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Introduction
Let X be a topological space. Then we may define the fundamental groupoid

nX and also the quotient groupoid (nX)/N for N any wide, totally disconnected,
normal subgroupoid N of nX (1). The purpose of this note is to show that if X
is locally path-connected and semi-locally 1-connected, then the topology of X
determines a " lifted topology " on (nX)/N so that it becomes a topological
groupoid over X. With this topology the subspace St(KX)/Nx which is the fibre
of the initial point map d': (nX)/N-*X over x in X, is the usual covering space
XN x of X determined by the normal subgroup N{x} of the fundamental group
n(X, x).

One advantage of considering (nX)/N rather than the collection of spaces
XNx, x e X, is that, in a suitable sense, (nX)IN is functorial. For example, if G
is a topological group acting on X, and N is G-invariant, then G acts also on
(nX)/N. This gives us in Section 3 a formulation of the theory of the funda-
mental group of a transformation group due to F. Rhodes (8, 9) simply as an
object group of the semi-direct product groupoid G X (jiX)jN.

In Section 2 the topology on (nX)/N is related to Ehresmann's work on
locally trivial groupoids (5).

A final algebraic section shows that any extension of a group G arises as the
exact sequence of the projection G9.A^G of a semi-direct product of G with
some groupoid A.

The genesis of this paper should be described. The main ideas of producing
a lifted topology on (nX)/N, of describing its fundamental group, and of
exploring the relationship with the work of (5, 8, 9) are to be found in (4). The
present formulation of these results was worked out while the second author
visited Bangor in 1972.f

1. The lifted topology on (nX)/N
A topological groupoid F over X is a groupoid such that Ob (r) = X, and

with topologies on both X and on the set F of arrows such that all the structure
functions are continuous; these structure functions are: the initial and final
maps d', d : T-*X; the unit map u: X-*T which sends xt-*lx; the composition
0: T S< r -*r , (a, by+ba, whose domain is the set of (a, b) such that da = d'b;
and the inverse map F-»T, ai-naT1. Thus a topological groupoid is a natural
generalisation of a topological group.

t This visit was supported by a Science Research Council grant B/RG/2574.
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The topological groupoid T is locally trivial (5) if each x in Ob (r) has a
neighbourhood U such that there is a continuous function X: U->F such that
A(y) e T(x, y) for all yeU.

Now let A'be a topological space and N a totally disconnected, wide, normal
subgroupoid of nX, the fundamental groupoid of X. Thus N assigns to each x
in Xa. subgroup N{x} ofx(X, x) so that if a e nX(x, y), then aN{x}a~l = N{y}.
The quotient groupoid njN = (nX)IN can then be denned to have object set X
and arrows x^y the cosets <xN{x} for a e nX(x, y). In particular the object
group of n/N at x is the quotient group n(X, x)IN{x}.

Let p: nX-^njN be the projection.

Theorem 1. Let X be locally-path connected and semi-locally I-connected.

(a) There is a topology on n/N so that it becomes a locally trivial topological
groupoid over X with (topologically) discrete object groups.

(b) For each x in X, the subspace Stn/Nx ofnjNis the regular covering space
of X based at x and determined by the subgroup N{x) ofn(X, x).

(c) The fundamental group of n/N at lx is isomorphic to the subgroup of
n(X, x) x n(X, x) of pairs (a, b) such that aN{x) = bN{x}.

For the proof of Theorem 1, we consider the groupoid Q such that Ob (g)
consists of the arrows of nIN, and if a, /? e njN then Q(jx, fl) consists of triples
{a, a, b) such that a, b are arrows of nX and p^ocp^a'1) is defined and equal to p.
Composition in Q is given by (a', a.', b')(a, a, b) = (a'a, a, b'b). (Thus Q is
isomorphic to the comma category (pip), (7) p. 47.) There is a projection
q: Q->nXx nX given by (a, a, 6)i-»(a, b); it is easy to check that q is a covering
morphism of groupoids. But nXxnX = n(Xx X) ((1) p. 189). By (1) p. 309
the topology o f l x l lifts uniquely to a topology on Ob (Q) = n/N such that
Ob(q): n/N-y X xX is a covering map and there is an isomorphism r: n(nlN)-*Q
making the following diagram commutative

It follows that n(nlN, 1 x) is isomorphic to the object group Q{lx}, which consists
of triples (a, lx, b) such that X'OUK*"1) is defined and equal to lx. This
verifies (c) of Theorem 1.

In order to prove (a) and (b) of Theorem 1, we need to describe in detail the
lifted topology on Q.

Let °U be the open cover of X consisting of all open, path-connected subsets
U of X such that the inclusion i: U^X maps each fundamental group of U to
the trivial group. The elements of U will be called canonical neighbourhoods.
For each U in "U and x in U, define Xx : U->nX by choosing for each x' in U a
path in U from x to x' and letting kx(x') be the class in nX(x, x') of this path—
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the conditions on U imply that Ax(x') is independent of the choice of path in U
from x to x'. Let nx = pkx: U-*nlN, and let Ux = fix(U).

Lemma 2. Let a e njN(x, y). Then the sets VyaU~* for all U, V in <% such
that xe U, y e V,form a set of basic neighbourhoods for the lifted topology on n/N.

The proof follows easily from the description of the lifted topology in (1)
pp. 307-8.

We can now prove that n/N is a topological groupoid. In fact, the only
non-trivial part of the proof is continuity of composition 9: n/NZ nlN-*nlN.
Let 6(0, a) = pa., where a e n/N(x, y), /? e n/N(y, z). Let W ĵSat/J1 be a basic
neighbourhood of /fa. Then for any V in "U such that y e V,

6( wzpv;' x v^u;1)
and so 6 is continuous.

The mappings fix give the local trivialisations of n/N.
If a e 7t/N{x}, then the intersection of nlN{x} with a basic neighbourhood of a

is {a}—so n/N{x} has the discrete topology.
If a 6 njN(x, y), then a basic neighbourhood of a in Stn/jvx is Uya, and these

are the usual basic neighbourhoods in the theory of covering spaces. This
completes the proof of Theorem 1.

The topological groupoid (nX)jN is functorial in the following sense.
Let/: Y-*Xbe a map of locally path-connected and semi-locally 1-connected

spaces. Let M, N be wide, totally disconnected, normal subgroupoids of n Y,
nX respectively such that (nf)(M) s N.

Proposition 3. The morphism g : {nY)jM-*{nX)jN induced by nf is con-
tinuous.

Proof. Let a : j->y' be an arrow of (n Y)\M and let /? = g(a): x-+x'. Let U,
U' be canonical neighbourhoods of x, x' respectively. Then there are canonical
neighbourhoods V, V of y, y' respectively such that / ( F ) s u,
Clearly

and so g is continuous.
We now consider topological covering morphisms p: G^H of topological

groupoids. A definition of this given in (4), that each induced map StGx->StH/)(jc)
is a homeomorphism, turns out not to be strong enough; the definition which
follows is due to R. Brown and J. P. L. Hardy (6), (10).

First of all let q: G-*H be a morphism of topological groupoids and con-
sider the pull-back diagram

HxOb(G).

H
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Then q: G-+H and d': G-*Oh (G) determine a continuous function

q: G-^JIX Ob (G).

Definition. The morphism q: G—*H is a topological covering morphism if
q : G->H% Ob (C) is a homeomorphism.

Let X, Y, M, N satisfy the conditions of Proposition 3.

Theorem 4. If f: Y-*X is a covering map and (nf) (M) = N then the
morphism g : (n Y)IM-*(nX)IN inducedbyfis a topological covering morphism of
topological groupoids.

Proof. By 9.2.1 of (1), nf: nY-*nXis (abstractly) a covering morphism, and
it is easy to prove that so also is g : (TC Y)jM-*(nX)jN. Certainly

is continuous and bijective. We prove (g, d') is an open mapping.
Let a: y-*y' be an arrow of (K Y)/M. Then we can choose canonical

neighbourhoods V, V of y, y' respectively such that U = f(V), U' = f(V)
are canonical neighbourhoods of x = f(y), x' = f(y') respectively. If

W=
then g{W) is a basic neighbourhood of g(a), while (g, d')(W) = g(W)x V, which
is open in (nX)INZ Y. This completes the proof.

We now examine products. Let X, Y be locally path-connected and semi-
locally 1-connected. Let iV, M be totally disconnected, wide, normal sub-
groupoids of nX, n Y respectively.

Proposition 5. The lifted topology on n(Xx Y)/Nx M makes it isomorphic as
topological groupoid to (jzX)jNx{n Y)\M.

Proof. This follows easily from an examination of basic neighbourhoods,
those in n(Xx Y)/NxM being of the form {Ux.x Vy){<x, PXU;1 x P;1) for
a: x->x' in {nX)jN, P: y^-y' in (n Y)/M.

2. The Ehresmann theory of locally trivial groupoids
Throughout this section, G will be a locally trivial, transitivef, topological

groupoid over X. The study of such groupoids was initiated by Ehresmann,
who has proved (5):

Theorem 5. (i) The initial point map d': G-*X is the projection of a fibre
bundle with fibre Stcx over x and group G{x}.

(ii) IfxeX, the final point map d :S\Gx-+X is the projection of a principal
fibre bundle with group G{x}.

It is also true that (d',d) : G-* X x ^Tis a fibre bundle with fibre G{x} and
group G{x} x G{x} (5), but this result will not concern us here.

t It is convenient, for topological groupoids to replace the term "connected groupoid"
of (1) by "transitive groupoid".
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As a consequence of Theorem 5 (i) we have a transgression function
A:n(X, x)-+G{x}.

Corollary 6. Let X be path-connected and x e X. The following conditions
are equivalent.

(i) StGx is path-connected.
(ii) A: n(X, x)-+G{x} is surjective.
(iii) 5* : n(G, lx)^>n(X, x) is surjective.

Proof. These follow immediately from the exact homotopy sequences of the
fibrations described in Theorem 5.

There is an inverse to the operator taking G to the principal bundle StGx.
Let A be a topological group, and p: E-*X a principle ,4-bundle. Then the
groupoid ^(E) of admissible maps of E is defined—if x, ye X, then &(E)(x, y)
is the set of admissible maps Ex-*Ey. The local triviality of/?: E-* X enables
one to define a topology on &(E) so that it becomes a locally trivial, transitive
topological groupoid over X.

The further results of Ehresmann are:

Theorem 7. If p: E-* X is a principal A-bundle, and x e X, then there is an
isomorphism of A-bundles, E =

Theorem 8. If Stax is given its structure as a principal G{x}-bundle, then there
is an isomorphism of topological groupoids G s ^(Stcx).

We can now state a classification theorem for certain topological groupoids.
over a path-connected space X.

Theorem 9. Suppose G is transitive, locally trivial, and has topologically
discrete vertex groups, that X is path-connected, and xe X. Then the following-
conditions are equivalent:

(i) Stcx is path connected,
(ii) G is isomorphic to {nX)jNfor some wide, normal totally disconnected sub-

groupoid N ofnX.

Proof. That (ii)=^(i) is clear, since Stcx is then a connected covering space
of X; so we prove (i)=>(ii).

The given conditions imply that StGx is a path-connected regular covering
space over X, corresponding to a normal subgroup N{x} of n(X, x). Since X
is path-connected, we can define N{y} for any ye X by N{y} = aN{x}<x~l

for any a e nX(x, y). Then N{y} is independent of choice of a, by normality*
and the collection N{y}, y e X, is a wide, normal, totally disconnected normal
subgroupoid of nX.

So we have isomorphisms of principal G{x}/N{x} bundles over X

StgX = XNi x = St^jQ/jyX.

Hence G s ^(Stc;t) £ &(St(KX)/Nx) ^ (jiX)jN. This completes the proof.
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The isomorphism of groupoids (nX)/N = ?0(XNiX) and Ehresmann's
topology on the latter groupoid gives an alternative method of topologising the
groupoid {nX)jN. The disadvantages of this method are the dependence on the
base point, and that further work is needed to describe the fundamental group
of the space (jiX)jN.

3. Transformation groups
Let G be a topological transformation group of the space X, and assume X

has the local conditions of Theorem 1. Let n/N be as in Section 1, and assume
further that N is invariant under G in that gN{x} = N{9x} for all g e G, x e X.
Then G acts also on the groupoid n/N and it is easy to see that if njN has the
lifted topology then this action is continuous.

We now form the groupoid G x TI\N considered in (3). (It is preferable to
call this the semi-direct product rather than split-extension as in (3).) The
object set of G x njN is X, the elements in G x n/N from x to y are pairs (g, a)
with g eG, as nlN(9x, y), and composition is

(h, b)(g, a) = (hg, b 9a).

Let X have its given topology, and let G x njN have its topology as a subset of
the product. Then it is easy to check that G x n/N is a topological groupoid.

The object groups of G x n/N have been considered by F. Rhodes (9). He
defined a group ap{X, x0, G) for the casep is a G-invariant normal subgroup of
•n(X, x0), the elements of this group being equivalence classes [/; g]p of pairs
(/; g) such that g e G, / i s a path from x0 to gx0, and two pairs (/; g), ( / ' ; g')
are equivalent if and only if g = g' and the class [/'—/] ep.

Proposition 10. Ifxoe X and p = N{x0}, the map

given by (g, [/])>->[-/; #], is an isomorphism. .

The proof is obvious. If p = 1, then ap{X, x0, G) is written a(X, x0, G).
The exact sequences given in (9) p. 906 can be derived as follows. The

projection G x n/N-^G is a fibration of groupoids (Proposition 2.4 of (3)). By
Theorem 4.3 of (2), and Proposition. 4 there is an exact sequence

l-»7t(X, xo)lp-*<Jp(X, X 0 , G)^G-*n0X->n0(GxnlN)^l.

Further the quotient mappings nX^njN is a fibration of groupoids and so
determines a fibration GxnX-+G>cnlN (Proposition 2.7 of (3)). The exact
sequence of this fibration at x0 is

l->p->a(X, x0, G)^ap(X, x0, G)->1.

Results about actions of groups on covering spaces also fall within the present
framework. The topological groupoid G x n/N acts on the space njN via
d:nlN-*X by the rule

(g, b).a = b 9a.
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In particular, if x0 e X, then the group ap(X, x0, G) = (GZ nlN){x0} acts on
5~1(x0) = Costn/Wjr0. But Costn/Nx0 is, like St,^*,,, the covering space of X
determined by the subgroup p = JV{JC0} of n(X, x0). More generally, if N' is
another normal, (7-invariant subgroupoid of nX such that N' £ N, then G X n/N'
acts on n/N by the above rule, and so ap (X, x0, G) acts on the covering space
Costx/iVx0 of X—this is Proposition 2 of (9).

4. An algebraic remark
Let G be a group and A a transitive groupoid which is a (/-module. If

xeOb(A) and B = ^{-f} then the fibration GxA-*G determines an exact
sequence of groups

1->.B-KGX,4){JC}->G->1, (4.1)

i.e. an extension of G by B.
Conversely, suppose given an extension

(4.2)

we show that this extension is isomorphic to (4.1) for some groupoid A—thus
every extension of groups derives from a semi-direct product of groupoids.

For the proof, we take A to be the covering groupoid A = ExG determined
by the action of E on G on the right. Thus Ob (A) = G, and

Ag, 9') = {(e, g)sExG:g = g'e]

with composition (e', g')(e, g) — (e'e, g). An action of G on A is then defined by
left multiplication of objects, and on arrows by h. {e, g) = (e, hg).

Now (G >< A){\} consists of triples (h, e, g) such that {e, g) e A(h, 1), whence
h = g = I.e. So we have an isomorphism (G>M){l}->if, (p(e), e, p(e))h-*e,
which maps the subgroup A{\) isomorphically to B.
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