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Abstract
Diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), was first recorded in North
America from Europe about 150 years ago and can be a significant pest of canola in Western Canada.
Because parasitism of P. xylostella in Canada is generally low, the introduction of one or more
additional exotic parasitoids from Europe is being considered to increase the suppression of
P. xylostella populations. Life table studies to determine the impact of parasitoids on diamondback
moth populations in Europe were conducted in northwestern Switzerland in 2014–2016. Net
reproductive rates were found to be less than one in seven out of eight life tables, suggesting that
P. xylostella populations in Switzerland are mostly driven by immigration and recolonisation. In total,
seven primary parasitoid species and one hyperparasitoid were associated with diamondback moth.
Pupal parasitism by D. collaris reached up to 30%, but because generational mortality was mainly
driven by abiotic mortality factors and predation of larvae, the overall contribution of pupal parasitism
was low (< 6%). In regions of Canada, where P. xylostella may have increasing populations and low
larval mortality, the addition of D. collaris may be a promising approach. Life table studies across
Canada are necessary to determine the need for such intervention.

Introduction
The native range of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera:

Plutellidae), is believed to be Africa (Juric et al. 2017), but nowadays, the species has a global
distribution and is considered the most destructive pest of Brassicaceae crops around the
world, with an annual estimated cost of US$4–5 billion (Zalucki et al. 2012). In vegetable
crops, damage is mainly caused by the larvae feeding on leaves, leaving translucent windows
or ‘shot holes’ in the leaf blades. In canola, Brassica napus Linnaeus and B. rapa Linnaeus
(Brassicaceae), damage is caused by the larvae feeding on flower buds, flowers, and developing
seed pods. Extensive feeding on the reproductive plant parts can significantly reduce crop
yields (Munir et al. 2013).

In North America, diamondback moth was first reported in the mid-nineteenth century
(Fitch 1856) and now occurs throughout the continent. Populations of the moth are likely not
able to overwinter north of 43° in eastern North America (Dancau et al. 2018); instead, there
is evidence that the moths arrive from the southern United States of America and Mexico
each year (Hopkinson and Soroka 2010). Populations of diamondback moth routinely infest
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canola on the prairies of western Canada, where in most years, the moth causes minor economic
damage. However, in 1995 and 2001, populations reached outbreak densities, resulting in spraying
of pesticides on 1.25 and 1.8 million hectares of canola, respectively (Dosdall and Mason 2010). In
Europe, bioclimatic models suggest that in most regions of Italy, Spain, France, and Belgium,
diamondback moth can persist year-round (Zalucki and Furlong 2011).

Similar to North America, early summer infestations in central and northern Europe usually
arise as a result of migrations from southern Europe, when the wind direction is favourable and
when large populations of moths are ready to migrate (Chapman et al. 2002; Coulson et al. 2002;
Wainwright et al. 2020). However, warmer winter temperatures as a result of climate change may
alter the phenology and the area where the moth may persist year-round (Furlong and
Zalucki 2017), as already indicated by the presence of larvae in Brassicaceae crops in
mid-January 2018 in the United Kingdom (Wainwright et al. 2020).

Because of the development of resistance to chemical insecticides (reviewed in Furlong
et al. 2013), which limits growing options for control and increases crop losses and
production costs, the interest in sustainable control options for diamondback moth in Canada
has been renewed. Although numerous parasitoid species have been reported to attack various
life stages of diamondback moth (Delvare 2004; Furlong et al. 2013), most biological control
of this species worldwide is achieved by relatively few species belonging to the hymenopteran
genera Diadegma Förster and Diadromus Wesmael (Ichneumonidae), Microplitis Förster
and Cotesia Cameron (Braconidae) and Oomyzus Rondani (Eulophidae) (reviewed in
Sarfraz et al. 2005). Across Canada, the larval parasitoids Diadegma insulare (Cresson) and
Microplitis plutellae Muesebeck and the solitary pupal endoparasitoid Diadromus subtilicornis
(Gravenhorst) (Hymenoptera: Ichneumonidae) are the dominant species attacking
diamondback moth (Braun et al. 2004; Dosdall et al. 2011; Bahar et al. 2013; Noronha and
Bahar 2018; Dancau et al. 2020), whereas other species are of minor importance. The impact
of the two larval parasitoids on diamondback moth populations is considered high, but
surveys conducted in western and eastern Canada showed that pupal parasitism by
D. subtilicornis ranged only from 8% to 14% (Braun et al. 2004; Dancau et al. 2020).

Another species in the same genus, Diadromus collaris (Gravenhorst), is an important pupal
parasitoid of diamondback moth in Europe and has been successfully introduced to many regions
around the world for enhancing biological control of diamondback moth (Delvare 2004).
However, it is currently not part of the existing parasitoid complex of diamondback moth in
North America. The objective of this study was to conduct life table studies to determine the
impact of D. collaris on diamondback moth populations in northwestern Switzerland, with the
goal of providing baseline data from Europe, where D. collaris and D. subtilicornis co-exist.
These data will assist evaluation of the potential impact of introducing an additional
parasitoid, D. collaris, and possibly increase the overall pupal parasitism of diamondback
moth in Canada.

Material and methods
Insect rearing

The original P. xylostella colony was provided by P. Hondelmann (Leibniz University,
Hanover, Germany) and established in April 2014. Two generations were reared in the
laboratory before colony specimens were used for experiments. Newly emerged moths were
kept in gauze cages (Bugdorm-44590F; MegaView Science Co., Ltd., Taiwan) at 20 ± 1 °C and
60% relative humidity, with 16 hours light and were provided with honey and water every
second day. White cabbage plants, Brassica oleracea Linnaeus (Brassicaceae), were placed
inside the rearing cages and left overnight or up to 2 days for moth oviposition. These plants
were then retrieved and transferred into separate rearing cages. New cabbage plants were
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added as additional food as needed. Newly emerged moths were collected with a mechanical
aspirator (InsectaVac Aspirator; BioQuip Products, Rancho Dominguez, California, United
States of America) and transferred back to the moth rearing cages.

Field sites and experimental design

The study was carried out at two locations in northwestern Switzerland each year from 2014 to
2016. One location was planted with conventional winter oilseed rape (B. napus) in the vicinity of
Courroux, Canton Jura (47.363888°, 7.373627°). Due to regular crop rotation, oilseed rape was not
planted in consecutive years, and therefore a new field was selected each year, preferably adjacent
or close to the field sampled the previous year. Fields were sprayed with insecticide (thiacloprid,
0.4l/ha) against pollen beetle, Brassicogethes aeneus (Fabricius) (Coleoptera: Nitidulidae), before
blooming in April but not during the exposure of sentinel plants. To prevent damage to the
experimental oilseed rape fields (e.g., trampling of plants), empty flowerpots were dug into the
ground 1 m apart from each other along the edge of the field (first row). These were situated
such that, once the pot containing the sentinel cabbage was placed into the pre-existing pot,
the leaves would touch neither the ground nor any neighbouring plants.

A second location was at the Centre for Agriculture and Biosciences International, Switzerland,
in Delémont, Canton Jura (47.3652°, 7.34367°). White cabbage seedlings, B. oleracea, as is normal
practice in Switzerland, were planted inMay of each year in a 20× 6-m tilled plot, consisting of six
rows one metre apart from each other. In each row, plants were placed every 0.5 m, but every
second position was left unplanted to contain experimental plants (sentinels) within the plot.
Plants were watered as needed. The plot was located near a forest edge and surrounded by
natural wildflower meadows.

Assessment of mortality factors in different developmental stages of diamondback moth

To assess the mortality factors of diamondback moth and make data from Europe and Canada
that were comparable, we used an experimental design for sentinel-based life tables that was
similar to that described in Dancau et al. (2020). Laboratory-reared diamondback moth eggs,
larvae, and pupae were exposed at each of the field plots at Courroux and Delémont on three-
to six-week-old plants (5–8 true leaf stage, height ca. 20 cm) in each year from 2014 and 2016.

At each location, 7–12 sentinel plants infested with the designated life stage of the moth were
placed into the field within the same month, but the exact dates depended on the availability of
each larval instar. At the conventional winter oilseed rape location in 2015, every second flower
pot was covered with a shelter composed of a 30 × 30-cm grey plastic roof supported by four
wooden posts to investigate the effect of rain, which is thought to be a significant mortality
factor of diamondback moth (Kobori and Armano 2003). Half of the plants infested with
sentinel diamondback moth life stages were placed randomly under rain shelters, and the
other half remained exposed. Some plants were randomly assigned to a cage treatment to
assess background mortality of diamondback moth life stages when natural enemies were
excluded. Cages were made of a wooden frame (60 × 30 × 30 cm, height × width × length)
covered with fine mesh. The front side was closed with a taped Velcro seal to fully exclude
predators and parasitoids. At the second location cabbage plot (Delémont), the same methods
were used, except that plants were randomly distributed over the entire small field plot. After
exposure, all plants were brought back to the laboratory, where individuals of each life stage
were counted and moved into rearing containers to assess parasitism levels and additional
mortality. All retrieved eggs, larvae, and pupae were reared in the laboratory and checked
periodically for the emergence of parasitoids and diamondback moths. Voucher specimens of
parasitoids have been deposited in the Canadian National Collection of Insects, Arachnids and
Nematodes (Ottawa, Ontario, Canada).
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Eggs were obtained by placing up to six plants in large gauze cages (93.0 × 47.5 × 47.5 cm),
each containing about 300 moths. Cabbage leaves ground in water produced a solution that was
sprayed on the plants to stimulate moth oviposition. Cabbage plants were exposed to the moths
overnight, and the following morning, eggs were counted using a light source and magnifying
glass. Egg clusters laid on the stalk were removed with a paintbrush to avoid substantial
overcrowding. The mean number of eggs per plant was 140 ± 7.83 (standard error; N= 115).
Seven plants infested with eggs were exposed in the field plots during each trial, with three
plants being covered, three plants remaining uncovered, and one caged control. Infested
plants were exposed in the field plots at Courroux and Delémont for four days. After
exposure, the plants were taken back to the laboratory, and first-instar larvae and any
remaining eggs were counted.

First-instar larvae were obtained by infesting cabbage plants with eggs in the same way as
described above, but the plants were maintained in the laboratory for 1–2 days at ambient
conditions until first-instar larvae had hatched. The tiny larvae feeding inside leaf mines were
counted using a portable digital microscope before exposure, and unhatched eggs were
removed from the plants with a paintbrush. The average number of first-instar larvae per
plant was 107 ± 4.27 (standard error; N= 102). Seven plants were exposed during each trial at
each site, with three plants covered, three left uncovered, and one caged control. Sentinel
plants infested with first-instar larvae were exposed to predation, parasitism, and abiotic
conditions in the field for 3 ± 1 days, until the larvae reached the second-instar stage.

Second- and fourth-instar larvae were collected from the laboratory colony with a paint brush
and were placed in clear plastic containers, each containing a cabbage leaf. Thirty larvae were
placed on each sentinel plant after the plants were installed at Courroux and Delémont. To
ensure that larvae were not lost during transport, groups of 30 larvae were transferred from
the plastic containers to each sentinel cabbage plant after the plants were installed at
Courroux and Delémont. Twelve plants were exposed at each site for each of these larval
stages; of these plants, five were covered, five were left uncovered and two were caged as
controls. Second-instar larvae were exposed for 6 ± 1 days, and re-collected as fourth-instar
larvae, whereas fourth-instar larvae were exposed for 4 ± 1 days and re-collected as prepupae/
pupae. Because a proportion of fourth-instar larvae might have left the plant to find suitable
pupation sites elsewhere, we placed 20 additional plants in the field in 2015 and surrounded
the rim of each flower pot with a sticky ring made of fly tape to trap any larvae leaving the plant.

Prepupae and pupae were obtained by transferring late fourth-instar larvae from the laboratory
colony to new cabbage plants. Larvae were left on the plants for 24–48 hours until the majority of
the larvae had reached the prepupal stage. The prepupae were counted, and the remaining fourth-
instar larvae were removed before exposure. Twelve plants were exposed at each site for each of
these stages; of these plants, five were covered, five were left uncovered, and two were caged as
controls. Plants with sentinel pupae were exposed for 5 ± 1 days. The average number of pupae per
plant was 21 ± 0.35 (standard error; N= 213).

In general, numbers of sentinel eggs, larvae, and pupae exposed in the field plots were likely
substantially higher than naturally occurring densities would be; preliminary studies indicated
that more realistic numbers, as used by Furlong et al. (2004), did not result in sufficient
recovery to generate meaningful parasitism rates.

Construction of sentinel-based life tables

At Courroux, data were collected on sentinel diamondback moth stages twice each year
(2014–2016) in the period from mid-May to the first week of July, which is shortly before the
harvest of the oilseed rape fields. In the Delémont field plot, data were collected four times
each year (in May, June, July, and August) in 2015 and 2016 and only a single time in 2014,
the first year of the study (August 2014). Data collected in the first (May–June) and second
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halves (July–August) of 2015 and 2016 were pooled for both sites. Mortality rates were calculated
indirectly from field data and applied to a hypothetical cohort of 1000 eggs in order to construct
the life table. Because rainfall can be a significant source of larval mortality (Kobori and Armano
2003), we tried to measure mortality due to rainfall by adding a rain shelter treatment in 2015;
however, the rain shelters were likely not effective, and diamondback moth mortality on sheltered
and unsheltered sentinel plants did not differ significantly (Mann–Whitney rank-sum test;
second-instar larvae, mean rank missing individuals: covered — 43.64, uncovered — 47.83,
U= 907.0, P= 0.448, N= 90; fourth-instar larvae, mean rank missing individuals: covered —

45.26, uncovered — 45.79, U= 992.5 P= 0.922, N= 90; pupae, mean rank missing
individuals: covered — 35.50; uncovered — 37.82, U= 594.5, P= 0.637, N= 72). Accordingly,
mortality data from both treatments were combined for life table calculations, and the use of
shelters was not continued in 2016. Potential mortality caused by rain is therefore included
under “unknown mortality” in the life tables; this factor also includes biotic mortality factors
such as pathogens and abiotic mortality factors such as temperature, wind, exposure,
non-emergence, and unaccounted mortality between caged and uncaged treatments.

We assumed that sentinel eggs, larvae, and pupae that disappeared during the exposure period
were lost due to predation or “unknown mortality”. We subtracted the “unknown mortality”
observed in the caged treatment from the mortality observed in the uncaged (exposed)
treatment to estimate predation, assuming that missing individuals in the uncaged treatment
were entirely lost due to predation. Because we could not exclude the possibility that a
proportion of fourth-instar larvae may have left the plants to find suitable pupation sites, we
calculated a correction factor from the average number of fourth-instar larvae caught on
sticky rings surrounding the flower pods (13.7% ± 2.0% standard error; N= 20) and
subtracted this value from the estimated predation rates, assuming that these larvae would
have survived.

To estimate parasitism for each host life stage, we followed the calculations by Dancau
et al. (2020), incorporating the numbers of individuals exposed, the numbers of individuals
recovered, and the total numbers of individuals emerged (parasitoids� adult moths) into the
calculation (Equation 1 in Dancau et al. 2020). This calculation included an estimate
(correction) of parasitoid-induced mortality (i.e., individuals that did not emerge) and of the
numbers of parasitoids emerged. The estimate assumes that parasitism levels determined by
numbers of parasitoids and moths that had emerged are the same for the individuals that
were recovered but had died in the lab.

Parasitism � ���Nparasitoids emerged=Nmoths�parasitoids emerged� × Nrecovered�=Nexposed� × 100%; (1)

where N equals the number of individuals.
All life tables referred to the fate of a hypothetical cohort of 1000 eggs. In the life tables,

mortality attributable to infertility, parasitism, predation, and unknown factors was expressed
as marginal attack rate, apparent mortality, real mortality, intensity of mortality (k-values),
and generational mortality, following Bellows et al. (1992). Because we did not estimate the
fecundity of P. xylostella, we used a literature value of 160 eggs (http://www.canolacouncil.org/
canola-encyclopedia/insects/diamondback-moth/) to calculate the growth rates, being aware
that fecundity can vary among Brassica species and even among cultivars (Zhang et al. 2012).
The marginal attack rate (mx) of a mortality factor is the proportion of individuals of a
particular stage that would be attacked by a single factor acting alone in the system (Bellows
et al. 1992). When mortality factors are acting sequentially and without other
contemporaneous mortality factors, the marginal attack rate (mx) equals the apparent
mortality (qx). When factors are acting simultaneously, the marginal attack rate (mx) is
calculated as mx= 1 – (1 – dx) ds/dx, where ds is the observed mortality by a single mortality
factor and where dx is the mortality from all causes combined in one life stage interval,
assuming that each contributes equally to mortality. The apparent mortality (qx) is the
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fraction of those individuals entering a specific stage (lx) that die in that same stage or the fraction
of those subjected to a mortality factor that die as a result of that factor. Apparent mortality was
calculated from the exposure experiments described above, using the number of dead (missing) or
parasitised individuals (dx) recorded from each life stage (x) of diamondback moth; that is,
qx= dx/lx. Total mortality of each life stage was the sum of the percent mortality from all
mortality factors combined. Information on the population dynamics of diamondback moth is
given by the net reproductive rate of increase (R0), which shows the number of times the
population increases or decreases from one generation to the next (Van Driesche et al. 2008).
Growing populations have R0 values greater than 1, whereas R0 values less than 1 indicate
that the population is declining. R0 was calculated from the realised progeny divided by the
number of eggs in the first generation (lx= 1000).

Results
Parasitism and species composition

Between 2014 and 2016, seven primary parasitoid species and one hyperparasitoid were
associated with diamondback moth in northwestern Switzerland (Table 1). Eggs were rarely
parasitised by Trichogramma sp. (Hymenoptera: Trichogrammatidae). The most abundant
larval parasitoids were Diadegma fenestrale (Holmgren) and Diadegma semiclausum (Hellén)
(Hymenoptera: Ichneumonidae), with parasitism as high as 48% (D. fenestrale, Courroux,
May–June 2015) and 23% (D. semiclausum, Delémont, July–August 2015; Table 1).
Occasionally Diadegma spp. were hyperparasitised by Mesochorus sp. (Hymenoptera:
Ichneumonidae), but hyperparasitism did not exceed 2% at any one site or time. The solitary
larval parasitoid Cotesia vestalis (Haliday) (Hymenoptera: Braconidae) was found only
sporadically. Pupae were attacked mainly by Diadromus collaris and less frequently by
Diadromus subtilicornis. Parasitism by D. collaris reached nearly 30% in Courroux in 2014,
whereas parasitism by D. subtilicornis was less than 5% in all years and sites. On a single
occasion (May 2015), nearly 18% of sentinel pupae were exclusively parasitised by the
generalist pupal parasitoid, Itoplectis maculator (Fabricius) (Hymenoptera: Ichneumonidae).
Cumulative parasitism rates varied greatly between exposure periods, ranging from 19% to
64% (mean: 45% ± 6% standard error; Table 1).

Mortality factors, generational mortality, and reproductive rates of diamondback moth

Recovery of all stages of diamondback moth was significantly higher in caged than in uncaged
treatments (Mann–Whitney test: P< 0.0001 for eggs (N= 129), second- and third-instar larvae
(N= 222), and fourth-instar larvae (N= 202); P= 0.001 for first-instar larvae (N= 107);
P= 0.003 for pupae (N= 211). Mortality in the egg and first-instar larval stages (shown as
apparent mortality in Table 2 and Supplementary material, Tables S1–8) was highest due to
unknown factors, averaging 35.6 ± 5.8 (standard error) and 30.2 ± 6.7 (standard error)
individuals, respectively (N= 8 life tables). In all following stages (second- and third-instar
larvae, fourth-instar larvae, and pupae), the most important mortality factor was predation,
averaging 42.7% ± 4.6%, 37.5% ± 4.2%, and 21.6% ± 5.7% (standard error) individuals,
respectively. Parasitism was the highest in the second- and third-instar larval and pupal
stages, averaging 13.6% ± 2.3% and 15.3% ± 4.0% (standard error), respectively.

In seven out of eight life tables (one for each growing season month at each location), mortality
of combined second- and third-instar larvae was the largest contributor to generational mortality
(range: 29.5%–50.3%, mean 39.2% ± 2.5%, N= 8; Table 3; Supplementary material, Tables S1–8),
and for only one sentinel generation was egg mortality (31.5%) which is the most important factor
(Supplementary material, Table S7). The contribution of pupal mortality to generational mortality
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Table 1. Cumulative percent parasitism (number of individuals) by parasitoids (Hymenoptera) in sentinel-based life tables for diamondback moth, Plutella xylostella, at two locations,
Courroux and Delémont, Switzerland.

Delémont Courroux

2014 2015 2016 2014 2015 2016

Parasitoid Host Stage August May/June July/August May/June July/August June/July May/June May/June/July

Trichogrammatidae

Trichogramma sp. Egg 0.07 (1) 0 1.26 (43) 0 0 0.09 (2) 0 0.46 (10)

Braconidae

Cotesia vestalis (Haliday) Larval 0 0 0 1.42 (7) 0.81 (3) 0 0 0.82 (5)

Ichneumonidae

Diadegma fenestrale (Holmgren) Larval 0 31.68 (174) 0 13.39 (66) 15.16 (64) 12.97 (21) 48.21 (162) 13.9 (101)

Diadegma semiclausum (Hellén) Larval 16.09 (31) 12.42 (71) 23.2 (185) 1.21 (6) 14.41 (64) 11.91 (16) 1.01 (4) 13.09 (92)

Mesochorus sp. Hyperparasitoid 0 0.18 (1) 0 0 0 0 1.58 (6) 0.98 (6)

Diadromus collaris (Gravenhorst) Pupal 21.78 (55) 2.08 (5) 1.26 (7) 0 25.11 (90) 29.84 (86) 10.27 (29) 4.07 (21)

Diadromus subtilicornis (Gravenhorst) Pupal 0 0 0 2.99 (11) 0 2.78 (8) 0 4.07 (21)

Itoplectis maculator (Fabricius) Pupal 0 17.86 (43) 0 0 0 0 0 0

Total cumulative % parasitism 37.94 64.22 25.72 19.01 55.49 57.59 61.07 37.39
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Table 2. Summary of apparent mortality (the ratio of the number of individuals dying in a stage to the number entering the stage), total mortality, and population growth (R0) of
diamondback moth, Plutella xylostella, populations at two locations, Courroux and Delémont, Switzerland, 2014–2016. For life table details, see Supplementary material, Tables S1–8.

Courroux Delémont

2014 2015 2016 2014 2015 2016

Host stage June/July May/June May/June/July August May/June July/August May/June July/August

Egg

Predation 0.2617 0.3379 0.3339 0.4600 0.4423 0.5310 0.1736 0.2154

Unknown 0.5960 0.4599 0.2712 0.2415 0.0749 0.3216 0.5033 0.3761

Infertility 0.0046 0.1345 0.0185 0.0239 0.3781 0.0135 0.0178 0.0132

Parasitism 0.0009 0.0000 0.0046 0.0007 0.0000 0.0343 0.0000 0.0000

Larva 1

Predation 0.2357 0.2870 0.0129 0.3922 0.2262 0.2883 0.1811 0.4293

Unknown 0.5028 0.1856 0.4167 0.3314 0.5738 0.1954 0.2025 0.0056

Parasitism 0.1743 0.2818 0.0159 0.0112 0.0711 0.1001 0.0000 0.0052

Larva 2–Larva 3

Predation 0.6817 0.3383 0.4518 0.2792 0.3467 0.3807 0.3950 0.5394

Unknown 0.2733 0.4667 0.3222 0.6000 0.3333 0.4815 0.1667 0.1889

Parasitism 0.0397 0.1502 0.1899 0.0375 0.2416 0.1172 0.1029 0.2093

Larva 4

Predation 0.5241 0.3863 0.2991 0.2874 0.3763 0.5430 0.1913 0.3930

(Continued)
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Table 2. (Continued )

Courroux Delémont

2014 2015 2016 2014 2015 2016

Host stage June/July May/June May/June/July August May/June July/August May/June July/August

Unknown 0.2600 0.3500 0.3526 0.2333 0.1833 0.2778 0.3330 0.2400

Parasitism 0.0348 0.0760 0.0821 0.1122 0.1300 0.0147 0.0574 0.0893

Prepupa/pupa

Predation 0.2382 0.4158 0.1770 0.3360 0.0820 0.4129 0.0423 0.0198

Unknown 0.0270 0.0000 0.0741 0.0345 0.0000 0.0230 0.0147 0.0930

Parasitism 0.3262 0.1027 0.0813 0.2178 0.1994 0.0126 0.0299 0.2511

Total mortality 99.9998 99.9966 99.9340 99.9543 99.9882 99.9961 98.7946 99.8781

R0 0.00004 0.00539 0.10555 0.07318 0.01889 0.00619 1.92859 0.19501
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was the lowest among all stages, ranging from 2.5% to 12.7% (mean 6.9% ± 1.1% standard error,
N= 8). Accordingly, the contribution of pupal parasitism was 2.7% ± 0.7% on average, with a
maximum of 5.2%.

In oilseed rape fields near Courroux, total mortality for the sentinel-based life tables was
99.99% in 2014 and 2015 and 99.93% in 2016. In the experimental cabbage plots at Delémont,
the situation was similar. Total mortality in May–June was 99.99% and 98.80% in 2015 and
2016, respectively (Table 2; Supplementary material, Table S1). In the second half of the
summer, total mortality was 99.95%, 99.99%, and 99.88% in the three years of the study,
respectively. Accordingly, the net reproductive rates (R0) calculated for seven out of eight life

Table 3. Contribution (%) of each mortality factor to the generational mortality (100kx/KG) of diamondback moth,
Plutella xylostella, populations at two locations, Courroux and Delémont, Switzerland, 2014–2016. For life table details,
see Supplementary material, Tables S1–8.

Courroux Delémont

2014 2015 2016 2014 2015 2016

Stage June/July May/June May/June/July August May/June July/August May/June July/August

Egg

Predation 4.92 10.57 7.96 11.78 14.97 14.55 8.00 5.50

Unknown 11.20 14.39 6.46 6.19 2.53 8.81 23.21 9.61

Infertility 0.01 0.11 0.21 0.15 0.63 0.02 0.25 0.18

Parasitism 0.00 0.00 0.05 0.00 0.00 0.04 0.00 0.00

Σ 16.13 25.08 14.68 18.12 18.14 23.42 31.46 15.30

Larva 1

Predation 5.14 5.79 0.26 10.17 7.15 4.63 6.17 9.42

Unknown 10.96 3.74 8.34 8.60 18.13 3.14 6.90 0.12

Parasitism 3.80 5.68 0.32 0.29 2.25 1.61 0.00 0.11

Σ 19.90 15.21 8.92 19.06 27.52 9.37 13.06 9.65

Larva 2–Larva 3

Predation 29.29 11.92 23.56 10.87 12.86 16.15 17.53 26.57

Unknown 11.74 16.44 16.80 23.36 12.37 20.42 7.40 9.31

Parasitism 1.71 5.29 9.90 1.46 8.96 4.97 4.57 10.31

Σ 42.74 33.66 50.27 35.69 34.19 41.54 29.49 46.19

Larva 4

Predation 8.92 8.62 8.16 6.53 8.58 12.54 7.74 11.60

Unknown 4.42 7.81 9.62 5.30 4.18 6.42 13.47 7.09

Parasitism 0.59 1.70 2.24 2.55 2.96 0.34 2.32 2.64

Σ 13.93 18.13 20.02 14.39 15.72 19.30 23.53 21.33

Prepupa/pupa

Predation 2.94 6.35 3.25 7.28 1.29 5.86 1.19 0.41

Unknown 0.33 0.00 1.36 0.75 0.00 0.33 0.42 1.92

Parasitism 4.03 1.57 1.49 4.72 3.14 0.18 0.85 5.20

Σ 7.30 7.92 6.11 12.74 4.44 6.36 2.46 7.53
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tables was less than 1, indicating declining populations in those years (Table 2). Only in
May–June 2016 did R0 equal 1.93 in the cabbage plot at Delémont, indicating slightly growing
populations.

Discussion
In importation biological control, life table studies in the native range of an insect pest are an

important tool to identify potential biological control agents that impact the pest’s generational
mortality, assuming that the impact in the invaded range would be similar if the agent were
introduced (Haye et al. 2010; Jenner et al. 2010; Gillespie et al. 2019). In addition, life tables
in the introduced range can help to identify the life stages of the pest during which additional
mortality — for example, due to the release of an exotic natural enemy — could significantly
reduce population growth (Toepfer and Kuhlmann 2006; Haye et al. 2014). Ideally, life tables
are conducted in both the native and the introduced ranges to evaluate if the introduction of
a given biological control agent could have substantial impact on the target. Following this
approach, multiple decrement life tables show that the introduction of the European
parasitoid Trichomalus perfectus (Walker) (Hymenoptera: Pteromalidae) into canola-growing
regions of Canada would have the potential to substantially reduce populations of the invasive
cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae)
(Gillespie et al. 2019).

Life tables for diamondback moth field populations have been conducted in several parts of the
world, including in Australia, Canada, and Brazil (Furlong et al. 2004; Dancau et al. 2020; Farias
et al. 2020), but little is known about the mortality factors regulating diamondback moth
populations in Europe. In this study, the extremely low net reproductive rates found in seven
out of eight life tables (R0< 1) suggest that diamondback moth populations in Switzerland are
mostly driven by immigration and recolonisation. The phenology of diamondback moth in
Switzerland is not well known, but monitoring data from Stetten, Canton Aargau, Switzerland
indicate that this species occurred in May of each of the study years (calendar weeks 19–22 in
2014 to 2016) and was present until the end of September (C. Sauer, personal
communication). It is assumed that diamondback moth can develop three to five generations
in a year, but mass outbreaks are believed to result from wind migration (Balmelli et al. 2012).

Although many Trichogramma spp. are known to develop successfully on diamondback moth
eggs (Tabone et al. 2010), egg parasitism never exceeded 2% and was not a key factor in regulating
diamondback moth populations in this study. As in many other parts of the world (Sarfraz
et al. 2005), larval parasitoids in the genus Diadegma played a major role at our study sites.
Our results confirmed an earlier study by Juric et al. (2015), which reported two species,
Diadegma semiclausum and D. fenestrale, as being abundant in Switzerland. Temporally, both
species overlapped, with D. fenestrale being the more abundant species in the first half of the
summer and D. semiclausum becoming the more abundant species towards the end of
the summer. Because many parasitised sentinel larvae may have been lost in this study due to
predation, abiotic factors, and active movement from the test substrates, it remains difficult
to estimate accurately the real larval parasitism levels in natural diamondback moth
populations. As shown by Juric et al. (2015), molecular markers may be a more precise tool
for detecting D. fenestrale and D. semiclausum in field-collected larvae, as larvae can be
processed immediately and mortality during rearing is not a factor. Juric et al.’s (2015) study
in Switzerland found that larval parasitism by these two species was 72.2%, suggesting that
larval parasitism could be much higher than the present study determined. In contrast,
parasitism estimates for pupae are likely more realistic, since to a certain degree, pupae are
protected from predators and abiotic factors by their surrounding cocoons.
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Because pupal parasitism of diamondback moth in North America is generally low (Shelton
et al. 2002), the introduction of an additional exotic parasitoid has been considered as a way
to increase suppression of diamondback moth populations. One obvious candidate for
introduction would be the solitary endoparasitoid, D. collaris — the dominant pupal
parasitoid in this study — which is widely distributed throughout the Palaearctic region from
Europe to Japan and China and is also present in South Africa. To date, the known host
range of D. collaris in Europe is limited to three species: diamondback moth, European
grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) (Meyer
1934; Telenga 1934), and leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera:
Glyphipterigidae) (Lecomte 1977). In areas of Europe where it occurs, D. collaris is believed to
overwinter in the adult stage (Valemberg and Valo 1974). Its entire life cycle (egg to adult)
lasts only 14.5 days at 22.5 °C (Wang and Liu 2002), enabling D. collaris to produce several
generations per year. Its mean oviposition period lasts 11.5 ± 1.8 days at 25 °C, and in
laboratory studies, the synovigenic females were able to parasitise 43.7 ± 5.2 pupae on average,
with approximately 96% adult emergence (Liu et al. 2001). In addition, D. collaris was also
observed to feed on its host’s haemolymph to supplement nutrition (Lloyd 1940; Sakanoshita
et al. 1987), a behaviour that could have added to the (low) unknown pupal mortality
observed in this study (Abram et al. 2019). First imported from England to New Zealand in
the 1930s for enhancing biological control of diamondback moth, D. collaris has since been
successfully introduced to Australia, Indonesia, and Malaysia (Delvare 2004; Furlong et al.
2013). The second pupal parasitoid found in this study, D. subtilicornis, is already present in
North America and is assumed to be more abundant in northern regions of Europe, including
in Poland, Finland, and Russia (Delvare 2004). The present study determined that pupal
parasitism by D. subtilicornis ranged from 0% to 4%, or the species was completely absent. In
comparison, parasitism by D. subtilicornis in Ontario, Canada was approximately 10% (Dancau
et al. 2020). In this study, pupal parasitism by D. collaris was 20%–30% in some of our exposures,
confirming its potential for biological control. Since generational mortality was mainly driven by
abiotic (“unknown”) mortality factors and predation of small second- and third-instar larvae, the
overall contribution of pupal parasitoids was low (< 6%).

In comparison, the contribution of pupal parasitoids to generational mortality in Ontario was
even lower, reaching only 1%–3% (Dancau et al. 2020). However, because generational mortality
of diamondback moth under current conditions in Ontario is mainly driven by predation of larvae
and because diamondback moth populations are declining (Ro< 1.0), the introduction of
D. collaris to Ontario would likely have negligible effects. In other regions of Canada, such as
Prince Edward Island, where diamondback moth may have increasing populations (Ro> 1.0)
and low larval mortality, the addition of D. collaris may be more promising. Life table data
from different regions of Canada could help to predict where the introduction of D. collaris
on diamondback moth populations would have important impact, as was demonstrated for
the cabbage seedpod weevil, C. obstrictus (Gillespie et al. 2019). Furthermore, if D. collaris is
deemed to be a potential candidate for introduction in Canada, host range and competitive
interaction studies are needed to assess the ecological safety of such an introduction.
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