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Abstract Several structural results about permutation groups of finite rank definable in differentially
closed fields of characteristic zero (and other similar theories) are obtained. In particular, it is shown
that every finite rank definably primitive permutation group is definably isomorphic to an algebraic
permutation group living in the constants. Applications include the verification, in differentially closed
fields, of the finite Morley rank permutation group conjectures of Borovik-Deloro and Borovik-Cherlin.
Applying the results to binding groups for internality to the constants, it is deduced that if complete
types p and q are of rank m and n, respectively, and are nonorthogonal, then the (m+3)rd Morley power
of p is not weakly orthogonal to the (n+3)rd Morley power of q. An application to transcendence of
generic solutions of pairs of algebraic differential equations is given.
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1. Introduction

Classical Galois theory connects problems on polynomial equations over fields with purely

group-theoretic statements. The connection is especially fruitful because the latter is an

arena in which some of the most powerful classification results have been obtained. In this

article, we exploit an analogous connection between differential equations and actions of
differential algebraic groups, where we establish several classification results and apply

them to algebraic differential equations.

Specifically, this article is concerned with the structure of differential-algebraic permu-
tation groups of finite rank. Here, by a permutation group, we mean a group G acting

faithfully and transitively on a set S. By differential-algebraic, we mean that the group, the

set and the action are all described by algebraic differential equations over a differential
field (k,δ) of characteristic zero. Equivalently, they are definable in the first order theory

of differentially closed fields (DCF0). (See [26, Chapter II] for a detailed introduction to

the model theory of algebraic differential equations, and [27] for a quick one.) Finally, by

finite rank, we mean that for any a ∈G, the differential field generated by a over k is of
finite transcendence degree.

We are motivated to study the structure of such group actions because they arise

spontaneously in the analysis of the algebraic relations between solutions of algebraic
differential equations. An instance of such an application will be explained at the end of

this Introduction.

The field of constants in a differentially closed field is a pure algebraically closed field,
and this allows us to view finite rank differential-algebraic geometry as an expansion of

algebraic geometry. Much of the work we do here involves comparing differential-algebraic

permutation groups with algebraic permutation groups – namely, algebraic groups acting

on algebraic varieties in the field of constants.
What follows is a summary of our results.

1.1. Definably primitive permutation groups

A definable permutation group (G,S) is definably primitive if S admits no definable proper
nontrivial G-invariant equivalence relations. Numerous questions in permutation group

theory can be reduced to the case of primitive group actions. We show that every such

action in finite rank differential-algebraic geometry comes from pure algebraic geometry:
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Theorem A. Every connected finite rank definably primitive definable permutation group
in DCF0 is definably isomorphic to the constant points of an algebraic permutation group

over the constants.

This is Theorem 2.5 below and is proved by using the finite Morley rank O’Nan-Scott

type theorem of Macpherson and Pillay [25] to reduce to the case of simple differential-

algebraic groups, and then using Cassidy’s theorem [9] in that case.

1.2. Base size

By a base for a permutation group (G,S), we mean a subset of S whose pointwise stabiliser
is trivial. A conjecture of Borovik and Deloro [4] predicts that in the finite Morley rank

setting, where bases are always finite, the size of a minimal base for a definably primitive

permutation group grows at most linearly with the Morley rank of S.
Again, though this problem is stated purely in terms of group theoretic aspects of

definable group actions, it has a motivation from the perspective of algebraic differential

equations. Suppose we are given an equation X of order n whose general solution can

be written as a rational function of m-many constants c1, . . . ,cm and p-many solutions
a1, . . . ,ap of X.1 Such an expression is the key to constructing new solutions of X by

a superposition of existing solutions and is an extensively studied topic in differential

equations [21]. It is natural to ask if some general bound on p can be given in terms of the
order (and perhaps the degree) of the equations defining X. No such general result seems

to exist in the present literature, but the problem can readily be seen to be equivalent

to bounding the size of a base for the action of the binding group on X. In this section,
we give just such a bound, under the additional assumption that the action is definably

primitive. The following theorem, which proves the conjecture of Borovik and Deloro in

DCF0, appears as Corollary 3.7 below:

Theorem B. There is a constant c such that if (G,S) is any connected finite rank

definably primitive definable permutation group in DCF0 then there is a base of size

less than cRM(S).

While the theorem is stated here for differential-algebraic permutation groups, Theo-
rem A immediately reduces the situation to the consideration of algebraic permutation

groups in the constants. That is, one needs only to prove the theorem for ACF0, the

theory of algebraically closed fields in characteristic zero. This is done by again carrying

out an O’Nan-Scott type analysis and reducing to the case when G is a simple algebraic
group and then applying the results of Burness et. al. from [6].

As binding group actions need not be definably primitive, Theorem B does not always

apply to the motivating problem about algebraic differential equations discussed above.
We leave that for future work:

1Equivalently, X is internal to the constants.
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Question 1.1. Given an algebraic differential equation X that is internal to the
constants, can one bound the size of the base for binding group action in terms of some

invariants of X ?

1.3. Multiple transitivity and the Borovik-Cherlin Conjecture

For an integer μ > 1, a permutation group (G,S) is μ-transitive if the coordinate-wise
action on Sμ is transitive off the diagonals – that is, if G takes any tuple of μ distinct

elements of S to any other tuple of μ distinct elements. One instance of the fact that there

are few μ-transitive group actions is Knop’s [22] classification of all 2-transitive algebraic
group actions: the only possibilities are PSLn+1 on P

n or certain algebraic subgroups of

the group of affine transformations on A
n, for some n > 1. An immediate consequence

of Theorem A, once you observe that 2-transitivity implies primitivity, is an analogous
classification of finite rank 2-transitive permutation groups in DCF0; see Theorem 4.1

below.

A more flexible notion of multiple transitivity is generic μ-transitivity. Here, we are

in the context of a finite Morley rank permutation group (G,S), and we ask that the
coordinate-wise action of G on Sμ admits an orbit that is generic in the sense that its

complement is of strictly smaller Morley rank than Sμ. The notion was introduced and

studied by Borovik and Cherlin in [3] as an abstraction of generic transitivity for algebraic
groups in the sense of Popov [33], with which it agrees if one is working in ACF0. There

are many more examples of generic μ-transitivity, but a conjecture of Borovik and Cherlin

predicts that if G acts generically (n+2)-transitively, where n = RM(S), then (G,S) is
isomorphic to the natural action of PSLn+1(F ) on P

n(F ), for some algebraically closed

field F. In ACF0, this was verified by the first and third authors in [14], following a

strategy suggested in [3]. The conjecture remains largely open otherwise; the only known

case for arbitrary theories is when RM(S) = 2, dealt with by Altınel and Wiscons in [1].
Here, we establish the conjecture for finite rank definable group actions in DCF0.

Theorem C. Suppose (G,S) is a connected definable permutation group in DCF0 with

G of finite rank and n = RM(S) > 0. If the action is generically (n+2)-transitive, then
(G,S) is definably isomorphic to the natural action of the constant points of PSLn+1

on P
n.

This appears as Theorem 4.3 below and is proved by reducing to the definably primitive

case and then applying Theorem A. In Section 4, we also articulate a more geometric

version of this theorem where dimension takes the place of Morley rank and then

conjecture that this geometric formulation holds without the finite rank assumption (even
in the context of several commuting derivations). See Theorem 4.4 and Conjecture 4.5

below.

1.4. Nonorthogonality and applications

As we have already mentioned, our motivation for the study of permutation groups

in DCF0 comes from the fact that they arise as binding groups for internality. An

understanding of definable permutation groups can thus contribute to the study of the

https://doi.org/10.1017/S1474748024000501 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000501


Finite-dimensional differential-algebraic permutation groups 607

fine structure of finite rank types, which in turn has applications to algebraic differential
equations. This connection was made in [14] and exploited further in [12] and [20]. For

example, as a quick consequence of Theorem C, we show in Corollary 5.1 below that if

a type p of Morley rank n is nonorthogonal to a definable set X, then the Morley power
p(n+3) is not weakly orthogonal to X. See Section 5 for details, including a review of the

geometric-stability notions involved. In fact, using a more careful analysis, we show, in

Theorem 5.2 below:2

Theorem D. Suppose p and q are complete stationary types in DCF0 of U-rank m and

n, respectively. If p is nonorthogonal to q, then p(m+3) is not weakly orthogonal to q(n+3).

These results accomplish, for finite rank types in DCF0, the general goals mentioned

by Hrushovski in [17, Section 2, first paragraph].
We now explain an application of Theorem D to the transcendence of solutions of

algebraic differential equations. Fix a characteristic zero algebraically closed differential

field (k,δ) and consider an order n differential equation: P (y,δy, . . . ,δ(n)y) = 0, where
P ∈ k[x0, . . . ,xn] is irreducible. For each m ≥ 1, consider the following condition on this

equation:

(Cm) For any m distinct solutions a1, . . . ,am /∈ k the sequence

(δ(i)aj : i= 0, . . . ,n−1,j = 1, . . . ,m)

is algebraically independent over k.

In [12], it was shown that (C3) implies (Cm) for all m, assuming that n≥ 2. That is, to

detect whether there are algebraic relations between solutions of a differential equation

and its derivatives up to the order of the equation, it surprisingly suffices to consider
only triples of solutions. This result, along with a stronger form proved in [13], has

recently been applied to prove new transcendence results for functions satisfying various

differential equations [7, 10, 15].
Next, consider the variant of the previous condition involving algebraic relations

between generic solutions of different equations. Consider two algebraic differential

equations of order n1 and n2, respectively:

P1(y,δy, . . . ,δ
(n1)y) = 0 (1)

P2(y,δy, . . . ,δ
(n2)y) = 0, (2)

where Pi ∈ k[x0, . . . ,xni
] are irreducible, for i = 1,2. For each m1,m2 ≥ 1, consider the

following condition:

(Cm1,m2
) For any m1 independent generic solutions a1, . . . ,am1

of (1) and m2

independent generic solutions b1, . . . ,bm2
of (2), the sequence (δ(i)aj,δ

(h)b�)

where i = 0, . . . ,n1 − 1, h = 0, . . . ,n2 − 1, j = 1, . . .m1 and � = 1, . . . ,m2, is
algebraically independent over k.

2Actually, the proof of Theorem D uses only the truth of the Borovik-Cherlin Conjecture in
ACF0 and so, as such, is not really an application of the previous results.
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That is, the condition (Cm1,m2
) fails when there are nontrivial algebraic relations between

m1 generic solutions of equations (1) and m2 generic solutions of (2), along with their

derivatives up to the order of the equations. A consequence of Theorem D is the following:

Corollary. (Cn1+3,n2+3) implies (Cm1,m2
) for all m1,m2.

Proof. Let p,q ∈ S(k) be the Kolchin-generic types of (1) and (2), respectively. There are
unique such generic types by irreducibility of the Pi. The realisations of p

(�) are precisely

the sequences of � generic independent solutions to (1), and similarly for q. And the failure

of (Cm1,m2
) is precisely dependence between a realisation of p(m1) and a realisation of

q(m2) – that is, p(m1) and q(m2) being not weakly orthogonal. Let m = U(p) ≤ n1 and

n= U(q)≤ n2. Hence, if (Cm1,m2
) fails, then p(m1) and q(m2) are not weakly orthogonal,

which in turn implies that p and q are nonorthogonal, which by Theorem D implies

that p(m+3) and q(n+3) are not weakly orthogonal, so that (Cm+3,n+3) fails, and hence,
(Cn1+3,n2+3) fails.

1.5. Beyond DCF0

While we prove things exclusively for DCF0, our results hold in the case of several
commuting derivations (DCF0,m) and also in the theory of compact complex manifolds

(CCM). We point this out in a final Section 6, where we articulate abstractly the

conditions on a first order theory that we require for our proofs to go through.

2. Definably primitive permutation groups in DCF0

Recall that a definable group action (G,S) is said to be definably primitive if S admits

no definable proper nontrivial G-invariant equivalence relations. When the action is
transitive, and so S = G/H for some definable group H ≤ G with the action being left

multiplication, definable-primitivity is equivalent to H being a maximal proper definable

subgroup of G.
The purpose of this section is to show that there are no new finite rank definably

primitive permutation groups in differentially closed fields; they all come from algebraic

groups in the constants. We work in a saturated model (U,δ) |= DCF0 that will serve

as a universal domain for differential-algebraic geometry. We denote by C the field of
constants.

We will make use of the following structure theorem for simple differential algebraic

groups of finite rank. The theorem is originally due to Cassidy [9] without the finite rank
assumption, with an easier proof in the finite rank case given by Pillay in [26, Chapter

III, Theorem 1.5].

Fact 2.1. Every simple finite rank definable group in DCF0 is definably isomorphic to

the C-points of a simple linear algebraic group over C.

The following is likely well known.
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Lemma 2.2. Suppose G is a definable group of finite rank in DCF0 that has no proper
nontrivial definable subgroups. Then, G is definably isomorphic to the C-points of an

algebraic group over C.

Proof. Note that G is connected, and we may assume it is nontrivial. When G is

noncommutative, then, as it is definably simple, it is outright simple (see [36, Corollary

5.9]), and the result follows from Fact 2.1 above.
So we may assume that G is commutative. In this case, we show that G is definably

isomorphic to Ga(C). We can embed G as a Zariski-dense definable subgroup of a

(necessarily commutative) algebraic group E ; see [26, Chapter III, Lemma 1.1]. Let E

be such of minimal dimension. As G has no proper nontrivial definable subgroups, it
has trivial intersection with any proper nontrivial algebraic subgroup of E. Modding

out by any proper infinite algebraic subgroup would therefore embed G into a smaller-

dimensional algebraic group, contradicting the choice of minimal dimension. So E has no
proper infinite algebraic subgroups. The only possibility for such is Ga,Gm, or a simple

abelian variety. Now, by [18, Lemma 2.5], every infinite definable subgroup of a simple

abelian variety contains the Manin kernel, and hence in particular has nontrivial finite
subgroups coming from torsion, so G cannot embed in a simple abelian variety. If E is Gm,

then the logarithmic derivative map restricts to a definable homomorphism φ :G→Ga.

The kernel of φ must either be trivial or all of G, but the latter is impossible as in that

case, G=Gm(C), which again has nontrivial finite subgroups. So φ embeds G in Ga, and
we may assume that E = Ga. Every definable subgroup of Ga is a C-vector subspace.

That G has no proper nontrivial definable subgroups implies it is 1-dimensional. Hence,

G is definably isomorphic to Ga(C), as desired.

Our study of finite rank definably primitive group actions in DCF0 will rely heavily on
the O’Nan-Scott analysis of primitive permutation groups of finite Morley rank carried

out by Macpherson and Pillay [25]. The following fact summarises the aspects of that

analysis that we will make use of explicitly; it is drawn from both the statements and

proofs of [25, Theorems 1.1 and 1.2].

Fact 2.3. Suppose G is a connected group of finite Morley rank, and H is a proper

definable subgroup such that the action of G on G/H is faithful and definably primitive.
Let B be the definable socle of G – namely, the subgroup generated by the minimal

normal definable subgroups of G. Then, B itself is a normal definable subgroup, and one

of the following cases holds:

(1) B is elementary abelian.

(2) B is torsion-free divisible abelian and acts regularly on G/H. Moreover, if H is

infinite, then there is a finite rank definable algebraically closed field K such that

B has a definable finite dimensional K -vector space structure and the action of H
on B by conjugation gives an embedding of H into GL(B,K).

(3) B is the unique minimal normal definable subgroup of G, it has trivial centraliser

in G and it is simple.
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(4) G has exactly two minimal definable normal subgroups T1 and T2, both simple,

both acting regularly on G/H, with CG(T1) = T2 and CG(T2) = T1, and such that

B is the direct product of T1 and T2.

Remark 2.4. Let us clarify how our presentation of the O’Nan-Scott analysis in Fact

2.3 above compares to the statements in [25]. Cases (1) and (2) correspond to Case 1 of
[25, Theorem 1.1] taking into account also [25, Theorem 1.2]. Our Case (3) corresponds to

Cases 2 and 3 of [25, Theorem 1.1]. As explained in the discussion following [25, Theorem

1.1], connectedness rules out Cases 4(a)(i) and 4(b) of that theorem. Our Case (4) thus
corresponds to Case 4(a)(ii) of [25, Theorem 1.1]. Finally, the fact that in Case (3) the

centraliser of B is trivial, and that in Case (4) we have CG(T1) = T2 and CG(T2) = T1,

follows from the argument in the first two paragraphs of the proof of Theorem 1.1 on

page 487 of [25].

Theorem 2.5. Suppose G is a connected definable group of finite rank in DCF0. If G

acts definably, faithfully, transitively and definably primitively on some infinite set, then
G is definably isomorphic to the constant points of an algebraic group over the constants.

Proof. Taking H to be the point stabilizer of some point in the set on which G is acting,
we see that we are in the situation of Fact 2.3. That is, G acts faithfully and definably

primitively on G/H. In particular, H is a maximal proper definable subgroup of G. Let

B be the definable socle of G. We proceed by analysing the different possibilities for B
enumerated in Fact 2.3.

As no infinite elementary abelian groups are definable in DCF0, Case (1) of Fact 2.3

cannot occur.

Suppose we are in Case (2). In particular, B acts regularly on G/H. This means that
G=BH and B∩H = (1). That is, G=B�H is the semidirect product of B by H. Here,

H acts naturally on B by conjugation.

If H is finite, then the connectedness of G and the existence of a definable surjective
homomorphism π :G→H with B = ker(π) imply that H = (1). As H was maximal, this

means that G has no nontrivial proper definable subgroups. Lemma 2.2 then tells us that

G is definably isomorphic to the constant points of an algebraic group over the constants,
as desired.

So we may assume that H is infinite, and so the ‘moreover’ clause of Case (2) applies.

That is, there is a finite rank definable algebraically closed field K such that B has

a definable finite dimensional K -vector space structure and the action of H on B by
conjugation gives an embedding of H into GL(B,K). As the only finite rank infinite

definable field in DCF0, up to definable isomorphism, is the field of constants, we may

assume that K = C. Fixing a basis for B over C, we obtain a definable isomorphism
ν : B → Cn and a definable embedding ρ :H →GLn(C), inducing a definable embedding

of G= B�H into Cn
�GLn(C). By stable embeddedness of the constants, the image of

G will then itself be the constant points of an algebraic group. This completes the proof
in Case (2).

Suppose we are in Case (3), where B is the unique minimal normal definable subgroup

of G, has trivial centraliser in G and is simple. By Fact 2.1, simplicity implies that B is
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definably isomorphic to T := E(C), where E is a simple linear algebraic group over C. It
will therefore suffice to show that in this case, G = B. As G is connected, it suffices to

show that G/B is finite. It is easily verified that any definable isomorphism φ : B → T
extends to an (abstract) isomorphism

φ̂ : Autdef(B)→Autdef(T )

given by φ̂(f) = φfφ−1. Here, as B is simple, we can (and do) identify B with its group
of inner automorphisms in Autdef(B), and similarly for T. It follows that Autdef(B)/B is

isomorphic to Autdef(T )/T . Now, the definable automorphisms of T are just the algebraic

automorphisms of T viewed as an algebraic group in the constants. As T is a simple linear
algebraic group, Autdef(T )/T is finite; see [19, §27.4]. So it remains to observe that G

embeds into Autdef(B) over B via the action by conjugation – which follows from the

fact that B has trivial centraliser in G.
Finally, suppose we are in Case (4) of Fact 2.3. That is, G has exactly two minimal

definable normal subgroups T1 and T2, both simple, both acting regularly on G/H, and

B is the direct product of T1 and T2. Moreover, CG(T1) = T2 and CG(T2) = T1; thus,

CG(B) is trivial. We will again show that G=B, which will suffice as each Ti is definably
isomorphic to the constant points of a simple linear algebraic group in the constants.

Again by connectedness of G, it is enough to show that G/B is finite.

Consider the homomorphism G→Autdef(T1)×Autdef(T2) given by

g �→ ([g]T1
,[g]T2

),

where [g]Ti
and [g]T2

is conjugation by g on Ti. Let

ρ :G→Autdef(T1)/T1×Autdef(T2)/T2

be the composition with the quotient map. Given g ∈G, we have that

g ∈ ker(ρ) ⇐⇒ there is (t1,t2) ∈B with [g]T1
= [t1]T1

and [g]T2
= [t2]T2

⇐⇒ (t1,t2)g
−1 ∈ CG(B) for some (t1,t2) ∈B

⇐⇒ (t1,t2)g
−1 = idG for some (t1,t2) ∈B

⇐⇒ g ∈B .

We thus have a definable embedding of G/B into Autdef(T1)/T1 ×Autdef(T2)/T2. The

latter is finite as T1 and T2 are definably isomorphic to simple linear algebraic groups in
the constants. Hence, G/B is finite, as desired.

3. Base size for primitive permutation groups

Since the constants form a pure algebraically closed field, an expected use of Theorem

2.5 would be to extend results about definably primitive permutation groups from ACF0

to DCF0. In this section, we do so for results about the size of bases.

Definition 3.1. A base for a faithful group action (G,S) is a subset B ⊆ S such that

for any g ∈G, if g �B= idB , then g = 1. The minimal cardinality for a base is denoted by

b(G,S).
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In [4, §2], Borovik and Deloro predict that, for definably primitive permutation groups

of finite Morley rank, there is a linear relationship between base size and rank:

Conjecture 3.2 (Borovik-Deloro). There is an absolute constant c such that

b(G,S)< cRM(S)

for (G,S) any connected definably primitive permutation group of finite Morley rank, with

S infinite.

It does not seem that the conjecture has even been verified for algebraic group actions,

and that is our aim here. Once that is established, Theorem 2.5 will imply that the
conjecture is true of all finite rank differential-algebraic groups as well.

We will build on the fact that the base size for simple algebraic group actions has been

thoroughly investigated in [6]. First, a remark on terminology: in the literature, what is

often meant by a ‘simple algebraic group’ is an algebraic group that does not contain any
proper closed connected normal subgroup. For clarity, we will refer to such algebraic

groups as almost simple and reserve the term simple algebraic group for algebraic groups

with no proper nontrivial normal algebraic subgroups at all. Almost simple algebraic
groups have finite center, and when we mod out by the center, they become simple

algebraic groups (even simple as abstract groups). There is a well-known classification

theorem stating that every simple algebraic group is either a classical group – namely,
belonging to one of the following infinite families: PSLn,PSp2n,PSO2n and SO2n+1 – or is

one of finitely many exceptional groups. The first three classical groups are quotients of

the almost simple groups SLn,Sp2n,SO2n, respectively, by their finite centers. Note also

that because we work over an algebraically closed field, PSLn is the same as PGLn.
A careful inspection of the main theorems of Burness et. al. in [6] yields the Borovik-

Deloro conjecture for simple algebraic group actions. This is mentioned in [4], but we give

some explanations:

Proposition 3.3. There is a constant c such that if G is a simple algebraic group acting

algebraically on a positive-dimensional variety S, in characteristic zero, and such that
(G,S) is a definably primitive permutation group, then b(G,S)< cdim(S).

Proof. We show how this follows from the results in [6]. The group G is either a
classical group in a subspace action (more details on this case shortly) or not. If not,

then [6, Theorem 1] gives that b(G,S) ≤ 6. Thus, we can now assume that (G,S) is a

classical group in a subspace action. This means that we are in one of the following cases

(see, for example, Section 4.1 of [6]):

(1) G=PSLn, and the action is the one induced by the natural transitive action of SLn

on Gr(n,d), the set of d -dimensional subspaces of An for some d≤ n
2 . Note that the

center is in the kernel of that action, so we do get an induced action.

(2) G= PSpn with n even, and the action is the one induced by the natural transitive
action of Spn on either TS(n,d), the set of totally singular d -dimensional subspaces

of An, or on ND(n,d), the set of nondegenerate d -dimensional subspaces of An, for

some positive d ≤ n
2 . Total singularity and nondegeneracy, here, are with respect
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to a fixed nondegenerate alternating bilinear form; see [34, Chapter 11] for the

definitions. In both cases, the center of Spn is in the kernel of the action.

(3) G is either PSOn with n even or SOn with n odd, and the action is the one induced
by the natural transitive action of SOn on either TS(n,d) or on ND(n,d), for some

positive d ≤ n
2 . One works here with respect to a fixed nondegenerate symmetric

bilinear form. Again, the center is in the kernel of the action.

We are using here that if G is a symplectic or orthogonal group, then primitivity implies,

in characteristic 0, that the only subspace actions that appear are totally singular or
nondegenerate with respect to the relevant underlying form; see the discussion preceding

Theorem 4 in [6]. For more details on totally singular and nondegenerate subspaces, we

suggest [34, Chapter 11]. In particular, one can deduce from the information there that
we do have the above actions and that they are transitive.

Theorem 4 of [6] tells us the base size in each of the above cases, often broken up into

further subcases, in terms of n
d . A careful inspection of the statement reveals that if n≥ 7,

then b(G,S)< n
d +6 in all cases. For our purposes, it is fine to restrict to n≥ 7 as doing

so only excludes finitely many group actions.

Thus, to prove the result, it is enough to prove that
n
d +6

dimS

is bounded by an absolute constant in each of cases (1) through (3). In case (1), S is the

grassmanian Gr(n,d) which has dimension d(n−d). Using that d≤ n
2 , it is easy to compute

that
n
d +6

d(n−d)
≤ 14. The same computation works for cases (2) and (3) if S is ND(n,d)

since the latter is a Zariski open subset of Gr(n,d) and hence is also of dimension d(n−d).

Finally, we deal with cases (2) and (3) with S = TS(n,d). The dimension of TS(n,d) is

bounded from below by

2d

(
n−1

2
−d

)
+

d(d−1)

2

(see, for example, Section 2 of [24]). Another easy computation then gives a bound of 16

for
n
d +6

dim(S)
.

To pass from simple algebraic groups to arbitrary algebraic groups, we will apply the

O’Nan-Scott analysis. This will require some information about centralisers of subsets of

simple algebraic groups, that we now record:

Fact 3.4. There is a constant e such that for any infinite simple algebraic group, G, the

length of the longest strictly descending chain of centralisers of subsets of G is less than

edimG.

Proof. The length of the longest strictly descending chain of centralisers of subsets of G

is called the c-dimension and is denoted by dimc(G). See [28] for details on c-dimension.

In particular, it is not hard to see that dimc(GLn) = n2+1 (see the proof of Proposition
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2.1 in [28], for example) and that the c-dimension of a subgroup is at most that of the

ambient group (see [28, Lemma 2.2]).

We are free to ignore the finite set of exceptional simple algebraic groups. As the center
must be in any centralizer, taking a central extension does not change the c-dimension.

So we may assume that G is either SLn, Spn with n even, or SOn. These groups embed

in GLn and hence have c-dimension bounded above by n2+1. However, the dimension
of G is n2−1, n(n+1)

2 , n(n−1)
2 , respectively. We see that e= 6 works.

With these ingredients in place, we can establish the Borovik-Deloro conjecture for

algebraic group actions:

Theorem 3.5. There is a constant c such that if (G,S) is a connected definably primitive

definable permutation group in ACF0, and S is infinite, then

b(G,S)< cRM(S).

Proof. We work in a sufficiently saturated (C,0,1,+ ,− ,×) |= ACF0. We will again use
Fact 2.3. We can still rule out case (1). Examining the proof of Theorem 2.5 above,

we see that carrying out the O’Nan-Scott type analysis of Macpherson and Pillay, but

just in ACF0 this time, leads to four following possibilities for (G,C), up to definable

isomorphism. We list them using the indexing from Fact 2.3:

(2) (a) (with finite point stabiliser): Ga(C) acting on itself.

(b) Case (2) (with infinite point stabiliser): S is a finite dimensional C-vector
space, H ≤ GL(B,C) and G = S�H with the natural action on S by affine
transformations.

(3) G is a simple algebraic group,

(4) G = T1×T2, where T1 and T2 are simple algebraic groups whose induced actions

on S are regular.

In (2)(a), we have that b(G,S) = 1, so that c= 2 works.

In (2)(b), we can take as a base for (G,S) any C-basis for S along with the zero vector,

so that b(G,S) is at most dimC(S)+1 = RM(S)+1. Hence, c= 3 works.
Proposition 3.3 deals with (3), noting that RM(S) = dim(S).

Finally, consider Case (4). Write S =G/H = (T1×T2)/H, where H is a maximal proper

definable subgroup.

We claim, first of all, that H is the graph of a definable isomorphism. Indeed, let
π1 :H→T1 and π2 :H→T2 be the projections. Surjectivity of the πi follow from regularity

of the action of Ti on G/H. Indeed, given s∈ T1. let t∈ T2 be such that (1,t) takes (s,1)H

to H ; this forces (s,t) ∈H, showing that π1 is surjective. Similarly, π2 is surjective. For
injectivity of πi, observe that the surjectivity of π2 implies that π2(ker(π1)) is a normal

subgroup of T2 and hence, by simplicity, is either trivial or all of T2. If π2(ker(π1)) = T2,

then the surjectivity of π1 would imply that H = T1×T2 =G, a contradiction. It follows
that ker(π1) is trivial, and hence, π1 :H → T1 is an isomorphism. Similarly, π2 :H → T2

is an isomorphism. So, we have established that H = Γ(σ), where σ = π−1
1 ◦π2 : T1 → T2

is a definable isomorphism.
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Next, note that the stabiliser of a coset gH in G is precisely the conjugate Hg of H by
g. But in our case, where G= T1×T2, and H = Γ(σ), every coset of H is represented by

something of the form (t,1), where t ∈ T1. Now

H(t,1) = {(rt,σ(r)) : r ∈ T1},

and hence,

H ∩H(t,1) = {(s,σ(s)) : s ∈ C(t)},

where C(t) is the centraliser of t in T1. In particular, if t1, . . . ,t� ∈ T1 are such that⋂�
i=1C(ti) = (1), then {H,(t1,1)H,. . . ,(t�,1)H} is a base for (G,S). Now, note that if

d=dimc(T1), then there exists t1, . . . ,td−1 ∈ T1 such that
⋂d−1

i=1 C(ti) = (1). It follows that

b(G,S) is at most dimc(T1). By Fact 3.4, dimc(T1)< edim(T1) for some absolute constant

e. Since RM(S) = dim(T1) in this case, we have that c= e works here.

Remark 3.6. It is, of course, natural to ask what the absolute constant c given by
Theorem 3.5 is. Our proof shows that, at least for algebraic groups of sufficiently high

dimension, c = 16 works. For a complete answer to this question, we would need to

compute (1) the base size for certain low-dimensional classical simple algebraic groups
actions – namely, when n < 7 and G is PSLn ,PSpn ,PSOn or SOn and (2) the maximal

length of chains of centralizers in the exceptional groups.

Since there are no new finite rank definably primitive group actions in DCF0 beyond

those in ACF0, by Theorem 2.5, we obtain Conjecture 3.2 for free in DCF0:

Corollary 3.7. There is a constant c such that if (G,S) is a finite rank connected
definably primitive definable permutation group in DCF0, and S is infinite, then

b(G,S)< cRM(S).

Proof. Work in a sufficiently saturated model (U,δ) |=DCF0 with field of constants C. By
Theorem 2.5, G is definably isomorphic to the C-points of an algebraic group over C. Since
S =G/H for some definable subgroupH ≤G, it follows that (G,S) is definably isomorphic

to the C-points of an algebraic group action over C. Now apply Theorem 3.5.

3.1. An aside on genericity of minimal bases

Borovik and Deloro also conjectured, in [4, §2], that for a definably primitive finite Morley

rank permutation group (G,S), the set of minimal bases is generic in Sb(G,S). Put another
way, and borrowing notation from Burness et. al. [6], if we let b1(G,S) be the smallest

positive integer n such that Sn contains a generic subset U with every n-tuple in U a

base for G, then Borovik and Deloro are conjecturing that b1(G,S) = b(G,S). However,
already in the context of algebraic permutation groups, Burness et. al. show that in many

cases, b1(G,S)> b(G,S); see, for example, Theorems 4(ii), 4(iii), 5(iii), 7(iii) and 8 of [6].

We suggest the following amendment:

Conjecture 3.8. There is a natural number d so that whenever (G,S) is a definably

primitive permutation group of finite Morley rank, b1(G,S)− b(G,S)< d.
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A close examination of the results of [6] reveals that Conjecture 3.8 holds for actions

of simple algebraic groups.

4. Multiply transitive permutation groups

Recall that, for μ > 1, a definable group action (G,S) is μ-transitive if the coordinate-

wise action of G on Sμ is transitive off the diagonal. And in the finite rank setting, (G,S)

is generically μ-transitive if (G,Sμ) is transitive off a subset of rank strictly smaller
than μRM(S). In this section, we investigate consequences of Theorem 2.5 to multiply

transitive, and especially generically-multiply transitive, permutation groups definable in

DCF0.

Regarding outright multiple transitivity, there is a complete classification of the 2-
transitive algebraic group actions. As 2-transitivity implies primitivity, an immediate

consequence of Theorem 2.5 is that the same classification holds for differential-algebraic

groups:

Theorem 4.1. Suppose (G,S) is a finite rank faithful 2-transitive group action definable

in DCF0 with G connected. Then, (G,S) is definably isomorphic to

(i) PSLn+1(C) acting on P
n(C), or

(ii) G
n
a(C)�L acting on Cn, where L=GLn(C) or L= SLn(C), or

(iii) G
2n
a (C)�L acting on C2n, where L= Sp2n(C) or L= Sp2n(C) ·Gm(C).

Proof. Note that a 2-transitive group action is primitive (and hence definably primitive).

Indeed, if E is an equivalence relation on S, and x,y,z ∈ S are distinct elements such that
xEy but ¬(xEz), then, as there is an element of G taking the pair (x,y) to (x,z), it

must be that E is not G-invariant. Hence, there are no proper nontrivial G-invariant

equivalence relations.

Hence, by Theorem 2.5, we have that G, and hence (G,S), is definably isomorphic to
a connected 2-transitive algebraic group action in the constants, and these are classified

by Knop [22] to be precisely of types (i), (ii) or (iii).

There are many more generically 2-transitive actions, even among algebraic group
actions, than those appearing in Theorem 4.1. However, a conjecture of Borovik and

Cherlin from [3] suggests that a high degree of generic transitivity is rare:

Conjecture 4.2 (Borovik-Cherlin). Suppose (G,S) is a connected definable permutation

group of finite Morley rank with RM(S) = n > 0. If the action is generically (n+2)-

transitive, then (G,S) is isomorphic to the natural action of PSLn+1(F ) on P
n(F ), for

some algebraically closed field F.

In ACF0, so for algebraic group actions, this conjecture was verified in [14]. Using our

Theorem 2.5 above, we will verify the conjecture in DCF0. Note, however, that something
more has to be done as generic μ-transitivity (unlike outright 2-transitivity) does not

imply primitivity, and so Theorem 2.5 does not automatically apply. Our proof will follow

the suggestions in [3] about how to reduce to the definably primitive case.
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We work in a saturated model (U,δ) |=DCF0 with field of constants C.

Theorem 4.3 (Borovik-Cherlin in DCF0). Suppose (G,S) is a definable permutation

group in DCF0 with G connected and of finite rank, and n=RM(S)> 0. If the action is

generically (n+2)-transitive, then (G,S) is definably isomorphic to the natural action of
PSLn+1(C) on P

n(C).

Proof. In [3, page 35], an argument is sketched for how to reduce the Borovik-Cherlin
conjecture to definably primitive group actions. In what follows, we fill in some details

and implement some simplifications in the context of DCF0.

Let H ≤G be a proper definable subgroup such that S =G/H. First of all, notice that
H must be infinite. Indeed, generic (n+2)-transitivity implies that RM(G) ≥ n(n+2),

and hence, RM(G)> n.

We proceed by induction on n. What the induction hypothesis gives us is that if H ′

is any proper definable subgroup of G containing H, then we must have H ′/H finite.

Indeed, consider the action of G on G/H ′ by left multiplication. Note that it is also

generically (n+2)-transitive as H ≤ H ′. If we let K ≤ H ′ be the kernel of this action,

then (G/K,G/H ′) is faithful and generically (n+2)-transitive. If H ′/H were infinite,
then RM(G/H ′) =: e < n, and we can apply our induction hypothesis. (In the case that

n = 1, we know by connectedness of G that this does not happen, which deals with the

base case.) That is, we know that (G/K,G/H ′) is definably isomorphic to the action of
PSLe+1(C) on Pe(C). In particular, the action of G on G/H ′ is not generically (e+3)-

transitive, contradicting the fact that the action is generically (n+2)-transitive and e< n.

Hence, we must have that H ′/H is finite.
Let L be the normaliser of H◦ in G, where H◦ denotes the connected component of H.

We claim that L is a finite extension of H. Note that

L := {g ∈G : gH◦g−1 =H◦}.

As such, it is clearly a definable subgroup of G containing H. If L = G, then H◦ �G,
and hence, H◦ stabilises every point of G/H. As the action of G on G/H is assumed to

be faithful, this would imply that H◦ = (1), contradicting that H is infinite. So L �= G.

Hence, as explained above, the induction hypothesis forces L/H finite.

Note that L contains every proper definable subgroup of G that contains H. Indeed,
suppose H ′ is such. Then, as H ′/H must be finite, we have that H◦ = (H ′)◦. It follows
that H◦�H ′, forcing H ′ ≤ L, as desired.

In particular, L is a maximal proper definable subgroup of G. So the action of G on
G/L is definably primitive. But it may no longer be faithful. Let us show that the kernel

of the action of G on G/L, say K, is finite. First, note that K =
⋂

g∈G

Lg. Similarly, because

G acts faithfully on G/H, we have
⋂

g∈G

Hg = {1}. By the descending chain condition on

definable subgroups, there must be g1, · · · ,gn ∈G such that K =
n⋂

i=1

Lgi and {1}=
n⋂

i=1

Hgi .

Note that for any subgroups H1 < L1 < G and H2 < L2 < G, we have an injective map
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(L1∩L2)/(H1∩H2)→ L1/H1×L2/H2. Applying this fact repeatedly, we see

|K|= [K : {1}]

=

[
n⋂

i=1

Lgi :

n⋂
i=1

Hgi

]

≤
n∏

i=1

[Lgi :Hgi ]

= [L :H]
n
,

and since [L :H] is finite, so is K.

We have that (G/K,G/L) is faithful, transitive and definably primitive. Hence, by

Theorem 2.5, (G/K,G/L) is definably isomorphic to an algebraic group action in the
constants. Note that (G/K,G/L) is still generically (n+2)-transitive. Now, the Borovik-

Cherlin conjecture for ACF0, as established in [14, Section 6], implies that G/K is

definably isomorphic to PSLn+1(C). That is, the quotient of G by a normal finite subgroup

is definably isomorphic to the C-points of an algebraic group over C. By [31, Corollary
3.10], this forces G itself to be definably isomorphic to the C-points of an algebraic

group over C. But then, (G,S) is definably isomorphic to an algebraic group action in the

constants, and the Borovik-Cherlin conjecture for ACF0 implies it is definably isomorphic
to PSLn+1(C) on P

n(C).

The very same proof gives a differential-algebraic-geometric variant. In this variant, we

replace Morley-rank-based generic transitivity with the following natural notion of generic
transitivity coming from the Kolchin topology: we say that a differential-algebraic group

action, (G,S), is Kolchin-generically μ-transitive if the diagonal action of G on Sμ admits

a Kolchin dense orbit. At the same time, we replace Morley rank itself with differential-

algebraic-geometric dimension, which naturally generalises algebro-geometric dimension
except that it is not always finite: if X is a differential-algebraic variety over a differential

subfield k, then we say that X is finite dimensional if, for each a ∈ X, the differential

field k〈a〉 generated by a over k is of finite transcendence degree over k, and in that case,
we call the supremum of these transcendence degrees the dimension of X.

Theorem 4.4 (Finite dimensional geometric BC for DCF0). Suppose (G,S) is a

differential-algebraic permutation group with G connected and finite dimensional, and

d = dimS > 0. If the action is Kolchin-generically (d+ 2)-transitive, then (G,S) is

isomorphic to the natural action of PSLd+1(C) on P
d(C).

The precise relationship between Theorem 4.4 and Theorem 4.3 is not clear. First of all,
finite-dimensionality is equivalent to finite Morley rank (in this single derivation case),

and dimension is an upper bound for Morley rank. However, dimension may be strictly

larger than Morley rank. Moreover, it is unlikely that the existence of a Kolchin dense
orbit will coincide with that of a generic orbit in the sense of Morley rank. For example, in

his thesis [11, §9], the first named author showed that the irreducible differential-algebraic

variety V defined by the ordinary order 3 algebraic differential equation xx′′′ −x′′ = 0
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has a proper Kolchin closed subset W (defined by x′′ = 0) whose complement has Morley

rank strictly less than that of V. So W is generic in V in the sense of Morley rank but

is not Kolchin dense, while V \W is Kolchin dense in V but not generic in the sense
of Morley rank. We do not, however, know of an example that arises as the orbit of a

definable group action.

In any case, Theorem 4.4 follows from Theorem 2.5 in exactly the same way as
Theorem 4.3 did. We leave the verification of details to the reader.

But our real purpose in raising this geometric variant is that it suggests (to us) a

more general conjecture about DCF0,m, the theory of characteristic zero differentially
closed fields in m commuting derivations, Δ = {δ1, . . . ,δm}. The idea is that we can

drop finite-dimensionality by replacing dimension with the Kolchin polynomial, a

numerical polynomial associated to a differential-algebraic variety measuring the growth

in transcendence degree as you take higher order derivatives of a solution. See the
exposition in [8] for details. The Δ-type is the degree of the Kolchin polynomial

(which is at most m), and the typical Δ-dimension is its leading coefficient. The finite

dimensional case corresponds to when the Δ-type is zero, and in that case, the typical
Δ-dimension is what we have been calling dimension. Instead of connectedness, we have

to consider the following strengthening introduced in [8]: A differential-algebraic group

G is strongly connected if there is no proper differential-algebraic subgroup H such that
Δ-type(G/H)<Δ-type(G). Strongly connected groups are connected, and the converse

also holds of finite dimensional groups. Here is what Theorem 4.4 leads us to expect:

Conjecture 4.5 (Geometric BC for DCF0,m). Suppose G is a strongly connected

differential-algebraic group of Δ-type � acting differential-algebraically, faithfully and

transitively on a differential-algebraic variety S of typical Δ-dimension d > 0. If G acts
Kolchin-generically (d+ 2)-transitively on S, then (G,S) is isomorphic to the natural

action of PSLd+1(F) on P
d(F), where F is the constant field of some m− � linearly

independent derivations in spanC(Δ).

Theorem 4.4 is the Δ-type(G) = 0 case of Conjecture 4.5. It is the opposite extreme,

when Δ-type(G) = m, that poses the greatest difficulty. If this case of maximal
Δ-type were settled, then an induction on the number of derivations, using the work of

León Sánchez [23] on relative D-groups and D-varieties, together with Buium’s theorem

on the isotriviality of D-variety structures on projective varieties [5], should imply
Conjecture 4.5. However, the maximal Δ-type case, even when m= 1, remains open.

5. Bounding nonorthogonality

The permutation groups in DCF0 that we are primarily interested in are those that arise
as binding groups. The starting point of [14] was the observation that bounding the

generic transitivity degree of binding group actions leads to a bound on the witness to

nonorthogonality.

https://doi.org/10.1017/S1474748024000501 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000501


620 J. Freitag, L. Jimenez, and R. Moosa

Recall that a type p ∈ S(k) is weakly orthogonal3 to a k -definable set X if every
realisation of p is independent of every finite tuple from X over k. It is outright orthogonal

if this holds of all nonforking extension of p to more parameters. It is a general fact that if

p is nonorthogonal to X, then some finite Morley power of p is not weakly orthogonal to X.
A fundamental theorem of Hrushovski’s implies that if p is minimal and nonorthogonal

to C, then p(4) is already not weakly orthogonal to C. Indeed, this is a consequence of

a very special case of [17, Theorem 1], which is about arbitrary stable theories and

(possibly infinite rank) regular types. One cannot expect in DCF0 an absolute bound
that is independent of rank: the construction in [14, Section 4.2] exhibits, for each n≥ 2,

a Morley rank n type p that is nonorthogonal to C (indeed, is C-internal), and such that

p(n+2) is weakly C-orthogonal.4 However, this is as bad as it gets; applying the truth
of the Borovik-Cherlin conjecture to binding groups, the first and third authors showed

in [14] that n+3 is a bound for witnessing nonorthogonality to the constants. Using

Borovik-Cherlin in DCF0 – namely, Theorem 4.3 above – instead, the proof extends to
arbitrary definable sets:

Corollary 5.1. Suppose p ∈ S(k) is a type of Morley rank n over an algebraically closed
differential field k, and X is any definable set over k. If p is nonorthogonal to X, then the

Morley power p(n+3) is not weakly X-orthogonal.

When X = C, we can replace Morley rank with U-rank.

Proof. From nonorthogonality to X, we get a definable function p → q such that q

is nonalgebraic and X -internal (see [29, 7.4.6]). So we may as well assume that p is

X -internal. Let G be the binding group of p relative to X. As we may assume that p
itself is weakly X -orthogonal, G acts transitively on S := p(U). In particular, p is isolated,

and S is a definable set of Morley rank n. (Note that, as p is X -internal, if X = C, then
n = U(p).) Moreover, as k is algebraically closed, G is connected. If p(n+3) is weakly
X -orthogonal, then G acts transitively on p(n+3)(U), and so (G,S) is generically (n+3)-

transitive. But then it is also generically (n+2)-transitive, and so, by our Theorem 4.3,

(G,S) is (PSLn+1(C),Pn(C)). But this is a contradiction, as the latter is not generically
(n+3)-transitive.

The above Corollary answers, for the case of finite rank types in DCF0, a question
Hrushovski raises in [17, Section 2] as a possible refinements of his main theorem; it is

the second of the two ‘natural generalizations’ that he mentions there.

In fact, with a little more work, we can obtain a more refined version of Corollary 5.1.
So far, we have been talking about definable interaction between single realisations of

p and finite tuples from X. But one can ask the finer, more symmetric question about

nonorthogonality between two types: p and q are weakly orthogonal, denoted p ⊥w q,

if any realisation of p is independent of any realisation of q, and they are orthogonal,
denoted p⊥ q, if this continues to hold after taking nonforking extensions. If p and q are

3This is also called ‘almost orthogonal’ in the literature.
4However, if we assume in addition that δ is trivial on k, then it is shown in [20] that p being

nonorthogonal to C implies p(2) is already not weakly C-orthogonal.
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nonorthogonal, then some finite Morley powers of p and q will be weakly nonorthogonal.
Can we bound these powers? This question, for arbitrary stable theories but working with

regular types, was also raised by Hrushovski in [17]; it is the other of the two natural

generalizations he asks about. We show the following:

Theorem 5.2. Suppose k is an algebraically closed differential field and p,q ∈ S(k) are

of U-rank m and n, respectively. If p �⊥ q, then p(m+3) �⊥w q(n+3).

Before proving the theorem, we recall two well-known facts from geometric stability the-

ory, including proofs for the sake of completeness. First, all instances of nonorthogonality
between finite rank types are witnessed by minimal types:

Lemma 5.3. Suppose p and q are complete stationary types of finite rank. Then, p �⊥ q
if and only if there is a minimal type r such that p �⊥ r and r �⊥ q.

Proof. For the right-to-left direction (which does not use finite rank), suppose p and q

are each nonorthogonal to some minimal r. Taking nonforking extensions, we may assume

that, in fact, all three types are over a common parameter set A and that p and q are, in

fact, each non-weakly orthogonal to r. Then there are a |= p,b |= q,c |= r such that a � |	A
c

and c � |	A
b. Since r is minimal, we have c ∈

(
acl(aA)∩acl(bA)

)
\acl(A) witnessing that

a � |	A
b.

For the converse, we use [29, Corollary 1.4.5.7]: for any finite rank p∈ S(A), there exists

a model A ⊂ M |= T and minimal types p1 · · · ,pn ∈ S(M) such that pM is domination
equivalent to p1⊗·· ·⊗pn. That is, a tuple forks over M with a realisation of pM if and

only if it forks over M with a realisation of p1⊗·· ·⊗pn. Taking nonforking extensions to

a larger model if necessary, we may assume that M contains the domain of q and that,
since p �⊥ q, a realisation of qM forks with a realisation of pM over M. Forking calculus

now shows that pi �⊥ q, for some i≤ n. As p �⊥ pi, we can take r = pi.

Next, recall that for a stationary type p ∈ S(A) and a set of complete types Q over

arbitrary parameter sets, we say that p is Q-internal if there exist � ≥ 1, tp(bi/Bi) ∈ Q
for i= 1, . . . ,�, C ⊇A∪

⋃�
i=1Bi, and a |= p with a |	A

C, such that a ∈ acl(Cb1, . . . ,b�). In
particular, for q ∈ S(B), we have that p is q-internal if it is {q}-internal. Replacing dcl

with acl yields the notion of almost internality.

Our second lemma says that almost internality to a minimal type coincides with almost

internality to the set of conjugates of that minimal type:

Lemma 5.4. Suppose p ∈ S(A) and q ∈ S(B) are stationary with q minimal and where
B ⊇A. Let Q be the set of A-conjugates of q. If p is almost Q-internal, then p is almost

q-internal.

Proof. (Thanks to Anand Pillay for pointing out this argument.)

If p= tp(a/A) is almost Q-internal, then there are A-conjugates of q, say qi = tp(bi/Bi),

i= 1, . . . ,�, and C ⊇
⋃�

i=1Bi with a |	A
C, such that a ∈ acl(Cb1, . . . ,b�). Choose these so

that � is minimal.

If b1 ∈ acl(C), then we can just drop it and contradict minimality of �. So we may

assume b1 /∈ acl(C). If b1 /∈ acl(Ca), then a |	C
b1 as q is of U -rank 1, and, replacing
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C with Cb1, we contradict the minimality of �. Hence, b1 ∈ acl(Ca) \ acl(C). It follows

that q1 = tp(b1/B1) is nonorthogonal to p= tp(a/A). This means (by definition) that q1
is nonorthogonal to the parameter set A. By [29, Lemma 1.4.3.3], we get that if B′ is
an A-conjugate of B that is independent from B1 over A, and q′ is the corresponding

A-conjugate of q, then q1 is nonorthogonal to q′. Of course, this holds not just for q1 but

for q2, . . . ,q� as well. So if we choose B′ to be an A-conjugate of B that is independent of
(B1, . . . ,B�) over A, and let q′ be the corresponding conjugate of q, then we have that each

qi is nonorthogonal to q′. As these are minimal types, we get that q1, . . . ,q� are pairwise

nonorthogonal.
So, taking a larger C and further nonforking extension if necessary, we can assume that

each bi is interalgebraic with some ci over C, where all the c1, . . . ,c� realise q1. Hence,

a ∈ acl(Cc1, . . . ,c�) witnesses almost internality of p with q1. As q1 is an A-conjugate of

q, we have that p is almost q-internal.

We are now ready to prove the theorem.

Proof of Theorem 5.2. By Lemma 5.3, there exists a minimal type t, potentially over
additional parameters, such that p �⊥ t and q �⊥ t. We deal separately with the cases when

t is or is not locally modular.

Suppose first that t is nonlocally modular. Then both p and q are nonorthogonal to
the constants. By Corollary 5.1, we have that p(m+3) �⊥w C. It follows that there is a

realisation a |= p(m+3) and a k -definable function, f, such that f(a) ∈ C is generic over

k (see, for example, Lemma 2.1 of [14].) Similarly, we have b |= q(n+3) and a k -definable
function g, such that g(a) ∈ C is generic over k. Since f(a) and g(b) realise the same type

over k, by automorphisms, we can choose b such that f(a) = g(b). It follows that a � |	k
b,

witnessing that p(m+3) �⊥w q(n+3).

Now suppose that t is locally modular. We show that in this case, p(2) �⊥w q(2).
Let T be the set of k -conjuguates of t. Since p and q are nonorthogonal to t, we obtain,

by [29, 7.4.6], k -definable functions p→ r and q → s such that r and s are nonalgebraic

and T -internal. Hence, r and s are almost t-internal by Lemma 5.4. In particular, r and
s are 1-based. At this point, given r and s one-based and nonorthogonal, it is well known

how to deduce that r(2) and s(2) are non-weakly orthogonal. Nevertheless, we give some

details.

We claim that there is a minimal type over k that is algebraic over r. That is, writing
r = tp(c/k), there is c̃ ∈ acl(kc) such that r̃ := tp(c̃/k) is minimal. If U(r) = 1, then we

can simply take c̃ = c. Otherwise, there is B ⊃ k with U(c/B) = U(c/A)− 1 > 0. Let

c̃ = Cb(c/B). By 1-basedness, c̃ ∈ acl(kc). We have U(c/kc̃) = U(c/k)−1, from which it
follows that U(c̃/k) = 1, as desired. Similarly, we have s = tp(d/k) and d̃ ∈ acl(kd) such

that s̃ := tp(d̃/k) is minimal.

Note that r̃ and s̃ are locally modular nonorthogonal minimal types. Now, for modular
minimal types orthogonality and weak orthogonality coincide, see [29, 2.5.5]. It follows

that r̃(2) �⊥w s̃(2), and hence, r(2) �⊥w s(2). As r and s are k -definable images of p and q,

we have that p(2) �⊥w q(2), as desired.
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Remark 5.5. While the proof of Theorem 5.2 appealed to Corollary 5.1, it only used the
X = C case of that corollary, and hence only makes use of the truth of Borovik-Cherlin

in ACF0.

6. Other theories

So far, we have worked in the theory DCF0. Here, we verify that the results hold also, for

the finite rank setting, in DCF0,m and the theory of compact complex manifolds (CCM).
In fact, we extract from the above proofs the required abstract properties of the theory.

Theorem 6.1. Suppose T is a complete stable theory admitting elimination of imagi-
naries, and with a pure 0-definable algebraically closed field C. Assume the following hold

in T:

(1) Every simple group of finite rank definable in T is definably isomorphic to the

C-points of a simple linear algebraic group over C.
(2) Up to definable isomorphism, the only commutative finite rank group definable in

T, having no proper nontrivial definable subgroups, is Ga(C).
(3) There are no infinite elementary abelian groups of finite rank definable in T.

Then, Theorems A and B of the Introduction hold of T, with C playing the role of the
constants.

Suppose, moreover, that the following holds in T:

(4) Every connected commutative finite rank group definable in T is divisible.

Then the Borovik-Cherlin Conjecture – namely, Theorem C – holds in T, again with C
playing the role of the constants.
In particular, Theorems A, B, C of the Introduction all hold of DCF0,m with C the field

of total constants, and of CCM with C the elementary extension of the complex field living

on the projective line.5

Proof. We leave it to the reader to verify that conditions (1) through (3) are exactly

what is needed for the proof of Theorem A (namely, 2.5) to go through. Theorem B
(namely, 3.7) for T follows formally from Theorem A for T together with Theorem 3.5

(for ACF0).

Maybe it is worth pointing out that condition (1) already implies that, up to definable
isomorphism, C is the only infinite field of finite rank definable in T. See, for example,

Pillay’s proof of Corollary 1.6 in [26, Chapter III]. Namely, if F is an infinite definable

field of finite rank in T, then PSL2(F ) is a simple group of finite rank definable in T,

and hence, PSL2(F ) is definably isomorphic to a group definable in the pure field C. But
the field F itself is interpretable in the group structure on PSL2(F ), so that F is then

definably isomorphic to a field definable in (C,+ ,×), and hence is definably isomorphic

to C.

5Note that the Borovik-Cherlin Conjecture in CCM was already established in [14].
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It is shown in [30, Corollary 3.10] that condition (4) implies that if G is a connected

definable group with the property that the quotient by some normal finite subgroup is

definably isomorphic to the C-points of an algebraic group over C, then this is already
true of G. With this additional fact, our proof of Theorem 4.3 goes through to establish

the Borovik-Cherlin conjecture in T.

Finally, let us point out that these conditions do hold in DCF0,m and CCM.
In DCF0,m, as in the case of a single derivation, it remains true that every definable

group of finite rank embeds in an algebraic group. Conditions (3) and (4) follow, as every

commutative algebraic group in characteristic zero has finite n-torsion for all n. From this
embedding into an algebraic group, it also follows that if G is a simple definable group

of finite rank, then it embeds definably in GLn (see, for example, the proof of Corollary

1.2 in [26, Chapter III]), and hence, Cassidy’s theorem (see [8, Theorem 3.7] for a version

that holds also of infinite rank) implies that G is definably isomorphic to the C-points of
a simple linear algebraic group. So condition (1) holds. For condition (2), note that the

proof of Lemma 2.2 above goes through in the case of DCF0,m (in particular, [18] works

in the context of several commuting derivations).
Regarding CCM, there is a very good understanding of the definable groups coming out

of [2, 16, 32, 35]. In particular, there is a Chevalley-type structure theorem for definable

groups whereby every definable group is the extension of a ‘nonstandard complex torus’ by
a linear algebraic group. Here, the notion of a nonstandard complex torus is somewhat

subtle, but at the very least, these are commutative groups with nontrivial but finite

n-torsion for all n. Conditions (1) through (4) all follow from this.

Theorem 6.2. Suppose T is a complete totally transcendental theory admitting elimi-
nation of imaginaries, and with a pure 0-definable algebraically closed field C, such that

every nonlocally modular minimal type is nonorthogonal to C. Then, Theorem D of the

Introduction holds in T.
In particular, this holds of DCF0,m and CCM.

Proof. Again, we leave to the reader the verification that these were the only properties
of DCF0 used in the proof of Theorem D (namely, 5.2). That they hold of DCF0,m and

CCM is well known.
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