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BIFURCATION OF NONSYMMETRIC SOLUTIONS FOR
SOME DUFFING EQUATIONS

FUMIO NAKAJIMA

For some symmetric Duffing equation, the existence of bifurcation of nonsymmet-
ric, periodic solutions from symmetric periodic solutions is proved by using the
change of index of symmetric, periodic solutions for variation of parameters.

1. INTRODUCTION

For the Duffing equation

(1) x +kx +x3 = Bcost, (• = — I
V dtj

where x = x(t) is real valued for t 6 R, R = (-00,00) and k and B are positive
constants, it is known numerically that nonsymmetric, periodic solutions appear as a
result of bifurcations from symmetric solutions for variation of B and for fixed k (see
[3]); however, mathematically, it is hard to prove such a bifurcation. Equation (1) may
be called a symmetric equation, because if x(t) is a solution of (1), then —x(t + ir)
is also a solution of (1) as long as this is defined, and the solution x(t) is called a
symmetric solution if x(t + TT) = — x(t).

Although Loud [7] obtained a sufficient condition for the bifurcation, his theorem
has not provided us any example, because his condition is actually not simple. It is
important to obtain any example in terms of Duffing equations.

First of all we shall consider the existence of symmetric solutions for 2-dimensional
symmetric systems which include (1) as a special case. In Theorem 1 it is shown
that the existence of periodic solutions implies the existence of symmetric solutions by
using Massera's fixed point theorem. Therefore (1) has at least one symmetric solution.
Moreover it is also shown that the three dimensional analogy of Theorem 1 does not
hold.

In Theorem 2, we shall consider the equation with parametric excitation:

(2) x + eXx + (in2 + ep(t))x + g(x) = ae(t),
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where e, A and a are positive constants, n is a positive integer, g(x) is analytic for
x € R, g{-x) = -g(x), g'(0) = 0, g'{x) ^ 0 for x e R, p{t) is continuous and ir-

periodic, e(t) is continuous and 2TT-periodic with least period 2n and e(t + n) = -e(t).
Moreover we shall assume that

(3) lim ^ M = o o .
|l|-K» I

Equation (2) is symmetric and has a physical meaning [8, p.498]. It will be shown that
(2) undergoes bifurcation for variation of A and for appropriately fixed e and a under
some additional assumption on p(t). Our method is to use the idea that if the index
of periodic solutions changes for variation of A, then other periodic solutions bifurcate,
which is along the same line as in [11, Theorem 4]. We never use any bifurcation
equations.

Clearly, if x(t) is a symmetric solution of (2), then its solution orbit Q. :=
{(x(t), x(t)) € R2; 0 < t ^ 2n} is symmetric with respect to the origin. In The-
orem 3 we shall show that if x(t) is a 27r-periodic solution of (2), then the symmetry
of n with respect to the origin implies the symmetry of x(t) under the assumption of
analyticity of p(t) and e(t).

2. SYMMETRIC SOLUTIONS

We shall consider the 2-dimensional system:

(4) x = f{t,x,y), y = g(t,x,y),

where f(t,x,y) and g(t,x,y) are continuous for (t,x,y) € R3, Lipschitz continuous for
(x,y) € R2 and for each fixed t e R, and f(t + TT, -X, -y) = -f(t,x,y), g(t + IT, -X, -y)
= -g(t,x,y). Clearly it follows that f(t + 2-K,x,y) = f(t,x,y) and g(t + 2ir,x,y) =
g(t,x,y). Then (4) is symmetric, because if (x(t), y(t)) is a solution, then (-x(t + IT),
- y(t + IT)) is also a solution as long as this is denned. It is seen that (2) is a special

case of (4), by setting y = x.

DEFINITION 1: The solution (x(t), y(t)) is symmetric if x(t + n) = -x(t) and
y(t + TT) = -y{t). The term 'nonsymmetric solutions' means 27r-periodic solutions,
which are not symmetric.

The existence of symmetric solutions was investigated by several authors for special
equations (for example, see [1] and [6]). The following result may be more general.

THEOREM 1. Assume that every solution of (4) exists for 0 < t ^ 2TT . If (4) has

a 2mr -periodic solution for some integer n, then there exists at least one symmetric

solution.
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P R O O F OF THEOREM 1: Since solutions are unique for intial values, we shall de-

note the solution (x(t),y(t)) of (4) with x(0) = f and y(0) = 77 for (£,77) € R2 by

(x(t,£,Tj), y(t,£,r])), and furthermore set

(5) T{t,ri)=(-x{ir,Z,ri), -!/(*,£,»/)).

Then we can verify that (x(t, £, 77), y(<, £, 77)) is symmetric if and only if T(£, 77) = (£, 77),

and moreover that

2/(* + 2TT, £, 77) = -2/(i + 7r, -X(TT, £,77), -y(n,t;,r))),

by putting t = —ir. This implies that

(6) T2(?)77)=(a;(27r,e,77), 7/(27r,^7?)).

Since solutions are unique for initial values, T is a continuous, one to one mapping

from R2 into R2, and moreover T is orientation preserving, because T is isotopic to

the mapping of minus identity. Since (4) has 2nn-periodic solutions, it follows from (6)

that T has n-periodic points. Therefore Massere's fixed point theorem guarantees that

T has a fixed point (see [9, Theorem 3.1] or [13, p.369]). This completes the proof. D

The three dimensional analogy of Theorem 1 does not hold.

EXAMPLE 1. Let us consider the 3-dimensional system

(7) x = y, y = -z2y - x + cos t, z — (cos 2t)z.

Since (7) is invariant under the transformation: (x, y, z, t) -> (-x, -y, -z,t + TT), it

is symmetric. By integration of the third equation of (7), we obtain that z(t) =

Cexp(sin2i)/2, where C is a constant, and hence z(t) is symmetric if and only if

C = 0. When C — 0, that is, z{t) = 0, (7) is reduced to the equation x + x — cost,

whose solutions are all unbounded. Therefore (7) has no symmetric solution. On the

other hand there exist 27r-periodic solutions. In fact, substituting z = Cexp (sin2<)/2

for C ^ O into (7), we see that (7) is reduced to the equation

(8) x + xC2 exp (sin 2t) + x = cos t.

Since the homogeneous part of (8), x + xC2 exp (sin 2t) -t- x — 0, has no nontrivial

27r-periodic solution, (8) has one and only one 2TT-periodic solution.
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3. NONSYMMETRIC SOLUTIONS

We shall consider (2).

THEOREM 2 . Assume that fgp(t)dt = 0 and either / * p(t) cos Ant dt ^ 0 or

/ * p(t) sin Antdt^O.

Then there exist a positive constant £Q , a positive number 6(e) for each 0 < e < EQ ,

and a positive constant j(e,<r) for 0 < e < £o and for 0 < a < S(e), such that (2)

has a symmetric solution x(t, A) for A close to j(e,cr) and a nonsymmetric solution

x*(t,X) for either A < j(e, a) or A > j(e,cr), where JA — 7(e, cr)| is sufficiently small,

and x*(t,X) approaches x(t,ry(e,a)) uniformly on [0,2TT] as A approaches 7(e,cr).

We shall make preparations for proof of Theorem 2. Let x(t) be an existing

symmetric solution of (2) and consider the variational equation of (2) with respect to

x(t):

(9) i = V,V = -eXv - (4n2 + ep(t) + g'{x{t)))l

Setting U(t) to be the fundamental matrix of (9), we shall use the symbols fj,i and /i2

in order to denote eigenvalues of U(n) and call these the half multipliers of x(t). Then
the usual multipliers of x(t) are the eigenvalues of U(2TT) , that is, fi\ and n\.

DEFINITION 2: The symmetric solution x(t) is simple if ^i ^ - 1 and fi2 ^ -1.

The following fact may be proved by the same argument as in [2, p.348, Theorem

1.1].

LEMMA 1 . If (2) has a simple, symmetric solution xo(t) for A = Ao and a — <r0

and for fixed e, then there exists a simple, symmetric solution x(t,X,a) for (A, a)

close to (Ao,0o)> which is analytic for (A,a), unique in a neighbourhood of xo{t) and

x(t,Xo,(To) = xo(t).

PROOF OF LEMMA 1: Let us denote the solution x(t) of (2) with a;(0) = £ and

x(0) = r] by x(t,£,T}; A,cr), where e is fixed. x(t,£,ri; X,a) is symmetric if and only if

(£, rj) is a solution of the equation.

, r?; A, 0) = £ + x(n, £, r,; X, a) = 0

,JJ; A,cr) = 77 + ±(7i\£,7/; X,a) = 0.

Moreover we have that

f | 2 „ ) ,.0
for A = AQ and 0 = &§. Then the same argument as in [2] using the implicit function

theorem completes the proof of Lemma 1. D

When a — 0, (2) has the trivial solution x(t) = 0. We shall compute the half

multipliers of x{t) = 0, say u-i(e, A) and /j,2(e,X).
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LEMMA 2 .

(10)

where

a= p(t) cos Ant dt and b = / p(t) sin Ant dt.
Jo Jo

PROOF OF LEMMA 2: Since g'(0) — 0, the variational system of (2) with respect
to x(t) = 0 is the following:

where

Letting U(t,e) be the fundamental matrix of (11), we may set

where Uo(0) = I for the 2 x 2 unit matrix / , C/i(0) = 0 and V(O,e) = 0, and hence it
follows that

Uo = AU0,

Ui = AUi - B(t)U0,

V = (A-eB(t))V-e2B(t)U1.

Immediately we may compute Uo{t) and show that UO{TT) = / . U\(t) and V(t,e) may
also be obtained by the variational formula, and it may be shown that

(
b TTX a

4n 2 8n2

a b nX
~2 ~ 4 n ~ ~ 2 ~

and
It follows that

I ae I b irX

which implies (10). This completes the proof. D

Lemma 3 is exactly as stated in [5], and Lemma 4 follows immediately from [12].
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LEMMA 3 . In the equation

x + kx + a(t)x = 0,

where k is a positive constant and a(t) is continuous for t G R and satisfies

Q ^ a{t) ^ (3

for positive constants a and fl, assume that

k

Then for any solution x(t), both x(t) and x(t) approach zero exponentially as t -» oo.

LEMMA 4 . Consider the equation

where k is a positive constant, a(t) and b(t) are continuous, 2TT -periodic for t 6 R,

and g(x) is continuous for x £ R and satisfies (3). Then for each positive constant ko

there exists a positive constant Bo such that for k > k0, every 2n -periodic solution of

(12) satisfies

\x(t)\ ^ Bo for 0 ^ t ^ 2TT,

where Bo only depends on max j \a(t)\ + \b(t)\ \.

Now we shall prove Theorem 2.

PROOF OF THEOREM 2: First let us take a number Ai such that

(13) ° < Al < W
where a and b are the constants of Lemma 2, and consider (2) for the case where A = Ai
and a = 0. Then the trivial solution x(t) = 0 has the half multipliers Hi and Hi such
that 0 < fix < 1 < fj.2, where 0 < e < e0 for a small positive constant e0, because of
(10) and (13). Furthermore, by Lemma 1 we can take a positive constant 6(e) for each
0 < e < £Q such that if A = Ai and 0 < a < 6(e) then (2) has a unique, symmetric
solution in a neighbourhood of x(t) = 0 with the half multipliers ^i and \ii such that
0 < Hi < 1 < H2 • In the following we shall fix e and a such that 0 < e < eo and
0 < a < 6(e), and increase A from Ai towards plus infinity. Again by Lemma 1, (2)
has a unique, symmetric solution for A close to Ai, which is analytic for A and denoted
by x(t, A) as long as it is analytically denned for A ^ Ai. Moreover we shall denote the
half multipliers of x(t, A) by /^i(A) and ^ ( A ) , and hence 0 < Mi(^i) < 1 < A*2(Ai)-
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We shall show that there exists a number A2 > Ai such that x(t, A) exists for

Ai ^ A ^ A2, 0 < /zi(A) < 1, /i2(A) > 0 for Ai ^ A < A2 and 0 < /xi(A2) < 1,

0 < £t2(A2) < 1. By Abel's equality we obtain

(14) ft(A)/u(A)=r(»'<l.

First, if /ii(A) and /i2(A) are not real for some A' > Ai, then |^i(A')| = |/i2(A')| < 1

by (14), and hence our assertion above follows from the continuity of fJ-i(X) and /J2(A)

for A. Secondly we may assume that /xi(A) and /x2(A) are real numbers as long as

x(t,X) is defined for A > Ai. In fact /ii(A) and /x2(A) are positive as long as x(t,X)

is denned for A > Ai. By Lemma 1, x(t, A) is actually denned for A > A1; and hence

/Ui(A) and /i2(A) are defined and positive for A > Ai. We shall consider the variational

equation of (2) with respect to x(t, A):

(15) Z + eX£ + a(t,\)t = 0,

where a{t, A) = An2 + ep(t) + g'(x(t, A)).

Because of Lemma 4, x(t, A) is uniformly bounded for 0 ^ t ^ 2TT and for A ̂  Ai,

and hence g'(x{t, A)) is too. Since g'(x) ^ 0, we can take positive constants a < /?

such that

a ^ a(t, A) ^ (3 for 0 ^ t < 2TT and for A ^ Ax.

For a positive number A2 such that eX2 > \[$- y/a, the assertion of Lemma 3 implies

that 0 < /ii(A2) < 1 and 0 < /z2(A2) < 1.

We can choose a number Ai < Ao < A2 such that 0 < /*i(A0) < 1 and /x2(A0) = 1,

by using the continuity of Hi(X) and /^2(A), in fact /xi(A0) = e~eA7r. Since x(t,X) is

analytic for A at A = Ao, it follows that /^2(A) is analytic for A at A = Ao- Therefore

we may assume that Hi(X) < 1 < /i2(A) for Ao - 6' ^ A < Ao and 0 < fii(X) < 1,

0 < ^2(A) < 1 for Ao < A ̂  Ao + 5', where 5' is a small positive number.

Since the number of existing 2TT-periodic solutions of (2) is finite [10], we may

define the index of x(t, A), say l(x{ •, A)) (for the definition of index, see [4] or [11]).

Now we shall suppose that (2) has no 2?r-periodic solutions different from x(t,X) in

a neighbourhood of x(t,Xo) for A close to Ao and for A ^ Ao. Then, x(t, X) is the

unique, 2TT-periodic solution in a neighbourhood of x(t, Ao) for A close to Ao- Since

x(t,X) is continuous for A at A = Ao, l(x(-, A)) is continuous for A at A = Ao, and

hence, a constant integer for A close to Ao- Therefore we may assume that l(x{ •, A))

is constant for Ao - 8' ^ A ^ Ao + 6'. However, since 0 < /ii(A0 — <$')< 1 < A*2(A0 - 8')

and since 0 < ^i(Ao + <5') < 1 and 0 < H2(XQ + 8') < 1, it folows from [4] that

I(x( •, Ao - 8')) = - 1 and l(x{ •, Ao + 8')) = 1. This is a contradiction. Therefore, (2)

has a 2?r-periodic solution x*{t, A) different from x(t, A) such that x*(t, A) approaches
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x(t, AQ) uniformly on [0,2TT] as A —» Ao. As is noted in Lemma 1, x[t, A) is the unique,

symmetric solution in a neighbourhood of x(t, Ao) for A close to Ao, and hence x*(t, A)

must be nonsymmetric. Setting Ao = A(e, a) completes the proof. D

4. SOLUTION ORBIT

We shall consider the equation:

(16) x +f(x)x + a(t)x+g(x) = e(t),

where f(x) and g(x) are analytic for x € R, f(-x) = f(x), g(—x) = -g(x), a(t) and

e(t) are analytic for t € R, a(t + n) = a(t), e(t + n) = -e(t) and e(t) has the least

period 2TT.

For the 2?r-periodic solution x(t) of (16) we shall call the set Q, = {(x(t), x(t)) 6

R2; 0 ^ t ^ 2TT} the solution orbit of x(t).

DEFINITION 2: The solution orbit f2 of the 2TT-periodic solution x(t) is symmetric

with respect to the origin, if for each t (E [0, 2TT) , there exists a number s € [0, 2TT) such

that x(t) — -x(s) and x(t) — -x{s).

THEOREM 3 . Let x(t) he a 27r-periodic solution of (16). If the solution orbit Q

of x(t) is symmetric with respect to the origin, then x(t) is symmetric.

P R O O F OF THEOREM 3: Since f(x), g(x), a(t) and e(t) are analytic for respective

arguments x and t, it is known that x(t) is analytic for t € R. We can take a number

0 ^ t0 < 2TT such that x(to) ^ 0, because x(t) is not constant, and moreover set

tk — to + (1/&) for some large positive interger k. By the symmetry of fl there exists

a number Sfc £ [0, 2TT) such that

(17) x(tk) = -x(sk) and x{tk) = -x{sk).

The sequence {sfc}fc î naay be assumed to converge as k —> oo, and hence we may set

lim Sfc.
k-¥OO

We shall consider the equation of (£, s) in a neighbourhood of (to, SQ) :

so = lim
fc—»o

f(t,s) =x{t)+x{s),

where f(t,s) is analytic for (t,s). Since f(to,So) — 0 and -~-{to,so) = x(t0) ^ 0,

the implicit function theorem gives us an analytic function t = cp(s) defined for s € / ,

where / is a neighbourhood of SQ , such that </>(so) = to and

(18) f(ip(s),s)=x(<p(s))+x(s) = 0 forse/.
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Moreover, since f(tk,Sk) = 0 by (17), it follows that ip(sk) = t^; and hence that
x(ip(sk)) — - i ( s f c ) . Because both x(tp(s)) and ±(s) are analytic for s € / , the unicity
theorem guarantees that

(19) x(<p(s)) = -x(s) f o r s ^ I-

On the other hand (18) implies that x(ip(s))tp(s) = -x(s) for s € I. Therefore,
<p(s) = 1 for s 6 / , because x(to) = x(ip(s0)) ^ 0, where / is taken to be sufficiently
small. Therefore <p(s) = s + w for a constant u> — to — SQ, where —2?r < u> < 2n, and
hence (18) implies that

(20) x(s + LJ) = -x(s) for s e / .

Since x(s) is analytic for s 6 R, (20) holds not only for s € / but also for s € R.

Finally we shall show that w = IT. It may be assumed that 0 ^ w < 2?r by the
periodicity of x(t). By combining (16) and (20) we can obtain that

{a(t + w) - a(t)}x(t) = -a{e(t + ui) + e(t)}.

If w ^ n, then e(t + w) + e(t) ^ 0, and hence it follows from the analyticity of x(t)

that

x(t) V / . \'J for t e R,
w a(t + cj)-a(t)

which immediately implies that x(t + IT) = —x(t). This completes the proof of Theo-

rem 3. D
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