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ON k -CYCLED REFINEMENTS OF 
CERTAIN GRAPHS 

BY 

J E H U D A H A R T M A N A N D M E I R K A T C H A L S K I 

ABSTRACT. A graph is k -cycled if all its cycles are integral 
multiples of an integer k > 2. We determine the structure of refine­
ments of Kn and Knrn which are k-cycled. 

1. Introduction. All graphs considered in this paper are finite, undirected, 
without loops and multiple edges. Notions not defined here can be found in [1]. 
Let e = uv be an edge of a graph G. The edge will be called subdivided if it is 
replaced by a vertex w, called a refinement vertex and by the edges uw and wv. 
A graph is called a subdivision of G, if it is obtained from G by a subdivision of 
an edge of G. A refinement G of G, is a graph isomorphic to a graph obtained 
from G by a finite sequence of subdivisions. Note that end vertices of edges of 
G may be refinement vertices. A graph all of whose cycles are integral 
multiples of an integer k > 2 will be called a k-cycled graph. A refinement G of 
G which is k-cycled, is called a k-cycled refinement of G. Let G be a k-cycled 
refinement of G. An edge of G with /(mod k) refinement vertices in G, is 
called an edge of order I 4-1 (with respect to G), or simply an edge of order 
J + l. A refinement G of G, in which all edges of G are of order k is an 
example of a fc-cycled refinement of G. A refinement G of G such that all 
edges of G are of order k or fc/2 if k is even (order fc if fc is odd) is called a 
(k, kl2)-refinement of G. 

For a graph G, let V(G) and E(G) denote the vertex and edge set of G, 
respectively. As usual Kn, Knm and Q n denote the complete graph on n 
vertices, the complete bipartite graph on n and m vertices and the n-
dimensional cube, respectively. For V c V(G), the induced subgraph (V), is 
the maximal subgraph of G with vertex set V. 

In [2], the first author examined refinements of Kn with a minimal number of 
edges, which are subgraphs of the m-cube. Such refinements are in particular 
2-cycles and naturally the problem of characterizing 2-cycled refinements of Kn 

arose. In this article, we determine the structure of k-cycled refinements of Kn 

and Knm. These results are used to calculate m(G, k), defined as the minimal 
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number of edges of a fc -cycled refinement of G, for the corresponding two 
graphs. 

2. Main results. First we prove the following: 

LEMMA 1. If G is a 3-edge connected graph and G is a k-cycled refinement of 
G, then G is a (fc, k/2)-refinement. 

Proof. Let e = uveE(G). From the 3-edge connectivity of G and Menger's 
Theorem (see [1]), it follows that there are at least two edge disjoint paths in 
G, between u and t>, not containing e. Therefore there are two cycles in G with 
a single common edge e. Since G is fc -cycled, let the corresponding cycles in G 
be of length lxk and l2k. If the order of e is denoted by m, then lxk + l2k-
2 m = 0 ( m o d k ) , as this is a cycle of G. Hence 2m=0(modfc), which com­
pletes the proof of the lemma. • 

In the case of 2-edge connected graphs, Lemma 1 is trivially true for k = 2. 
If however k>2 and G is 2-edged connected, then k-cycled refinements of G 
are not necessarily (k, k/2)-refinements. 

If k is odd, the structure of all k-cycled refinements of a 3-edge connected 
graph is determined by Lemma 1. 

COROLLARY 1. For k odd, G is a k-cycled refinement of a 3-edge connected 
graph G, if and only if all edges of G are of order k. 

We now restrict our attention to k even. 
Let Kiln-i denote the following class of (k, k/2)-refinements of Kn. Partition 

V(Kn) into two disjoint subsets Vl9 V2, such that | Vxl = Z, |V2| = n —/ 
(0< I < n). In the subgraph Kln-b of Kn, generated by Vx and V2, each edge is 
of order k/2. In (V^ and (V2) each edge is of order k. 

A refinement G of G will be called k-triangular (k-squared), if all triangles 
(squares) of G become cycles which are integral multiples of k > 2 in G. 

We now prove our main result for complete graphs: 

THEOREM 1. For a refinement Kn of Kn, ( n>4) and even k the following 
assertions are equivalent. 

(1) Kn is k-triangular and it is a (k, k/2)-refinement of Kn. 
(2) Kn is isomorphic to K^-i for some 0 < f < n . 
(3) Kn is k-cycled. 

Proof. Let J be the maximal integer such that there exists a set Vt ç V(Kn), 
|Vxl = Z and all edges of (Vx) are of order k. Obviously Z>2 since Kn must 
contain edges of order fc. 

Let V2= V(Kn)— Vx. If V2 = <i>, Kn is isomorphic to X ^ . Assume therefore 
v eV2 and let vw e E(Kn) where w G Va. If vw is of order fc then by (1) any 
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edge incident with v and a vertex of V1 must be of order fc, contradicting the 
maximality of /. Therefore all edges from V1 to V2 are of order fc/2. But then 
due to (1) all edges of (V2) (if |V 2 | ^2 ) , must be of order fc, proving (2) from 
(1). To show (3) from (2), note that any cycle in Kn all whose vertices are in Vt 

(i = 1, 2) is a multiple of fc. Cycles containing vertices of Vx and V2 contain an 
even number of edges of Kn of order fc/2, proving (3). 

If we assume (3) Kn is in particular fc-triangular and by Lemma 1 it is a 
(fc, fc/2)-refinement of Kn, proving (1). • 

Let fc be even and Knm a complete bipartite graph with vertex sets N and M. 
A (k, fc/2)-refinement of Knm is called proper if there exist partitions N = 
A^UA^, M = M1UM2, N1CiN2 = <l>9 M1nM2 = <f>, such that 

(1) edges joining a vertex in Nt to a vertex in Mt (i = 1, 2) are of order fc and 
(2) edges joining a vertex in Mx (Na) to a vertex in N2 (M2) are of order fc/2. 
The following is an equivalent definition. 
For a fixed v e M, any edge vw (w e N) is either of order fc or of order fc/2. 
Suppose that xeM (xi=v) then, either 
(1') for each y GN the edge xy is of order fc/2 if and only if vy is of order 

fc/2; or 
(2') for each y e N the edge xy is of order fc/2 if and only if vy is of order fc. 

THEOREM 2. For a refinement Knrn of K n m (m, n>3) and k even, the 
following assertions are equivalent: 

(1) Knm is fc-squared and it is a (fc, fc/2)-refinement. 
(2) Knm is a proper (fc, k/2)-refinement. 
(3) Knm is k-cycled. 

Proof. First we show (1)=^(2). Suppose v, x eM, weN and that the order of 
vw is equal to the order of wx. Then by (1), the order of vy is equal to the 
order of xy for any yeN.lf the order of vw is different from the order of wx, 
the orders of vy and xy must be different for any y eN. Clearly a proper 
(fc, fc/2)-refinement is k-squared. It is easy to show by induction that a 
fc-squared, (fc, fc/2)-refinement must be fc-cycled. Thus (2)^(3) . 

If Knrn is fc-cycled then in particular it is fc-squared and by Lemma 1 it is 
also a (fc, fc/2)-refinement, which shows (3)=^>(1), completing the proof of the 
theorem. • 

The following is obvious for K2jtn (m >3) . If {x, y} is the set of two vertices, 
then either the sum of orders of xv and yv is o(mod fc) for any veM, or the 
sum of orders of xv and yv is fc/2 (mod k) for any veM. 

3. K-Cyded refinements with minimal number of edges. Define m(G,k) = 
Min|E(G)|, where G is a k-cycled refinement of G. To compute m(Kn, k) 
when fc is even and n > 3, consider refinements of type K^-h where an edge of 
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Kn contains exactly fc —1 or fc/2-1 refinement vertices. Clearly, 

(1) m ( K „ , f c ) < Q k + ("2"i)fc + / ( n - 0 | , ° - ' - [ f ] -

Using Corollary 1 and the fact that the right hand side of (1) attains its 
minimum when I = [n/2] we have 

COROLLARY 2. For any n>3 

f n(n-l) 

m(Kn, k ) - < 

fc, fc odd 

n(rc - l ) f |~n2] fc 

r m k even. 

Furthermore, there is a unique (up to isomorphism) k-cycled refinement of Kn 

with m(Kn, fc) edges. 
We shall call a refinement of Kn triangle free if each triangle in Kn contains 

at least one refinement vertex and denote by t(n) the minimal number of edges 
of a triangle free refinement of Kn. 

For k = 2, Corollary 2 can be improved. 

COROLLARY 3. For n > 3, t(n) = m(Kn, 2). 

Furthermore, there is a unique (up to isomorphism) triangle free refinement of 
Kn with t(n) edges. 

Proof. Let Kn be a triangle free refinement of Kn with a minimal number of 
edges. We may assume that an edge of Kn contains at most a single refinement 
vertex. Remove from Kn all subdivided edges. The graph T obtained is triangle 
free but for any edge e, T + e contains a triangle. By Turan's theorem ([1], [3]), 
T = K[„/2],[n+i/2]- Hence |E(Kn)| = m(Kn, 2) and the unique minimal triangle free 
refinement of Kn is in class i£[n/2],[n+i/2> where in the refinement, there is at 
most one refinement vertex on an edge. • 

Since in a bipartite graph all cycles are even, we obtain from Lemma 1: 

COROLLARY 4. For any 3-edge connected bipartite graph B and fc even, 

m(B,k)=y\E(B)\. 

Moreover, if B is a refinement of B with a minimal number of edges, then each 
edge of B contains fc/2—1 refinement vertices. 

By Corollary 1, the following result is obtained. 

COROLLARY 5. For any 3-edge connected graph G and k odd, 

m(G,k) = k\E(G)\. 
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Moreover, if G is a refinement of G with a minimal number of edges, then 
each edge of G contains fc — 1 refinement vertices. 

4. An application. In [2] the following result is proved 

THEOREM 3. any refinement of Kn+1 which is a subgraph of Q m (m>n) has 
at least n2 edges. Moreover, if the refinement has exactly n2 edges it is unique (up 
to isomorphism). 

Theorem 1 is now applied to obtain a shorter and different proof of Theorem 
3. 

Clearly a refinement of Kn+1 which is a subgraph of Q m with a minimal 
number of edges must be a 2-cycled refinement with at most one refinement 
vertex on each edge of Kn+1. Since K2,3 is not a subgraph of Qm , the only two 
2-cycled refinements of Kn+1 which are subgraph of Q m are in K(^n+1 or K^. 
The latter has fewer edges (n2) and is the only desired refinement of Kn+1. 
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