=

ρ

h3/2
.

(2.10)

Substituting (2.9) into (1.2), we have

0 = ε2

{
d2

√
h

dx2
W + 2

d
√
h

dx
W ′θ′ +

√
h
(
W ′′θ′2 +W ′θ′′

)}
+ f ′(u)

√
hW + λ

√
hW

= ε2
√
hθ′2

(
W ′′ +

2d
√

h
dx θ′ +

√
hθ′′√

hθ′2
W ′
)

+

(
ε2

d2
√
h

dx2
+ f ′(u)

√
h+ λ

√
h

)
W

= ε2
√
hθ′2

(
W ′′ +

1
hθ′2

d
dx

(hθ′)W ′ +
ρ

ε2h2θ′2
W

)
, (2.11)

where (2.10) is used in the last equality. We assume that ρ > 0. We define θ(x) by
a solution of

h(u(x))θ′(x) =
√
ρ

ε
. (2.12)

Specifically, the following function is a solution of (2.12):

θ(x) =
1
ε

∫ x

0

√
ρdξ

h(u(ξ))
+ θ0.

Moreover, it follows from (2.11) that W ′′(θ) +W (θ) = 0, and hence W (θ) = C
cos(θ + θ1). By (2.9) we obtain

ϕ(x) = C
√
h(u(x)) cos

(
1
ε

∫ x

0

√
ρ0 dξ

h(u(ξ))
+ x0

)
, (2.13)

where x0 := θ0 + θ1. In other words, a general solution of ε2ϕ′′ + f ′(u)ϕ+ λϕ = 0
can be written in terms of a solution u(x) of the nonlinear problem (1.1). Readers
can find more details of (2.7) and (2.13) in [8, 12, 14].

In our case the maximum value of u±n,ε(x), which is denoted by α, is given by

α :=

√
2

2 − k2
(2.14)

and (2.7) becomes

2
(
−α

2

2
+
α4

4
+
u2

2
− u4

4

)
h′′′ + 3(u− u3)h′′ +

{
3(−1 + 3u2) + 4λ

}
h′ + 12uh = 0.

(2.15)
There seems to be no solution formula of (2.7) for general nonlinearities. In the case
(2.15) every coefficient is a polynomial of u. We substitute h(u) = up into (2.15).
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Then it does not vanish, and the top term becomes

− 1
2
(p− 4)(p+ 1)(p+ 6)up+1. (2.16)

This suggests that a bi-quadratic polynomial is a candidate of a solution, since
(2.16) vanishes for p = 4. Actually, h defined by (2.19) is a solution of (2.15). We
evaluate (2.8) at a maximum point of u. Then,

2ρ0 = −f(α)h(α)h′(α) + 2(f ′(α) + λ)h(α)2,

which yields (2.18). Using h(u) and ρ0, we can construct a general solution of
ε2ϕ′′ + f(u)ϕ+ λϕ = 0. We take the Neumann boundary condition into account.
Let x0 = 0 in (2.13). Since 1/n is a half-period of u±n,ε(x), the following holds:

n

ε

∫ 1/n

0

√
ρ0 dξ

h(u±n,ε(ξ))
= jπ for j ∈ {1, 2, . . .}.

Eigenvalues can be found by solving the above equation.
Finding a solution of (2.7) is key in this theory. A solution for (2.7) was found

for

f(u) = sinu in [12], f(u) = u− u3 in [14], f(u) = e±u in [8] and f(u)

= sinhu in [1].

We summarize these results in the following lemma:

Lemma 2.2. Let j �= 0, n and j �= n/2 if n is even. Let kε be the unique solution of
(1.3). We define A0 by

A0(k, λ) :=
1
ε

∫ 1/n

0

√
ρ0(λ, k)dξ

|h(u±n,ε(ξ), λ, k)|
(2.17)

for λ ∈ {λ ∈ R; ρ0(λ, k) > 0}, where

ρ0(λ, k) :=
16
81
λ

(
λ+

3
2 − k2

)(
λ+

3 − 3k2

2 − k2

)
(λ− λ+) (λ− λ−) , (2.18)

h(u, λ, k) = u4 − 2
(
λ

3
+ 1
)
u2 +

4
9
λ2 +

4
3
λ+

4(1 − k2)
(2 − k2)2

. (2.19)

(i) Let α be defined by (2.14). If ρ0(λ, k) > 0, then either h(u, λ, k) > 0 or
h(u, λ, k) < 0 for u ∈ [√2 − α2, α

]
.
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(ii) If the equation for λ

A0(kε, λ) =
jπ

n
(2.20)

has a solution λ ∈ {λ ∈ R| ρ0(λ, k) > 0}, then λ is a j + 1-th eigenvalue of
(LP±) and

ϕ±
j,ε(x) =

√
|h(u±n,ε(x), λ, kε)| cos

(
1
ε

∫ x

0

√
ρ0(λ, kε) dξ

|h(u±n,ε(ξ), λ, kε)|

)

is an associated eigenfunction.

Proof. Here, we directly prove the lemma.

(i) By direct calculation we can check that h(u) satisfies

(F (α) − F (u))(2hh′′ − h′2) − f(u)hh′ + 2(f ′(u) + λ)h2 = 2ρ0. (2.21)

Suppose the contrary, i.e., there exists ū ∈ [
√

2 − α2, α] such that h(ū) = 0.
Since F (α) − F (ū) � 0, it follows from (2.21) that

0 � −(F (α) − F (ū))h′2 = 2ρ0 > 0,

which is a contradiction. This contradiction leads to the assertion (i).

(ii) Without loss of generality, we can assume that h(u±n,ε(x)) > 0 for x ∈ [0, 1].
Let

ϕ(x) :=
√
h(u±n,ε(x)) cos

(
1
ε

∫ x

0

√
ρ0 dξ

h(u±n,ε(ξ))

)
.

For simplicity, we write u±n,ε and h(u±n,ε) as u and h, respectively. Then,

ε2ϕxx + f ′(u)ϕ+ λϕ

=
1

2h3/2

{
ε2u′2

2
(2hh′′ − h′2) + ε2u′′hh′ − 2ρ0 + 2f ′(u)h2 + 2λh2

}

cos
(

1
ε

∫ x

0

√
ρ0 dξ

h(u(ξ))

)

=
1

2h3/2

{
(F (α) − F (u))(2hh′′ − h′2) − f(u)hh′ − 2ρ0 + 2f ′(u)h2 + 2λh2

}
cos
(

1
ε

∫ x

0

√
ρ0 dξ

h(u(ξ))

)
= 0.

By (2.20) we see that ϕ(x) has exactly j zero(s) in 0 � x � 1. It follows from
Sturm–Liouville theory that ϕ(x) is a j + 1-th eigenfunction and λ is the
associated eigenvalue. �
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Since
√

2 − α2 � u±n,ε(x) � α for 0 �x �1 (proposition 1.1), either h(u±n,ε(x))>0
or h(u±n,ε(x)) < 0 holds in the case ρ0(λ, k) > 0. Hence, A0(k, λ) is well defined. It
follows from lemma 2.2 that the j + 1-th eigenvalue is determined by (2.20) and
that the other eigenvalues are on {ρ0 > 0}. Hence, it is important to study the
function A0(k, λ).

Let

μ := (2 − k2)λ.

We sometimes use μ instead of λ, since various formulas become simple. We define

μ+ := (2 − k2)λ+= − 2 + k2 + 2
√

1 − k2 + k4, μ− := (2 − k2)λ−= − 2

+ k2 − 2
√

1 − k2 + k4. (2.22)

We will show that the other eigenvalues are on {λ ∈ R| ρ0(λ, k) > 0}. The set
{(k, λ)| k ∈ (0, 1), ρ0(λ, k) > 0} corresponds to

Σ :=
{

(k, μ)| k ∈ (0, 1), ρ0

(
μ

2 − k2
, k

)
> 0
}
. (2.23)

The set Σ is split into three components, i.e., Σ = Σ0 ∪ Σ1 ∪ Σ2, where

Σ0 := {(k, μ)| k ∈ (0, 1), μ ∈ (μ−,−3)},
Σ1 := {(k, μ)| k ∈ (0, 1), μ ∈ (−3 + 3k2, 0)},
Σ2 := {(k, μ)| k ∈ (0, 1), μ ∈ (μ+,∞)}.

(2.24)

Let

A(k, μ) := A0(k, λ), (2.25)

where A0 is defined by (2.17). Then the characteristic equation (2.20) becomes

A(k, μ) =
jπ

n
.

Figure 5 shows the graph of A(k, · ). In § 3 we rigorously study the graph of A(k, · ).
Specifically, end points of A(k, · ) are obtained in lemma 3.1 and the monotone
increase of A(k, μ) in μ is proved in lemma 3.4.

We would like to obtain a more simple expression of A(k, μ). The following lemma
indicates that A(k, μ) can be decomposed into two complete elliptic integrals of the
third kind.

Lemma 2.3. Suppose that the assumptions of lemma 2.2 hold. Then the following
hold:
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(i) If (k, μ) ∈ Σ0 ∪ Σ1, then

A(k, μ) = |sgn(ν+)M(ν+, k) − sgn(ν−)M(ν−, k)|, (2.26)

where sgn( · ) denotes the sign function,

M(ν, k) :=

√
(1 + ν)(k2 + ν)

ν
Π(ν, k), Π(ν, k)

:=
∫ 1

0

ds
(1 + νs2)

√
(1 − s2)(1 − k2s2)

, (2.27)

ν±(k, μ) :=
3k2

2
μ− 3k2 ±√−3μ2 + 6(k2 − 2)μ+ 9k4

μ(μ+ 3 − 3k2)
. (2.28)

(ii) If (k, μ) ∈ Σ2, then

A(k, μ) =
1

9k4

√
μ(μ+ 3)(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)Π̃(a, b, k),

where

Π̃(a, b, k) :=
∫ 1

0

ds√
(1 − s2)(1 − k2s2){a+ (b− s2)2} , (2.29)

a(k, μ) :=
1

12k2
(μ− μ+)(μ− μ−), b(k, μ) :=

3k2 − μ

6k2
. (2.30)

Proof. (i) We consider the case h(u±n,ε(x)) > 0 for x ∈ [0, 1]. In both cases u+
n,ε and

u−n,ε by lemma 2.2 we see that

A0(k, λ) =
√
ρ0

ε

∫ 1/n

0

dξ
h(u−n,ε(ξ))

,

because ∫ 1/n

0

dξ
h(u+

n,ε(ξ))
=
∫ 1/n

0

dξ
h(u−n,ε(ξ))

.

Using the change of variables w = u−n,ε(ξ), we have

A0(k, λ) =
√
ρ0

ε

∫ α

√
2−α2

dw∣∣∣du−
n,ε

dx (ξ)
∣∣∣h(u−n,ε(ξ))

=
√
ρ0

2

∫ α

√
2−α2

dw√
F (α) − F (w)h(w)

,

where we use

ε2
(

du−n,ε

dx

)2

= 2(F (α) − F (u−n,ε)).
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In order to bring the integral closer to the expression of the complete elliptic integral
of the third kind, we let s = w/α. Since

2(F (α) − F (αs)) =
α4

2
(1 − s2)(s2 − 1 + k2),

we have

A0(k, λ) =
√

2ρ0

α

∫ 1

√
1−k2

ds√
(1 − s2)(s2 − 1 + k2)h(αs)

. (2.31)

We define σ± by

σ± :=
α2

λ
3 + 1 ±

√
3k4−(2−k2)2(λ2+2λ)

3(2−k2)2

. (2.32)

Then

1
h(αs)

=
√

3
2α2

√−(λ− λ+)(λ− λ−)

(
σ−

1 − σ−s2
− σ+

1 − σ+s2

)
. (2.33)

Note that −(λ− λ+)(λ− λ−) > 0 for (k, μ) ∈ Σ0 ∪ Σ1. Using (2.33), we have

A0(k, λ) =

√
6ρ0(k, λ)

2α3
√−(λ− λ+)(λ− λ−)

∫ 1

√
1−k2

1√
(1 − s2)(s2 − 1 + k2)(

σ−
1 − σ−s2

− σ+

1 − σ+s2

)
ds.

Using (2.18), which is the definition of ρ0, and(
λ+

3
2 − k2

)(
λ+

3 − 3k2

2 − k2

)
=

4α4

9σ+σ−
,

we have

A0(k, λ) =

√
(2 − k2)(−λ)

3σ+σ−
(σ−Π0(σ−, k) − σ+Π0(σ+, k)) ,

where

Π0(σ, k) :=
∫ 1

√
1−k2

ds
(1 − σs2)

√
(1 − s2)(s2 − 1 + k2)

.

Using the change of variables s :=
√

1 − k2τ2, we have

Π0(σ, k) =
∫ 1

0

dτ
(1 − σ + σk2τ2)

√
(1 − τ2)(1 − k2τ2)

=
1

1 − σ
Π
(
k2σ

1 − σ
, k

)
.

Therefore,

A0(k, λ) =

√
(2 − k2)(−λ)

3σ+σ−

(
σ−

1 − σ−
Π
(
k2σ−

1 − σ−
, k

)
− σ+

1 − σ+
Π
(
k2σ+

1 − σ+
, k

))
.

Asymptotic formulas of the eigenvalues for the linearization 325

https://doi.org/10.1017/prm.2023.95 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.95


Since λ = μ/(2 − k2), we can check that

ν+=
k2σ−

1 − σ−
and ν−=

k2σ+

1 − σ+
. (2.34)

Here σ± are given by (2.32) and ν± are given by (2.28). Using

σ+=
ν−

ν−+k2
and σ−=

ν+
ν++k2

,

by lemma 2.4 below we have

A(k, μ) =

√−μ
3

√
(ν++k2)(ν−+k2)

ν+ν−

(ν+
k2

Π(ν+, k) − ν−
k2

Π(ν−, k)
)

=
1
k2

√−μ
3

(√∣∣∣∣ν+(ν++k2)(ν−+k2)
ν−

∣∣∣∣sgn(ν+)Π(ν+, k)

−
√∣∣∣∣ν−(ν++k2)(ν−+k2)

ν+

∣∣∣∣sgn(ν−)Π(ν−, k)

)

= sgn(ν+)M(ν+, k) − sgn(ν−)M(ν−, k). (2.35)

Here M and Π are defined by (2.27). When h(u−n,ε(x)) < 0 for x ∈ [0, 1], we have

A0(k, λ) =
√
ρ0

ε

∫ 1/n

0

dξ
−h(u−n,ε(ξ))

= − (sgn(ν+)M(ν+, k)−sgn(ν−)M(ν−, k))>0.

We obtain (2.26).
(ii) We can check that if (k, μ) ∈ Σ2, then h(u±n,ε(x)) > 0 for x ∈ [0, 1]. By the

same way as in (i) we have (2.31). Using the change of variables s :=
√

1 − k2τ2,
we have

A(k, μ) =
√

2ρ0

α5k4

∫ 1

0

dτ√
(1 − τ2)(1 − k2τ2) {a+ (b− τ2)2} ,

where

a =
1

α4k4

(
λ2 + 2λ

3
− k4

(2 − k2)2

)
=

1
12k4

(μ− μ+)(μ− μ−),

b =
1

α2k2

(
α2 − 1 − λ

3

)
=

3k2 − μ

6k2
.

In this case the polynomial a+ (b− τ2)2 cannot be factored into two real quadratic
polynomials. We have

A(k, μ) =
1

9k4

√
μ(μ+ 3)(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)Π̃(a, b, k).

The proof of (ii) is complete. �
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The following equality, which is somewhat nontrivial, is left in the proof of lemma
2.3.

Lemma 2.4. Let σ± and ν± be defined by (2.32) and (2.28), respectively. If (k, μ) ∈
Σ0 ∪ Σ1, then

1
k2

√−μ
3

√∣∣∣∣ν±(ν++k2)(ν−+k2)
ν∓

∣∣∣∣ =
√

(1 + ν±)(k2 + ν±)
ν±

. (2.36)

Proof. By (2.28) we can check that

ν++ν−=
3k2(μ− 3k2)
μ(μ+ 3 − 2k2)

, ν+ν−=
9k4

μ(μ+ 3 − 3k2)
. (2.37)

Using (2.37), we have

− μ

3k4

(ν++k2)(ν−+k2)
ν±ν∓

= − μ

3k4

ν+ν−+k2(ν++ν−) + k4

ν+ν−

= − 1
27k4

μ(μ+ 3)(μ+ 3 − 3k2). (2.38)

On the other hand, we consider the right-hand side of (2.36). Let γ± := α2/σ±.
Then γ± satisfies

γ2
± − 2

(
λ

3
+ 1
)
γ± +

4
9
λ2 +

4
3
λ+

4(1 − k2)
(2 − k2)2

= 0. (2.39)

Since

1
ν±

=
1
k2

(
1
σ∓

− 1
)

=
1
k2

(
2 − k2

2
γ∓ − 1

)
,

we have

(1 + ν±)(k2 + ν±)
ν3±

=
1
ν±

(
1 +

1
ν±

)(
1 +

k2

ν±

)

=
1
k2

(
2 − k2

2
γ∓ − 1

)(
1 +

2 − k2

2k2
γ∓ − 1

k2

)
(

1 +
2 − k2

2
γ∓ − 1

)

=
(2 − k2)3

8k4

(
γ2
∓ − 2γ∓ +

4(1 − k2)
(2 − k2)2

)
γ∓.
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By (2.39) we have

(1 + ν±)(k2 + ν±)
ν3±

=
(2 − k2)3

8k4

(
2
3
λγ∓ − 4

9
λ2 − 4

3
λ

)
γ∓

=
(2 − k2)3

12k4
λ

{
γ2
∓ − 2

(
λ

3
+ 1
)
γ∓

}

= − (2 − k2)3

12k4
λ

(
4
9
λ2 +

4
3
λ+

4(1 − k2)
(2 − k2)2

)

= − 1
27k4

μ(μ+ 3)(μ+ 3 − 3k2). (2.40)

It follows from (2.40) and (2.38) that

− μ

3k4

(ν++k2)(ν−+k2)
ν±ν∓

=
(1 + ν±)(k2 + ν±)

ν3±
.

Multiplying both sides by ν2
±, we have

− μ

3k4

ν±(ν++k2)(ν−+k2)
ν∓

=
(1 + ν±)(k2 + ν±)

ν±
.

The assertion holds. �

Now the proof of lemma 2.3 is complete.

3. Fundamental properties of A
Let A(k, μ) be defined by (2.25), and let Σ be defined by (2.23).

Lemma 3.1. Let k ∈ (0, 1) be fixed and (k, μ) ∈ Σ, and let μ± be defined by (2.22).
Then the following hold:

(i) A(k, μ) → 0 as μ→ μ−.

(ii) A(k, μ) → π/2 as μ→ −3.

(iii) A(k, μ) → π/2 as μ→ −3 + 3k2.

(iv) A(k, μ) → π as μ→ 0.

(v) A(k, μ) → π as μ→ μ+.

(vi) A(k, μ) → ∞ as μ→ ∞.
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Proof. (i) In this case we can check that h(u±n,ε(x)) > 0 for x ∈ [0, 1]. Let ν± be
defined by (2.28). We see that there exists ν∗ such that

lim
μ→μ−

ν+=ν∗, lim
μ→μ−

ν−=ν∗.

By direct calculation we can check that −1 < ν∗ < 0. Let M be defined by
(2.27). Since

lim
ν+→ν∗

M(ν+, k) = M(ν∗, k), lim
ν−→ν∗

M(ν−, k) = M(ν∗, k),

we have

lim
μ→μ−

A(k, μ) = 0.

(ii) In this case we can check that h(u±n,ε(x)) > 0 for x ∈ [0, 1]. We see that ν+ →
−k2 (μ→ −3) and ν− → −1 (μ→ −3). By lemma A.9 we have

lim
ν+→−k2

sgn(ν+)M(ν+, k) = 0, lim
ν−→−1

sgn(ν−)M(ν−, k) = −π
2
.

Then,

lim
μ→−3

A(k, μ) = 0 −
(
−π

2

)
=
π

2
.

(iii) In this case we can check that h(u±n,ε(x)) < 0 for x ∈ [0, 1]. We see that ν+ →
−k2 (μ→ −3 + 3k2) and ν− → ∞ (μ→ −3 + 3k2). By lemma A.9 we have

lim
ν+→−k2

sgn(ν+)M(ν+, k) = 0, lim
ν−→∞ sgn(ν−)M(ν−, k) =

π

2
.

Then,

lim
μ→−3+3k2

A(k, μ) = −
(
0 − π

2

)
=
π

2
.

(iv) In this case we can check that h(u±n,ε(x)) < 0 for x ∈ [0, 1]. We see that ν+ →
−1 (μ→ 0) and ν− → ∞ (μ→ 0). By lemma A.9 we have

lim
ν+→−1

sgn(ν+)M(ν+, k) = −π
2
, lim

ν−→∞ sgn(ν−)M(ν−, k) =
π

2
.

Then,

lim
μ→0

A(k, μ) = −
(
−π

2
− π

2

)
= π.

Asymptotic formulas of the eigenvalues for the linearization 329

https://doi.org/10.1017/prm.2023.95 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.95


(v) In this case we can check that h(u±n,ε(x)) > 0 for x ∈ [0, 1]. Let a, b be defined
by (2.30). By lemmas 2.3 and A.7 we have

A(k, μ) =
1

9k4

√
μ(μ+ 3)(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)Π̃(a, b, k)

=
2

3
√

3k2

√
μ(μ+ 3)(μ+ 3 − 3k2)

√
aΠ̃(a, b, k)

→ 2
3
√

3k2

√
μ+(μ++3)(μ++3 − 3k2)

π

2
√
b0(1 − b0)(1 − k2b0)

as μ→ μ+.

Here, b0 := (3k2 − μ+)/6k2. Since

2
3
√

3k2

√
μ+(μ++3)(μ++3 − 3k2) =

2
3
√

3k2

√
(1 − k2 + k4)μ++3k4(2 − k2),

π

2
√
b0(1 − b0)(1 − k2b0)

=
3
√

3πk2

2
√

(1 − k2 + k4)μ++3k4(2 − k2)
,

we have

lim
μ→μ+

A(k, μ) = π.

(vi) Let λ± be defined by (2.4). We see that λ+ : (0, 1) → R is increasing in k,

lim
k→0

λ+(k) = 0, lim
k→1

λ+(k) = 1.

Hence, 0 < λ+ < 1 for k ∈ (0, 1).
Let a(k, μ), b(k, μ) be defined by (2.30). Since λ > λ+ > 0, we have see μ >
μ+ > 0 and

(b(k, μ) − 1)2 − b(k, μ)2 =
μ

3k2
> 0.

Hence,

0 < a(k, μ) + b(k, μ)2 < a(k, μ) + (b(k, μ) − 1)2.

Using the inequality

Π̃(a, b, k) � min
{

1
a+ b2

,
1

a+ (b− 1)2

}
K(k)
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for any a > 0, b ∈ (0, 1), k ∈ (0, 1), we have

A(k, μ) =
1

9k4

√
μ(μ+ 3)(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)Π̃(a(k, μ), b(k, μ), k)

� 1
9k4

√
μ(μ+ 3)(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)

K(k)
a(k, μ) + (b(k, μ) − 1)2

=

√
(μ+ 3 − 3k2)(μ− μ+)(μ− μ−)

μ(μ+ 3)
K(k)

� c
√
μ− μ+K(k),

because there exists c > 0 such that
√

(μ+3−3k2)(μ−μ−)
μ(μ+3) > c for μ > μ+. Since

A(k, μ) � c
√
μ− μ+K(k) → ∞ as μ→ ∞,

the assertion (vi) holds. �

Let ν± be defined by (2.28). We need two lemmas to prove a monotonicity of
A(k, μ) in μ.

Lemma 3.2. Let ν± be defined by (2.28). Then the following hold:

∂

∂μ

[{
k2

2

(
1
ν+

+
1
ν−

)
+ 1
}(

− 1
ν+

+
1
ν−

)]
=

−{μ2 + 3(2 − k2)μ+ 6(1 − k2)}
3
√

3k2
√−μ2 + (2k2 − 4)μ+ 3k4

,

∂

∂μ

(
− 1
ν+

+
1
ν−

)
=

−(μ− k2 + 2)√
3k2
√−μ2 + (2k2 − 4)μ+ 3k4

.

Proof. By (2.28) we can check that

1
ν+

+
1
ν−

=
μ− 3k2

3k2
, − 1

ν+
+

1
ν−

=

√−μ2 + (2k2 − 4)μ+ 3k4

√
3k2

.

Then by direct calculation we obtain the conclusion. We omit details. �

We define

B(k, μ) :=
{
μ2 + 3(2 − k2)μ+ 6(1 − k2)

}
K(k) − 3(μ− k2 + 2)E(k), (3.1)

since a sign of B(k, μ) is important in the study of ∂A/∂μ.

Lemma 3.3. The following holds:

B(k, 0) < 0 for k ∈ (0, 1).
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Proof. It is obvious that B(0, 0) = 0. By lemma A.1 (i) and (ii) we have

∂B
∂k

(k, 0) = −12kK(k) + 6(1 − k2)
E(k) − (1 − k2)K(k)

k(1 − k2)

+ 6kE(k) + 3(k2 − 2)
E(k) −K(k)

k

= 9k(E(k) −K(k)) < 0

for k ∈ (0, 1). Thus, the assertion holds. �

Lemma 3.4. Let Σi, i = 0, 1, 2, be defined by (2.24). For each i = 0, 1, 2,

∂A
∂μ

(k, μ) > 0 for (k, μ) ∈ Σi. (3.2)

Proof. We consider the case (k, μ) ∈ Σ0. Let ν± be defined by (2.28). By (2.37) and
(2.40) we can see that

− 1 < ν−<ν+<− k2,
(1 + ν−)(k2 + ν−)

ν2−
< 0,

(1 + ν+)(k2 + ν+)
ν2
+

< 0. (3.3)

Then, A(k, μ) = −M(ν+, k) + M(ν−, k). By lemma A.1(iv) we have

∂A
∂μ

= −∂M
∂ν+

∂ν+
∂μ

+
∂M
∂ν−

∂ν−
∂μ

= −1
2

√
(1 + ν+)(k2 + ν+)

ν+

( −K(k)
ν+(1 + ν+)

+
E(k)

(1 + ν+)(k2 + ν+)

)
∂ν+
∂μ

+
1
2

√
(1 + ν−)(k2 + ν−)

ν−

( −K(k)
ν−(1 + ν−)

+
E(k)

(1 + ν−)(k2 + ν−)

)
∂ν−
∂μ

.

By (3.3) we have

∂A
∂μ

= −1
2

√
ν3
+

(1 + ν+)(k2 + ν+)

(
k2 + ν+
ν3
+

K(k) − 1
ν2
+

E(k)
)
∂ν+
∂μ

+
1
2

√
ν3−

(1 + ν−)(k2 + ν−)

(
k2 + ν−
ν3−

K(k) − 1
ν2−
E(k)

)
∂ν−
∂μ

.

By (2.40) we have

(1 + ν±)(k2 + ν±)
ν3±

= − 1
27k4

μ(μ+ 3)(μ+ 3 − 3k2) =: R.
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Then,

∂A
∂μ

=
1

2
√R

{(
−k

2 + ν+
ν3
+

∂ν+
∂μ

+
k2 + ν−
ν3−

∂ν−
∂μ

)
K(k)

+
(

1
ν2
+

∂ν+
∂μ

− 1
ν2−

∂ν−
∂μ

)
E(k)

}

=
1

2
√R

[
∂

∂μ

{(
−k

2

2

(
1
ν+

+
1
ν−

)
− 1
)(

− 1
ν+

+
1
ν−

)}
K(k)

+
∂

∂μ

(
− 1
ν+

+
1
ν−

)
E(k)

]
.

By lemma 3.2 we have

∂A
∂μ

=
B(k, μ)

6
√

3k2
√R√−μ2 + (2k2 − 4)μ+ 3k4

,

where B(k, μ) is defined by (3.1). Since (k, μ) ∈ Σ0, we see that −3(μ− k2 + 2) > 0.
By lemma A.2 we have

B(k, μ) =
{
μ2 + 3(2 − k2)μ+ 6(1 − k2)

}
K(k) − 3(μ− k2 + 2)E(k)

>
{
μ2 + 3(2 − k2)μ+ 6(1 − k2) − 3(μ− k2 + 2)(1 − k2)

}
K(k)

=
{
μ2 + 3μ+ 3k2(1 − k2)

}
K(k) > 0.

Thus, (3.2) holds for (k, μ) ∈ Σ0.
We consider the case (k, μ) ∈ Σ1. By (2.37) and (2.40) we can see that

ν+<0 < ν−,
(1 + ν−)(k2 + ν−)

ν2−
> 0,

(1 + ν+)(k2 + ν+)
ν2
+

< 0.

Then, A(k, μ) = M(ν−, k) + M(ν+, k). By a similar calculation as in (i) we have

∂A
∂μ

=
1

2
√R

[
∂

∂μ

{(
k2

2

(
1
ν+

+
1
ν−

)
+ 1
)(

− 1
ν+

+
1
ν−

)}
K(k)

+
∂

∂μ

(
1
ν+

− 1
ν−

)
E(k)

]

=
−B(k, μ)

6
√

3k2
√R√−μ2 + (2k2 − 4)μ+ 3k4

.

We show that B(k, μ) < 0 for (k, μ) ∈ Σ1. Since B(k, μ) is convex in μ, it is enough
to show that B(k,−3 + 3k2) < 0 and B(k, 0) < 0. By lemma A.2 we have

B(k,−3 + 3k2) = −3(1 − k2)K(k) + 3(1 − 2k2)E(k)

� −3
1 − k2

1 − k2

2

E(k) + 3(1 − 2k2)E(k) = −3k2(3 − 2k2)
2 − k2

E(k) < 0

for k ∈ (0, 1). By lemma 3.3 we see that B(k, 0) < 0 for k ∈ (0, 1). Thus, (3.2) holds
for (k, μ) ∈ Σ1.
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We consider the case (k, μ) ∈ Σ2. In this case by (2.35) we see that A(k, μ) =
M(ν+, k) −M(ν−, k), where we consider M(ν+, k) and M(ν−, k) as complex-
valued functions. Then by a similar calculation as in (i) we obtain

∂A
∂μ

=
−B(k, μ)

6
√

3k2
√R√−μ2 + (2k2 − 4)μ+ 3k4

,

Since R < 0 and −μ2 + (2k2 − 4)μ+ 3k4 < 0, we have

∂A
∂μ

=
B(k, μ)

6
√

3k2
√|R|√| − μ2 + (2k2 − 4)μ+ 3k4| .

Thus, we show that B(k, μ) > 0 for μ > μ+. Since μ− k2 + 2 > 0 for μ > μ+, by
lemma A.2 we have

B(k, μ) �
{
μ2 + 3(2 − k2)μ+ 6(1 − k2)

}
K(k) − 3(μ− k2 + 2)

(
1 − 1

2
k2

)
K(k)

=
{
μ2 + 3

(
1 − 1

2
k2

)
μ− 3

2
k4

}
K(k)

>

{(
k2 − 2 + 2

√
1 − k2 + k4

)2

+ 3
(

1 − 1
2
k2

)(
k2 − 2 + 2

√
1 − k2 + k4

)
− 3

2
k4

}
K(k)

= 2
√

1 − k2 + k4

{√
1 − k2 + k4 −

(
1 − 1

2
k2

)}
K(k) > 0.

Thus, (3.2) holds for (k, μ) ∈ Σ2. �

4. Asymptotic formulas

In this section let λj(k), j � 0, denote the j + 1-th eigenvalue of (LP±) and let
μj(k) := (2 − k2)λj(k).

We know the following:

• A(k, μ) is defined on Σ0 ∪ Σ1 ∪ Σ2 (lemma 2.2),

• A(k, μ) is increasing in μ (lemma 3.4),

• the range of A(k, · ) is R+ \ {π/2, π}, where R+ := {x| x > 0} (lemma 3.1).

The equation

A(k, μj) =
jπ

n
, j �= 0, n/2, n

has a unique solution μj in Σ0 for 0 < j < n/2, in Σ1 for n/2 < j < n and in Σ2 for
j > n. Then, λj = μj/(2 − k2) is the j + 1-th eigenvalue for j �= 0, n/2, n. In this
section we obtain an asymptotic expansion of λj as k → 1 for j �= 0, n/2, n.
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Proof of theorem 1.3(i). Let λ± be defined by (2.4). We consider the case λ− <
λj < −3/(2 − k2), which corresponds to the case 0 < j < n/2. Because of the
definition of λ− we have

2
(2 − k2)(2 − k2 +

√
1 − k2 + k4)

=
λ−
3 + 1
1 − k2

�
λj

3 + 1
1 − k2

�
−3

3(2−k2) + 1

1 − k2
=

1
2 − k2

,

and hence

lim
k→1

λj

3 + 1
1 − k2

= 1. (4.1)

We define rj(k) by

rj :=
λj + 3
λ−+3

− 1.

It follows from corollary 1.6(i) that λ− + 3 > 0 for k close to 1. Since rj =
(λj − λ−)/(λ− + 3) > 0, We have

0 � λj + 3
λ−+3

− 1 �
−3

2−k2 + 3

−1 − 2
√

1−k2+k4

2−k2 + 3
− 1

=
1 − k2

2(k2 +
√

1 − k2 + k4)
=
(

1
4

+ o(1)
)

(1 − k2) as k → 1.

Therefore,

0 � rj
1 − k2

� 1
4

+ o(1) as k → 1.

Then there exists r∗j ∈ [0, 1/4] such that

lim
m→∞

rj(km)
1 − k2

m

= r∗j , i.e., rj = (r∗j + o(1))(1 − k2
m) as m→ ∞

with a suitable monotonically increasing sequence {km}∞m=1 satisfying km → 1 as
m→ ∞.

Let σ±(km) be defined by (2.32) with km and λj(km). Let ν±(km) be defined by
(2.28) with km and μj(km). Next we calculate the limit limm→∞ (1 + ν±)/(1 − k2

m).
By (2.4) we see that

λ−+3 = 3(1 − k2) − 15
4

(1 − k2)2 + o((1 − k2)2) as k → 1. (4.2)

Using (4.2), we have

λj − λ−=rj(λ−+3) = (r∗j + o(1))(1 − k2
m) · (3 + o(1))(1 − k2

m)

= (3r∗j + o(1))(1 − k2
m)2. (4.3)

Since

3k4 − (2 − k2)2(λ2 + 2λ) = −(2 − k2)2(λ− λ+)(λ− λ−),
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by (4.1) and (4.3) we have

1
(1 − k2

m)σ−
=

2 − k2
m

2

(
λj

3 + 1
1 − k2

m

− 1
1 − k2

m

√
−(2 − k2

m)2(λj − λ+)(λj − λ−)
3(2 − k2

m)2

)

=
2 − k2

m

2

(
λj

3 + 1
1 − k2

m

− 1
1 − k2

m√
−(1 + o(1))2(−4 + o(1))3(r∗j + o(1))(1 − k2

m)2

3

⎞
⎠

=
1 − 2

√
r∗j

2
+ o(1) as m→ ∞. (4.4)

Moreover,

1
σ−

=

(
1 − 2

√
r∗j

2
+ o(1)

)
(1 − k2

m) → 0 as m→ ∞. (4.5)

Thus, by (4.5), (4.4) and (2.34) we have

ν∗+ := lim
m→∞

1 + ν+
1 − k2

m

= lim
m→∞

1
(1−k2

m)σ−
− 1

1
σ−

− 1
=

1 + 2
√
r∗j

2
. (4.6)

Similarly we have

ν∗− := lim
m→∞

1 + ν−
1 − k2

m

= lim
m→∞

1
(1−k2

m)σ+
− 1

1
σ+

− 1
=

1 − 2
√
r∗j

2
. (4.7)

By lemma A.5 with (4.6) and (4.7) we have

lim
m→∞A(km, μj(km)) = lim

m→∞ |sgn(ν+)M(ν+, km) − sgn(ν−)M(ν−, km)|

=

∣∣∣∣∣(−1)

(
π

2
− tan−1

√
ν∗+

1 − ν∗+

)

−(−1)

(
π

2
− tan−1

√
ν∗−

1 − ν∗−

)∣∣∣∣∣
=

∣∣∣∣∣tan−1

√
1 + 2

√
r∗j

1 − 2
√
r∗j

− tan−1

√
1 − 2

√
r∗j

1 + 2
√
r∗j

∣∣∣∣∣
= 2 tan−1

√
1 + 2

√
r∗j

1 − 2
√
r∗j

− π

2
.

Solving the equation

2 tan−1

√
1 + 2

√
r∗j

1 − 2
√
r∗j

− π

2
=
jπ

n
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with respect to r∗j , we have r∗j = 1
4 sin2( jπ

n ), which implies

lim
k→1

rj(k)
1 − k2

=
1
4

sin2

(
jπ

n

)
.

By (4.2) we have

λj = −3 + (λ−+3) + rj(λ−+3)

= −3 + 3(1 − k2) +
3
4

(
sin2

(
jπ

n

)
− 5
)

(1 − k2)2 + o((1 − k2)2) as k → 1.

(4.8)

�

Proof of theorem 1.3(ii). We consider the case (−3 + 3k2)/(2 − k2) < λj < 0,
which corresponds to the case n/2 < j < n. We define rj(k) by

rj :=
λj

1 − k2
.

It is obvious that λj → 0 as k → 1. Since

1
1 − k2

−3 + 3k2

2 − k2
<

λj

1 − k2
< 0,

there exists r∗j ∈ [−3, 0] such that

lim
m→∞ rj(km) = r∗j , i.e., λj = (r∗j + o(1))(1 − k2

m) as m→ ∞

with a suitable monotonically increasing sequence {km}∞m=1 satisfying km → 1 as
m→ ∞.

Let σ±(km) be defined by (2.32) with km and λj(km). Let ν±(km) be defined
by (2.28) with km and μj(km). We calculate the limit limm→∞ (1 + ν+)/(1 − k2

m).
Since

Dm :=
3k4

m − (2 − k2
m)2(λ2

j + 2λj)
3(2 − k2

m)2
→ 1 as m→ ∞,

we have

1
(1 − k2

m)σ−
=

1
1 − k2

m

2 − k2
m

2

(
λj

3
+ 1 −

√
Dm

)

=
2 − k2

m

6
λj

1 − k2
m

+
2 − k2

m

2(1 +
√
Dm)

(
4

(2 − k2
m)2

+
2
3

λj

1 − k2
m

+
1
3

λj

1 − k2
m

λj

)

→ 1 +
r∗j
3

as m→ ∞. (4.9)
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Moreover,

1
σ−

=
(

1 +
r∗j
3

+ o(1)
)

(1 − k2
m) → 0 as m→ ∞. (4.10)

Hence, by (4.10), (4.9) and (2.34) we have

ν∗+ := lim
m→∞

1 + ν+
1 − k2

m

= lim
m→∞

1
(1−k2

m)σ−
− 1

1
σ−

− 1
= −r

∗
j

3
. (4.11)

Since
1
σ+

=
2 − k2

m

2

(
λj

3
+ 1 +

√
Dm

)
→ 1 as m→ ∞

and σ+ < 1, we have

ν−=
k2

mσ+

1 − σ+
→ ∞ as m→ ∞.

Since

0 � 1
ν−

=
2 − k2

m

2k2
m

2λj

3

(
2λj

3 + 2−2k2
m

2−k2
m

)
λj

3 − k2
m

2−k2
m

−√
Dm

� C0(1 − k2
m),

by lemma A.3 we have

0 � K(km)√
ν−+1

� K(km)√
ν−

�
√
C0(1 − k2

m)

(
log

1√
1 − k2

m

+ 2 log 2 + o(1)

)

→ 0 as m→ ∞.

Let A and M be given in lemma 2.3. By lemma A.5 with (4.11) and lemma A.6
we have

lim
m→∞A(km, μj(km)) = lim

m→∞ |sgn(ν+)M(ν+, km) − sgn(ν−)M(ν−, km)|
= lim

m→∞ |(−1)M(ν+, km)

−
√
k2

m + ν−
ν−

(
J(ν−, km) +

K(km)√
ν−+1

)∣∣∣∣∣
=

∣∣∣∣∣(−1)

(
π

2
− tan−1

√
ν∗+

1 − ν∗+

)
− π

2

∣∣∣∣∣
= π − tan−1

√
−r∗j

3 + r∗j
.

Solving the equation

π − tan−1

√
−r∗j

3 + r∗j
=
jπ

n
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with respect to r∗j , we have r∗j = −3 sin2( jπ
n ), which implies

lim
k→1

rj(k) = −3 sin2

(
jπ

n

)
.

Since λj/(1 − k2) = r∗j + o(1), we have

λj = −3 sin2

(
jπ

n

)
(1 − k2) + o(1 − k2) as k → 1. �

Proof of theorem 1.3(iii). Let λ± be defined by (2.4). We consider the case λj > λ+,
which corresponds to the case j > n. Let A be given in lemma 2.3 and let μ± be
defined by (2.22). By the same argument as in the proof of lemma 3.1(vi) we have

jπ

n
= A(k, μ) � c

√
μj − μ+K(k).

This implies that

lim
k→1

(μj(k) − μ+(k)) = 0,

and in particular limk→1 μj(k) = 1,

lim
k→1

a(k, μj(k)) = 0, lim
k→1

b(k, μj(k)) =
1
3
,

where a(k, μj) and b(k, μj) are defined by (2.30). Using

a(k, μj) + (b(k, μj) − 1)2 =
1

9k4
μj(μj + 3),

by lemma A.8 we have

√
μj − μ+K(k) =

(
9k4√

μj(μj + 3)(μj + 3 − 3k2)(μj − μ−)
jπ

n

−
√
μj − μ+J̃(a(k, μj), b(k, μj), k)√

a(k, μj)

){
a(k, μj) + (1 − b(k, μj))2

}

=

√
μj(μj + 3)

(μj + 3 − 3k2)(μj − μ−)
jπ

n

− 2μj(μj + 3)J̃(a(k, μj), b(k, μj), k)
3
√

3k2
√
μj − μ−

→ jπ

n
− π as k → 1.

Here we used

lim
k→1

√
μj(μj + 3)

(μj + 3 − 3k2)(μj − μ−)
=

√
1(1 + 3)

(1 + 3 − 3)(1 − (−3))
= 1,
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lim
k→1

2μj(μj + 3)J̃(a(k, μj), b(k, μj), k)
3
√

3k2
√
μj − μ−

=
2 · 1(1 + 3) π

2
√

1
3 (1− 1

3 )
3
√

3 · 12 ·√1 − (−3)
= π.

By lemmas 2.1 and (1.3) we see that 1 − k2 = 16 e−2/nε(1 + o(1)) and K(k) =
1/(1 + o(1))nε. Hence,

1 − k2 = o

(
1

K(k)2

)
.

Using this relation, we have

λj = λ++
1

2 − k2

(j − n)2π2

n2

1
K(k)2

+ o

(
1

K(k)2

)

= 1 − 3(1 − k2) + o(1 − k2) +
(j − n)2π2

n2

1
K(k)2

(1 + o(1)) + o

(
1

K(k)2

)

= 1 +
(j − n)2π2

n2

1
K(k)2

+ o

(
1

K(k)2

)
. �

Proof of corollary 1.7. (i) By (4.8) and lemma 2.1 we have

λj = −3 + (1 + rj)(λ−+3)

= −3 +
{

1 +
1
4

(
sin2 jπ

n

)
(1 − k2) + o(1 − k2)

}
(λ−+3)

= −3 +
{

1 + 4
(

sin2 jπ

n

)
e−

2
nε + o(e−

2
nε )
}

(λ±0,ε + 3).

(ii) By theorem 1.3(ii) and lemma 2.1 we have

λj = −3
(

sin2 jπ

n

)
(1 − k2) + o(1 − k2) = −48

(
sin2 jπ

n

)
e−

2
nε + o(e−

2
nε ).

(iii) By theorem 1.3(iii), corollary 1.6(iii) and (1.3) we have

λj = λ++
(j − n)2π2

(2 − k2)n2K(k)2
+ o

(
1

K(k)2

)
= λ++(j − n)2π2ε2 + o(ε2)

= 1 + (j − n)2π2ε2 + o(ε2).

�
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Appendix A. Elliptic integrals and functions

A.1. Elliptic functions

Let k ∈ (0, 1). We denote the complete elliptic integrals of the first kind by

K(k) :=
∫ 1

0

ds√
(1 − s2)(1 − k2s2)

.

Jacobi’s elliptic function sn(x, k) is an odd, periodic and analytic function with the
period 4K(k) as a function for the real domain, and is defined locally by

x =
∫ sn(x,k)

0

ds√
(1 − s2)(1 − k2s2)

(A.1)

for x ∈ [0,K(k)]. The function cn(x, k) is an even and 4K(k)-periodic function
defined locally by

cn(x, k) :=
√

1 − sn2(x, k),

for x ∈ [0,K(k)] and dn(x, k) is an even and 2K(k)-periodic function defined by

dn(x, k) :=
√

1 − k2sn2(x, k). (A.2)

In particular,

sn2(x, k) + cn2(x, k) = 1, k2sn2(x, k) + dn2(x, k) = 1

for x ∈ R and k ∈ (0, 1).

A.2. Complete elliptic integrals

Let k ∈ [0, 1) and ν ∈ C \ (−∞,−1]. The complete elliptic integrals of the second
and third kind are defined by

E(k) :=
∫ 1

0

√
1 − k2s2

1 − s2
ds, Π(ν, k) :=

∫ 1

0

ds
(1 + νs2)

√
(1 − s2)(1 − k2s2)

,

respectively. The function K(k) is monotonically increasing in k,

K(0) =
π

2
, lim

k→1
K(k) = ∞

and E is monotonically decreasing in k,

E(0) =
π

2
, lim

k→1
E(k) = 1.

In [10] the following modified complete integral of the third kind was introduced

M(ν, k) :=

√
(1 + ν)(k2 + ν)

ν
Π(ν, k)

for k ∈ (0, 1) and ν ∈ C \ ((−∞,−1] ∪ [−k2, 0]). The function M appears in (2.27).
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We give standard formulas forK(k), E(k) and Π(ν, k) in lemmas A.1–A.3 without
proofs. See [3] for details.

Lemma A.1. Let k ∈ (0, 1) and ν �= 0,−1,−k2. Then,

(i)
dE
dk

(k) =
E(k) −K(k)

k
.

(ii)
dK
dk

(k) =
E(k) − (1 − k2)K(k)

k(1 − k2)
.

(iii)
∂Π
∂k

(ν, k) =
k(E(k) − (1 − k − 2)Π(ν, k))

(k2 + ν)(1 − k2)
.

(iv)
∂Π
∂ν

(ν, k) = − K(k)
2ν(1 + ν)

+
E(k)

2(1 + ν)(k2 + ν)
+

(k2 − ν2)Π(ν, k)
2ν(1 + ν)(k2 + ν)

.

Lemma A.2. Let k ∈ (0, 1). Then

(1 − k2)K(k) < E(k) <
(

1 − 1
2
k2

)
K(k).

Lemma A.3. Let k ∈ (0, 1). Then

lim
k→1

(
K(k) − log

1√
1 − k2

− 2 log 2
)

= 0.

Lemmas A.4–A.6 are formulas for Π(ν, k). Proofs can be found in [14].

Lemma A.4. Let k ∈ (0, 1) and ν > −1. Then,

(i) lim
ν→−1

√
1 + νΠ(ν, k) =

π

2
√

1 − k2
.

(ii) lim
ν→∞

√
1 + νΠ(ν, k) =

π

2
.

Lemma A.5. Let k ∈ (0, 1). Suppose that ν is a continuous function on (0, 1) with
−1 < ν(k) < −k2 for k ∈ (0, 1). Assume that there exists ν∗ ∈ [0, 1] such that

lim
k→1

1 + ν(k)
1 − k2

= ν∗.

Then, for each ν∗ ∈ [0, 1],

lim
k→1

√
−(1 + ν(k))(k2 + ν(k))Π(ν(k), k) =

π

2
− tan−1

√
ν∗

1 − ν∗

and

lim
k→1

M(ν(k), k) =
π

2
− tan−1

√
ν∗

1 − ν∗
.
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Lemma A.6. Let J(ν, k) :=
√

1 + νΠ(ν, k) − 1√
1+ν

K(k). Then,

lim
ν→∞,k→1

J(ν, k) =
π

2
.

In [14] a kind of a complete elliptic integral Π̃(a, b, k) defined by (2.29) was
introduced. Lemmas A.7 and A.8 are formulas for Π̃ and proofs can be found in
[14].

Lemma A.7. Suppose that a > 0 and b, b0 ∈ (0, 1). Then for each k ∈ (0, 1),

lim
a→0,b→b0

√
aΠ̃(a, b, k) =

π

2
√
b0(1 − b0)(1 − k2b0)

.

Lemma A.8. Suppose that a > 0, b, b0 ∈ (0, 1) and k ∈ (0, 1). Let

J̃(a, b, k) :=
√
aΠ̃(a, b, k) −

√
a

a+ (b− 1)2
K(k).

Then,

lim
a→0,b→b0,k→1

J̃(a, b, k) =
π

2
√
b0(1 − b0)

.

Lemma A.9 is a formula for M(ν, k).

Lemma A.9. Let k ∈ (0, 1) and ν ∈ (−1,−k2) ∪ (0,∞). Then,

(i) lim
ν→−1

M(ν, k) =
π

2
.

(ii) lim
ν→−k2

M(ν, k) = 0.

(iii) lim
ν→∞M(ν, k) =

π

2
.

Lemma A.9(i) (resp. (iii)) follows from Lemma A.4(i) (resp. (ii)). Lemma A.9(ii)
is trivial.
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