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Abstract. Let M A S be a C® locally free action of a connected simply connected
solvable Lie group S on a closed manifold M. Roughly speaking, pg is parameter rigid
if any C® locally free action of S on M having the same orbits as pg is C°° conjugate to
po- In this paper we prove two types of result on parameter rigidity.

First let G be a connected semisimple Lie group with finite center of real rank at least
2 without compact factors nor simple factors locally isomorphic to SOq(n, 1)(n > 2) or
SU(n, 1)(n > 2), and let I" be an irreducible cocompact lattice in G. Let G = K AN be an
Iwasawa decomposition. We prove that the action '\G ~ AN by right multiplication is
parameter rigid. One of the three main ingredients of the proof is the rigidity theorems of
Pansu, and Kleiner and Leeb on the quasi-isometries of Riemannian symmetric spaces of
non-compact type.

Secondly we show that if M AS s parameter rigid, then the zeroth and first
cohomology of the orbit foliation of pg with certain coefficients must vanish. This is a
partial converse to the results in the author’s [Vanishing of cohomology and parameter
rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157-191], where
we saw sufficient conditions for parameter rigidity in terms of vanishing of the first
cohomology with various coefficients.

Key words: parameter rigidity, leafwise cohomology, quasi-isometries
2020 Mathematics Subject Classification: 17B56, 37C85, 37C86 (Primary); 22E25,
22E40, 51F30 (Secondary)

Contents
1 Introduction 3024
2 Parameter rigidity of the action of AN on I'\G 3024
3 Preliminaries 3026
3.1 Leafwise cohomology 3026

o
https://doi.org/10.1017/etds.2020.97 Published online by Cambridge University Press @ CrossMark


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/etds.2020.97
mailto:maruhashihirokazu@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2020.97&domain=pdf
https://doi.org/10.1017/etds.2020.97

3024 H. Maruhashi

3.2 A sufficient condition for parameter rigidity 3027

3.3 A property from large scale geometry 3028

4 Reduction of the proof of Theorem 2 to Proposition 12 3029

5  Proof of Proposition 12 3032
5.1 The case where G is of real rank at least 2 or is locally isomorphic to

Sp(n, )(n > 2) or F; 3036

5.2 The case where G is of real rank 1 3041

6 Necessary conditions for parameter rigidity 3047

7 Vanishing of H’—proof of Theorem 28 3049

8  Vanishing of H'!—proof of Theorem 32 3055

Acknowledgements 3059

References 3059

1. Introduction

This paper consists of two parts. The first part, §§2-5, deals with parameter rigidity
of certain actions. Section 2 serves as the introduction for the first part. The second
part, §8§6-8, is on necessary conditions for parameter rigidity in terms of vanishing of
cohomology. Section 6 serves as the introduction for the second part.

2. Parameter rigidity of the action of AN on I'\G
Let M 2 S bea C® locally free (i.e. the isotropy subgroup of every point is discrete)
action of a connected simply connected solvable Lie group S on a closed C*° manifold M.
Let F be the set of all orbits of pg, which is called the orbit foliation of po and actually
is a C*° foliation of M. We say pq is parameter rigid if every C* locally free action
M A S with the same orbit foliation as that of po 1s parameter equivalent to pg. (We do
not assume that p is close to pg in some topology.) Here parameter equivalence between p
and pp means the following. There exist a diffeomorphism F of M and an automorphism
® of S such that:
e F(po(x,s)) = p(F(x), D(s)) forallx € M and s € S,
e the map F preserves each leaf of F; thatis, F(L) C L forall L € F;
e the map F is C° homotopic to the identity map of M through C° maps which preserve
each leaf of F.

For example a linear flow on a torus is parameter rigid if and only if the velocity vector
satisfies the Diophantus condition.

In [11] and [12] Katok and Spatzier proved the following.

THEOREM 1. (Katok—Spatzier) Let G be a connected semisimple Lie group with finite
center of real rank at least 2 without compact factors nor simple factors locally isomorphic
to SOp(n, 1)(n = 2) or SU(n, 1)(n > 2), and let T be an irreducible cocompact lattice in
G. Let G = KAN be an Iwasawa decomposition. Then the action T'\G « A by right
multiplication is parameter rigid.

This is proved using representation theory of semisimple Lie groups and has led to
considerable subsequent research. In this paper we prove the following, based on the above
theorem and applying large scale geometry.
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THEOREM 2. Under the same assumptions as Theorem 1, the action T\G v\ AN by right
multiplication is parameter rigid.

We give a proof of this theorem in §4 and §5 after recalling the results in Maruhashi

[17] in §3. The proof is a combination of the following three steps.

(1) Vanishing of cohomology = parameter rigidity. This is the sufficient condition for
parameter rigidity proved in [17]. In the current article this is Theorem 4.

(2) Cohomology vanishing results. These are by Katok and Spatzier [11, 12] and Kanai
[10]. See Theorem 10 and Corollary 11 in this paper.

(3) Bridging the gap between Step 1 and Step 2. This is because the cohomology
vanishing results are available only for finitely many coefficients, while the sufficient
condition for parameter rigidity requires vanishing of cohomology for seemingly
many more coefficients. Here we use Proposition 6, which shows the relevance to
large scale geometry. Then the main point is that our acting group AN is isometric to
G/K by the Iwasawa decomposition G = AN K. So we can use the rigidity theorems
of Pansu [18] and Kleiner and Leeb [13] on quasi-isometries of symmetric spaces,
and a certain rigidity property of quasi-isometries of hyperbolic spaces proved in
Farb and Mosher [5] and Reiter Ahlin [19].

Theorem 2 shows a contrast between the higher-rank case and P%i(Z, R), the universal
cover of PSL(2, R), for which Asaoka [1] gives (generally) non-trivial orbit-preserving
deformations of the actions of AN by right multiplication.

THEOREM 3. (Asaoka [1]) Let I be a cocompact lattice in P’§1(2, R) and let

o[ o] o) e

Let ®r be the flow on F\I;gi(Z, R) defined by the action of A by right multiplication, P
the set of oriented periodic orbits of r, and t(y) the period of y for y € P. Consider

la(y)l
Supye'pTy) <1 R

Ar = {a € H'(N\PSL(2, R); R)

which is an open neighborhood of 0 in H'! (F\Pﬁi(l R); R). Then there exists an

analytic locally free action p, of AN on l"\PEi(Z, R) for each a € Ar with the following

properties.

o The action py is defined by right multiplication.

o All the actions p, have the same orbit foliation F.

e The actions p, and p, are not parameter equivalent if a # a'.

e Any C® locally free action of AN whose orbit foliation is F is parameter equivalent
to pg for some a € Ar.

e The action p, does not preserve any C° volume form on F\ﬁ(Z, R) except when
a=0.

We also know how the action p, is controlled by the cohomology class a, but we refer
the reader to [1] for that and more information. Note that the above deformation is different
from the non-orbit-preserving deformation coming from the deformation of the lattice,
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whose deformation space has the dimension equal to that of Teichmiiller space, because
such deformations are necessarily C” volume-preserving.

3. Preliminaries

This section is a summary of the results we need later, proved in Maruhashi [17]. See
[17] for the details. In this paper Lie algebras are denoted by the corresponding lowercase
Fraktur of the corresponding Lie groups. The symbol I'( - ) denotes the set of all C*®
sections of a vector bundle.

3.1. Leafwise cohomology. Let M A SbeaC® locally free action of a connected
simply connected solvable Lie group S on a closed manifold M with the orbit foliation
F. Let wg € '(Hom(T F, 5)) denote the canonical 1-form of pp; i.e. (wo)yx: TxF — 5
for x € M is defined as the inverse of the derivative at the identity of the map S — M,
s — po(x,s). Let

p p+l1
dr: 1"( /\ T*]-') — F( /\ T*F)
be the leafwise exterior derivative of F, defined by the same formula as the usual exterior

derivative. Then w satisfies the Maurer—Cartan equation drwg + [wo, wp] = 0. Here
drwg and [wg, wp] are defined by

drwo(X,Y) = Xwo(Y) — Yo (X) — wo([X, Y])
and

[wo, @o](X, Y) = [wo(X), wo(Y)]

forX,Y e '(TF). Lets A Vbea representation of s on a finite-dimensional real vector
space V. Then rwy € I'(Hom(7 F, End(V))) satisfies

drrwg + [Trwo, Twg] = 0.

We regard mwq as the connection form of a flat F-partial connection V of the trivial
vector bundle M x V — M relative to any global frame of the bundle which has constant
V components; i.e. Vxv = m(wo(X))v for X € I'(TF) and v € V, where v is regarded as
asectionof M x V — M. Hence V& = dr& + mwoé for general £ € T'(V). The exterior
derivative of V is

P p+1
F(/\T*]—'@ V) — F( NTF® v)
W drow+ Twy A o,

where our definition of exterior product is

p+1
(o A)(X1, .., Xpp) = Y (=D ropXDo (X1, ..., Xiy oo, Xpr).

i=1
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The square of this operator is zero by the flatness. The cohomology H*(F; s A V) of this
complex is the leafwise cohomology of F with coefficient w. Recall that the cohomology
H*(s; 5 ES V) of the Lie algebra s with coefficient 7 is obtained from the complex
Hom(/\* s, V). We have an injective cochain map

Hom(/*\s, V) s F(/*\T*]-'(X)V)
¢ > ;e
where wy) is the pullback by wo. Then by [17, Lemma 2.1.3] the induced map
H*(s: s A V) > H*(F;s A V)
is injective and we see H*(s; & A V) as a subspace of H*(F; s S V).
3.2. A sufficient condition for parameter rigidity. Let n denote the nilradical of 5. We

have [s, s] C n. Take a subspace § such that [s, s] C h C n. Then b is a nilpotent ideal
of 5. Let

hoH2ro---oh’ >0

. . . .. . . d
be the lower central series of h. This filtration of h is invariant with respect to s ~ h. Let
P d d . .
s A Gr(h) = P b’ /p!
i=1

be the associated graded quotient. Since b acts trivially, we get s/h ;1% Gr(h).

Let A(F, S) be the set of all C* locally free actions M «~ S with the orbit foliation F.
Let p € A(F, S), and let w denote the canonical 1-form of p. Let p: s — s/h denote
the natural projection. Applying p to drw + [w, w] =0, we get drpw = 0. Assume
H'(F) = H'(s). Then [pw] € H'(F;s/h) = H'(s; s/h). So there exist a unique linear
map ¢, : § — s/b which vanishes on [s, s] and a C*° map h: M — s/b such that

pw = @pwo +dFh.
The map ¢, is surjective by [17, Lemma 2.2.2].
THEOREM 4. (Maruhashi [17]) If
H'(F)=H'(s)
and
| ad og), 1 ad og),

H'(F;s ~"Gr(h)=H'(s;s ~ Gr(b))

for some b and for all p € A(F, S), then M A Sis parameter rigid.

See [17, Theorem 2.2.5] for this theorem.
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3.3. A property from large scale geometry. Let p € A(F,S)andleta,: M xS — §
be the unique C*° map satisfying

po(x,s) = p(x,ap(x,s)) and a,(x,1) =1

forallx € M ands € S. The map a, is defined since pp and p have the same orbit foliation.
It is known that a, is a cocycle over pp.

Let X, B be metric spaces. A surjective map p: X — B is a distance-respecting
projection if

d(b, by =d(p~ (b), p~')) = dy(p~'b), p~ (b))
holds for all b, b’ € B, where
d(p~' ), p~' (b)) = infld(x,x") | x € p~'(b),x" € p~ (b))

and dy denotes the Hausdorff distance. Let p: X — B and p’: X’ — B’ be distance-
respecting projections. A diagram

is fiber-respecting, or f is fiber-respecting over ¢, if f and ¢ are maps and there exists a
constant C > 0 such that dy; (f(p~' (b)), (p") "' (¢(b))) < C forall b € B.

PROPOSITION 5. Let G be a connected Lie group and H a connected normal closed
subgroup of G. Take an inner product of g. Endow g/b with the inner product for
which the restriction h* S a/b of the projection g — g/b is an isometry. Give G and
G/H left-invariant Riemannian metrics corresponding to these inner products. Then the
projection p: G — G/H is a distance-respecting projection.

Proof. This follows from [17, Lemma 4.1.1] by noting that H ?S g/b is trivial. [l

Assume H'(F) = H'(s) for an action M A 5 and let peAF,S)and @,: 5 — s/b,
ap: M x S — S as above. Let K, and H be the Lie subgroups corresponding to ker ¢,
and h. Then S/K, and S/H are vector groups. Let ¢,: S/K, — S/H be the linear
isomorphism with differential ¢, : s/ ker ¢, > 5/b.

PROPOSITION 6. (Maruhashi [17]) For any p € A(F, S), x € M and b, consider the
diagram

ap(x,)

S§———S

L

S/K, — S/H
@

P
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where the vertical maps are the natural projections. Fix an inner product of s and give S,
S/K, and S/ H the left-invariant Riemannian metrics considered in Proposition 5. Then
ap(x, - ) is a fiber-respecting bi-Lipschitz diffeomorphism over ¢,. (In particular a,(x, - )
is a quasi-isometry.)

See [17, Proposition 4.1.4] for this proposition.

4. Reduction of the proof of Theorem 2 to Proposition 12

Let G be a connected semisimple Lie group. Fix a Cartan decomposition g = £ @ p and a
maximal abelian subspace a of p. Let ¥ be the restricted root system of (g, a) and fix a
positive system X4 of . Letn = @A€E+ 9., where

g.={Xegl|[H,X]=MAH)X forall H € a}

is a restricted root space. Let K, A and N be the Lie subgroups corresponding to €, a and
n. Then G = K AN is an Iwasawa decomposition. The group AN is a connected simply
connected solvable Lie group and its Lie algebrais an = n x a.

It is easy to show that n is the nilradical of an and n = [an, an]. So we must take h = n
to apply Theorem 4. Then

ad i
an/n = a ~ Gr(n) = @ ni /nit!
i>1
is isomorphic to

Cl%dan @ gr-.

rEX
To apply Theorem 4, we must show H L(F) = H(an) and then calculate cohomology
with coefficient

ad og,

ad op .
an ro\vp Gr(n), ie. an ~ n= @ 1P @))
)LEE+
for any p € A(F, AN), where ¢,: an — a. Note that ker ¢, = nand ¢,|s € GL(a). The
ad og, . . . . . .
g)-component an  ~ g, in (1) is a direct sum of the one-dimensional representation
Ao

an ~’R. Therefore, we get the following.
LEMMA 7. Let G be a connected semisimple Lie group. Fix a Cartan decomposition g =

t @ p, a maximal abelian subspace a of p with the associated restricted root system X,
and a positive system Y. of X. Let F be the orbit foliation of a C* locally free action

M 2 AN ona closed manifold M. If

H'(F) = H'(an) )
and
HY(F; an Aﬁff) R) = Hl(an; an )\;@) R) 3)

forany A € X4 and p € A(F, AN), then pg is parameter rigid.
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Before proving Theorem 2 we remark that the same result but with a stronger
assumption of real rank at least 3 follows easily from the following result of Kononenko
[15, Theorem 8.2].

THEOREM 8. (Kononenko [15]) Let G be a connected semisimple Lie group with finite
center of real rank at least 3 whose simple factors are of real rank at least 2, and let I be
an irreducible cocompact lattice in G. Let G = K AN be an Iwasawa decomposition. Take
w: an — R to be any non-zero linear function which vanishes on n, and let j1: AN —
GL(1, R) be the homomorphism with differential 1. Then any [i-twisted C* cocycle over
the action T\G ~ AN by right multiplication is C* cohomologous to a constant cocycle.
Equivalently we have

H'(F;an AR) = H'(an; an A R).

COROLLARY 9. Let G be a connected semisimple Lie group with finite center of real rank
at least 3 whose simple factors are of real rank at least 2, and let I" be an irreducible
cocompact lattice in G. Let G = KAN be an Iwasawa decomposition. Then the action
I'\G \~ AN by right multiplication is parameter rigid.

Proof. Under the assumptions of this corollary, (2) in Lemma 7 follows from the case
A = 0 in Corollary 11 below, and (3) in Lemma 7 follows from Theorem 8. This implies
parameter rigidity of the action. O

But this does not cover the case of real rank 2. In this case we only know vanishing of
the cohomology with coefficients corresponding to restricted roots.

THEOREM 10. Let G be a connected semisimple Lie group with finite center of real
rank at least 2 with neither compact factors nor simple factors locally isomorphic to
SOp(n, )(n > 2) or SU(n, 1)(n > 2), and let T be an irreducible cocompact lattice in
G. Fix a Cartan decomposition g = £ @ p and a maximal abelian subspace a of p with the
associated restricted root system . Let F 5 be the orbit foliation of the action T'\G ~ A
by right multiplication. Then we have:

(1) (Katok and Spatzier [12, Theorem 3.6])
H'(Fp) = H'(a);
(2) (Kanai [10, Theorem 2.2])
H' (Fasa AR)=H'(a AR)=0
forany ) € X.

Remark. In [10, Theorem 2.2(2)] it is written that u (which is notation from [10]) is C*°
if the conditions (i) and (ii) from that paper are satisfied, but those conditions (i) and (ii)
are always satisfied, so that we get the above result.

COROLLARY 11. Let G be a connected semisimple Lie group with finite center of real
rank at least 2 with neither compact factors nor simple factors locally isomorphic to
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SOp(n, (n > 2) or SU(n, 1)(n > 2), and let T be an irreducible cocompact lattice in
G. Fix a Cartan decomposition g = € @ p, a maximal abelian subspace a of p with the
associated restricted root system X, and a positive system X of X. Let F be the orbit
foliation of the action I'\G \~ AN by right multiplication. Then we have

2 A
Hl(]-"; an A R) = Hl(an; an A R)
forany & € £ U {0}, where \.: a — R is regarded as A: an — R by extending it as 0 on n.

Proof. Let [w] € HY(F:an r}\v R); that is, drw + Awg A @ = 0, where wyq is the canoni-
cal 1-form of I'\G \~ AN. By restriction to T F4 we get dr,w + Awo A @ = 0. Note that
w restricts to the canonical 1-form of '\G v~ A. So

[a)]eHl(}'A;arAxR) =H1(a;aAR).

There exist a linear map ¢: a — R such that A(H)¢(H") — A(H" )¢ (H) = 0 for all H,
H' € a and a C* function h: I'\G — R satisfying w = ¢wg + dr,h + Awoh. For any
Hecaand X € g, foru € X,

0=How(X) - Xow(H) — p(Ho(X) + 1 H)o(X)
=HoX)—-X@H)+Hh+r(H)h) — p(H)o(X) + A(H)w(X)
=Hw(X)— HXh—[X,H]h — A(H)Xh — p(H)w(X) + A(H)w(X)
= H(w(X) — Xh) + (M(H) — p(H))(0(X) — Xh).

If u # A, take Hy € asuch that A(Hp) — u(Hp) # 0. Then the above equation for H = Hy
and the boundedness of w(X) — Xh imply w(X) — Xh =0. If u = A, take H # 0. We
can apply Moore’s ergodicity theorem since G has finite center and no compact factor and

I is irreducible. So the flow ¢/ (r € R) has a dense orbit and w(X) — Xh = ¥ (X) for
some ¥ (X) € R. Let o = w — drh — Awgh. Then

o' (H) =¢(H) for H € q,

0 for X € g, and u # A,

o'(X) =
Y(X) forX eg)and A € X5

Therefore, [w] = [«'] € H!(an; an A R).
By Corollary 11, the proof of Theorem 2 reduces to that of the following proposition.

PROPOSITION 12. Let G be a connected semisimple Lie group. Fix a Cartan decompo-
sition g = € @ p, a maximal abelian subspace a of p with the associated restricted root
system X, and a positive system X4 of . Let G = K AN be the corresponding Iwasawa

decomposition. Let M A AN bea C® locally free action on a closed manifold M with the
orbit foliation F. If

H'(F) = H'(an)
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and
Hl(]-'; anrA\vR) = Hl(an; anrka)

forall A € ¥4, where ). a — R is regarded as A: an — R by extending it linearly as 0
onn, then pg is parameter rigid.

Note that we need no assumption on the simple factors of G in this proposition.

Remark. In Theorem 10 we assume that
G has no simple factors locally isomorphic to SOg (%, 1)(n > 2) or SU(n, 1)(n > 2). ()

If (1) in Theorem 10 is true without the assumption (x), then (2) in Theorem 10 and
Corollary 11 are true without the assumption (x). Hence Theorem 2 will be true without
the assumption (x) by Proposition 12.

5. Proof of Proposition 12

To prove Proposition 12, it suffices to show that A o ¢,|q € X4 for any A € X and any
p € A(F, AN), by Lemma 7. At this moment we know only that ¢,|q is an element
of GL(a), so it is not clear whether ¢, |, preserves X . To prove it we need rigidity of
quasi-isometries of symmetric spaces.

For the proof of Proposition 12 we may assume that G has no compact factors, since
this does not change AN. Recall that Inn(g) = Ad(G) = G/Z(G), where Z(G) denotes
the center of G, and G/Z(G) has trivial center. Replacing G with G/Z(G) also does not
change AN, so we may assume G = Inn(g) as well.

The mapping an — anK gives a canonical diffeomorphism AN >~ G/K by the
Iwasawa decomposition. Henceforth we identify AN with G/K in this way. This is
AN-equivariant.

Recall that the identification p ~ Tx G/K is by X +— (d/dt)e'*K|,—¢. In the fol-
lowing, K denotes the subgroup K or the point K in G/K, depending on the context.
G-invariant Riemannian metrics on G/K are in one-to-one correspondence with inner

products on p invariant under K ﬁg p. We equip G/K with a G-invariant Riemannian
metric g corresponding to the restriction of By to p, where 0 is the Cartan involution associ-
ated with the Cartan decomposition g = £ @ p, B is the Killing form of g, and Byp(X, ¥Y) =
—B(X,0Y) for X, Y € g. The restriction of By to p is the same as the restriction of B to p.
We give AN the Riemannian metric which makes the identification AN ~ G /K an isome-
try. This Riemannian metric is A N-invariant. Geodesics in G/K passing K at time 0 are of
the form ¢'X K (1 € R) for X € p. Note that e’ K (r € R) for X € g\ p is not a geodesic in
general. In AN, curves of the form ne’ H(t ¢ R) for fixedn € N and H € a are geodesics.

The decomposition g =€ @ p is orthogonal with respect to the positive definite
symmetric bilinear form By. Let g; be the orthogonal projection to p with respect to g =
E®p of g, for & € X. The space g) has the same dimension as g, since £ = ker(6 — id)
and 6g, = g_,. This orthogonal projection maps an isomorphically to p by the Iwasawa
decomposition g = € & a @ n. Therefore,

p=a®dn where n = @ g5
)\.EE+

https://doi.org/10.1017/etds.2020.97 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.97

Vanishing of cohomology and parameter rigidity, 11 3033
Note that a L n’ since a L g; for A € ¥ and a L ¢ with respect to By. Observe that the
differentiation
m——>p=a®dn

O

TIAN ——TxG/K

at 1 of the identification AN >~ G/K maps an to p by the orthogonal projection with
respect to g = € @ p. Therefore, a maps identically to a and n maps isomorphically to n’.
Soa Ll ninan.

For any p € A(F, AN) and x € M, consider the diagram

ap(x,)

AN —— AN

plwlp

A——A
¥p
where p is the natural projection. We give A a left-invariant Riemannian metric for which
the restriction a — a of the natural projection an — a to n = a becomes an isometry;
i.e. we consider the restriction of B to a. Then p is a distance-respecting projection by
Proposition 5 and a,(x, - ) is a fiber-respecting bi-Lipschitz diffeomorphism over ¢, by
Proposition 6.

Since G = Ad(G), we have G =Gy x---x Gy, where G; is a connected
non-compact simple Lie group with trivial center. Since any two maximal compact
subgroups of G are conjugate by an inner automorphism of G, we have K = K| x - - - X
K¢, where K; is a maximal compact subgroup of G;,and G/K = G1/K| x - - - X G¢/ K.
Let g; = ¢; @ p; be the Cartan decomposition. Then p =p; B - - - D p,. Let g; be the
G,-invariant Riemannian metric on G;/K; corresponding to the restriction of the Killing
form B; of g; to p;. Since

B((X1,...,Xe), Y1,...,Y)) =B (X1, Y1) +-- -+ Be(X¢, Yo)

for X;, Y; € g;, we have g = g1 x - - - X gy. Since maximal abelian subspaces in p are
conjugate by Ad(k) for some k € K and Ad(k) preserves each p;, wehavea =a; ®--- @
a, for some maximal abelian subspace a; of p;. Let

gi=a0m e @ @)
)»,'EE,‘

be the restricted root space decomposition of g;. Then

14 12 12
s=PueoPmeoP P ©
i=1 i=1

i=1 )ex;

is the restricted root space decomposition of g. Thus ¥ = ¥ U - - - U X,, where A; : a; —
R in %; is regarded as A;: a — R in X by extending it linearly on a;(j # i) as 0. Hence
gy, = (gi)y,; for A; € X;. Since any two simple systems of X are conjugate by Ad(k) for
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some k € Nk (a) = Nk, (a1) x - - - X Ng,(ag),itfollowsthat X, = 2y U. ..U X4 for
some positive system X;; of ¥;. Hence n=n; @ - - - @ ny, where n; = @Aiezf+ (9i)a;-
Of course we also have

A=A x---xAy, N=N; x---xNy, AN =A|N; X---X A¢Ny.

The metric g on AN decomposes as g = g1 X - - - X g¢, where g; on A; N; is defined by
the identification A; N; ~ G;/K;, ain; — a;n; K;. The same kind of decomposition holds
for the metric on A.

The map a,(x,-): G/K — G/K is a quasi-isometry. By Kleiner and Leeb [13,
Theorem 1.1.2] there exist a permutation o € &, and quasi-isometries

®;: (Gi/Ki, 8i) = (Goii)/Ko(i)» 8o(i))
such that a, (x, - ) and
D (x1,...,x0) > (@071(1)()%,71(1)), R CIDUq(@)(qu(@)))
are close. Then
MA;N; —2> TA; N;
)
MA; —— T4,

Pp
is fiber-respecting. In fact, let C > 0 be a constant such that
dy(ap(x,aN), ¢p(a)N) < C
forall a € A, and let C’ > 0 be such that
d(®(s),ap(x,s)) < C’
for all s € AN then we have
dy(®(aN), ¢p(a)N) < dy(®(aN), ap(x, aN)) +dy(ap(x,aN), §p(a)N)
<C'+cC
foralla € A.
LEMMA 13. There exist linear isomorphisms @; : a; — a4 ;) such that
@p(alv co,ap) = (‘Z’g*lu)(agfl(l))’ e (ﬁgfl(z)(agfl(z)))
forall a; € A; and

D;
AiN; —— As (i) No (i)

pil il’a(z‘)

A; —?> Ag(i)

is fiber-respecting, where p; is the natural projection and ¢; is the isomorphism with
differential ¢;.
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Proof. Let ¢y(ai,...,ap) = (biay, ... ap),...,¢elai, ... ,ap) for a; € A;. For

fixed i and for any H; € a; and r € R, the Hausdorff distance between
o(p'd,..., 1, 1, 1)
=®Ny X - x Nj_1 x eiN; x Njz1 x - x Np)
= D1y (Ny-1(1y) X -+ X Di(@ TNy x -+ x D14y (Nymip))
and

(1, ..., DNy xx g, e DN
191 O Hise )z s o 90O Hin 0y,

0,...H _ .0 0,...H _ )
(e¢1(, Ho—1 ,)’“. Ge(0s s Ho—1 )5 ,))

= @i, Ge(etIy)

7 H,— ~ H _
= (@y-11y(e° 'my, ..., Go1(p) (e oY),

“)

®)

where we put ¢; = (}3(7( i Aj = Ag(j). Finally, by looking at o (i)th components of (4)

and (5), we have

hence ®; is fiber-respecting over ¢;.

O

Therefore, Proposition 12 follows if » 0 ¢, -1;) € Z;-1(;y4 forall A € i, since X =

iU -UXppand o gpla =Aro@,-1() ford € Ziy.

Since G, (i)/ Koy and G;/K; are quasi-isometric, g, (;) and g; are isomorphic. Fix an

isomorphism o : g5 (;) > g; such that
altei) =ti, alpom) =pi, «(ao@m) =a;
and o takes Yy ()4 to X;4. Then o canonically induces isomorphisms
o) 20, Goi)y=Gi, Kooy = Ki, Asi) = Ai, Ny = N;
and isometries

(Go(y/ Ko (i) &oG)) = (Gi/Ki, &), Aci)Noi) = AiN;.
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In this way we identify A; ;) Ny () with A; N; etc. Hence now

b;
A;Nj — A; N;

”’i lp,-

Aj; Tj> A;

is fiber-respecting, and to complete the proof of Proposition 12 it suffices to show A o ¢; €
Yy forany A € ;4.

We consider the following two cases separately.
e The group G; is of real rank at least 2 or is locally isomorphic to Sp(n, 1)(n > 2) or

2

e The group G; is of real rank 1.

We can treat G; locally isomorphic to Sp(n, 1)(n > 2) or F, 4_20 in either case.

From now on we will no longer consider the original objects G, K, A, N, g, X, ¢, etc;
we will focus only on the decomposed objects G;, K;, A;, N;, gi, Xi, ¢; etc. Hence we
will drop all the subscripts 7 to simplify the notation. So we have

Ga gy K7 E7 p9 9’ B: As a, Ns n, nlv E, Z—i—» g)u g;, g: (P, QZ, (Da ps

but we do not have M, p and a,. Recall that G = Ad(G), g is the restriction of B at
Tk G/K = p, AN is equipped with a Riemannian metric by the identification AN >~ G/K,
the Riemannian metric of A is the one which makes p.|,: @ 2~ a an isometry, and

AN -2 o AN

l l”

A—— > A
is fiber-respecting. Under these conditions we must prove A o ¢ € X forany A € ¥4.

5.1. The case where G is of real rank at least 2 or is locally isomorphic to Sp(n, 1)(n > 2)
or F, 20, By Kleiner and Leeb [13, Theorem 1.1.3] for G of real rank at least 2 and by
Pansu [18, 1. Théoreme] for G locally isomorphic to Sp(n, 1)(n > 2) or F, n 20, there exists
a homothety

F:(G/K,g) — (G/K,g)

close to ®. Thus there is a constant ¢ > 0 such that g(F, X, F.Y) = cg(X,Y) for all
xeG/Kand X, Y € T,G/K,so F: (G/K,cg) — (G/K, g) is an isometry. Since the
isometry group of G/K acts transitively, there exists the minimum K¢ € (—oo, 0) of the
sectional curvature of (G/K, g). Then cKy is the minimum of the sectional curvature
of (G/K, cg). Since they are isometric we must have Ky = cKo; hence ¢ = 1. Thus
F: (G/K, g) — (G/K, g) is an isometry.
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Since F is close to ®,

¢
is fiber-respecting.
Let F(1)~' = agng € AN. We have
L“O”O
AN —— AN
pl O ll’
A——A
L

where L denotes left multiplication. Since Ly, is an isometry,

AN —L o AN

l l”

A— A
LaOO(p

is fiber-respecting, where f = Ly, © F. Since L, o ¢ and ¢ are close,

AN*f>AN

/| |r

A——A
¢

is also fiber-respecting. Note that f is an isometry and f (1) = 1.
LEMMA 14. The map ¢ is an isometry.

Proof. There exists a constant C > 0 such that dy/(f(aN), p(a)N) < C for all a € A.
Then we have
ld(1,a) — d(1, ¢(@)| = ldy (f(N), f(aN)) —dpn (N, ¢(@)N)|
< ldn(f(N), f(aN)) —dy(f(N), p(a)N)|
+ 1dy (f(N), p(a)N) — dy(N, ¢(a)N)|
<dy(f(aN), 9@N) +dy(f(N), N)
<2C

foralla € A. Hence for all t > 0 and H € a we have

ld(1, ey —d(1, ey < 2C;

https://doi.org/10.1017/etds.2020.97 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.97

3038 H. Maruhashi

that is,
[t Hl —tlleH|I < 2C.
This implies
leH| = I HJ|.
Thus ¢ is an isometry. (]
Now weregardf as f: G/K — G/K and p: G/K — A. Consider
f«:p=TkG/K - p=TxkG/K.
LEMMA 15. We have f.(a) = aand fila =¢: a— a.

Proof. Takeany H € a.Let f, H = X + Y forsome X € aand Y € . Since
IHI> = I AHIP = 1X12+ 1712 = 11X )12,

we have ||H| > ||X|. Because ¢/ K(t € R) is a geodesic and f is an isometry,
fe®K)(t € R) is also a geodesic and f (! K) = !X YK Lett > 0.
Since f is fiber-respecting over ¢, there exists a constant C > 0 such that
du(f(p~" (™), p~ (@) < C.

Since !XtV K = f(e'"K) € f(p~'(e'")) and by the definition of the Hausdorff
distance, there exists x € p~!(@(e')) such that d (e'* 7Y K, x) < C.

The map p is distance-decreasing, since d(a, a’) = d(p~'(a), p~'(a’)) for all a, a’ €
A. So

de™, g(e'™) = d(pe* ™ K), p(x)) <d(* K, x) < C. (6)
Since ¢ is an isometry,
d(@E™), 1) =d", 1) =1|H]|.
By the triangle inequality we have
HIH| = ] X = d(1, g(e")) —d(1, ™) <d(™, §(e'™)) < C

for all r > 0. This forces ||H| = || X||, and then ¥ = 0 by the equation ||H||*> = || X||> +
|Y|>. Hence f,H = X € a.
For the second assertion we have by (6) that

d(e'+H ety < C
for any ¢ € R. This implies fuH = ¢H. O

PROPOSITION 16. Let g be a real semisimple Lie algebra and let G = Inn(g). (Recall

that the Lie algebra of G is naturally isomorphic to g, and G is the identity component of

Aut(g).) Fix a maximal compact subgroup K of G.

(1) Let ¥ € Aut(g) and consider ¥ € Aut(G) defined by V(g) = wgllf_l. The auto-
morphism V permutes the maximal compact subgroups of G. Identifying the set of
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all maximal compact subgroups of G with G/K by gK g~ <> gK, we have that the
map Iy : G/K — G/K induced by WV is an isometry with respect to the G-invariant
Riemannian metric defined by the restriction of the Killing form to the orthogonal
complement of the Lie algebra of K.
(2)  Suppose g has no compact simple factor. Then the mapping ¥ > Iy is an isomor-
phism from Aut(g) to Isom(G/K).

Proof. This is Exercise 7 in Helgason [7, Ch. VI]. A proof can be found in Solutions to
Exercises. 0

By Proposition 16 there exists ¥ € Aut(g) such that f = I,. Since f(K) = K, we have
W (K) = K. This implies

f(gK) =¥(g9)K (7)
for all g € G. We have ¢ (£) = €. Since
p={Xeg|BX,Y)=0forallY € ¢}

and B is v-invariant, we also have ¥ (p) =p. Hence fi =v|p: p— p by (7) and
¥(a) = a by Lemma 15. Therefore, /|, = ¢: a — a again by Lemma 15. Since v is
an isomorphism of g which preserves a, we have ¥~ lg; = Oroy|, for any A € X. Thus
Aop=XLoYlge Xif L € . Wemustshowthat hop =AroY|q € T4 ifA € 5.

For a Weyl chamber C in a, let

Yc={re X |AMH) > 0forsome H € C}

be the positive system corresponding to C, let nc = @Aegc gx, and let Nc be the Lie
subgroup corresponding to nc.
Let Cp C a be the Weyl chamber corresponding to ¥, i.e.

Co={Hea|A(H)>0forallA e X;}.

Then C; = ¥ Cp is a Weyl chamber in a. We have A € X if and only if X o Wl e
¥c,. Thus yn = n¢,. By (7) we have f(NK) = Nc¢, K. Therefore, the Hausdorff distance
between Nc¢, K and NK is finite.

LEMMA 17. If C and C’ are distinct Weyl chambers in a, then the Hausdorff distance
between Nc K and N¢/ K is infinite.

Proof. Take . € X¢ \ Z¢/. Hence g; C n¢ and g_, C ner. We will prove that e9-* K
contains points arbitrarily far from Nc K. Let H, € a be the element defined by A(H) =
B(H,, H) for all H € a. By Knapp [14, Proposition 6.52] there exists non-zero X, € g
such that:

o [Xy,0X,]= B(X,,0X3)H,;

° B(X)L,QX)L) = —Z/B(HA, H)L) <0;
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e the subspace ROX, & RH, & RX; is a Lie subalgebra of g isomorphic to s[(2, R).

The isomorphism is given by
00
X L=0X, <« < ) s

1 0
2 1 0
H/ = H ’
* T B(Hw Hy) <0 _1)
r_ 0 1
X)L = X)\ <> (0 0)

For any x € R we have

N 1 1 X

1 0 1 0 2 2

(x ]>=<0 1_+ix2) V12 i «/1—;x «/lii-x
0 V14+x -

VI+x2 142

This can be regarded as an equation of elements in the universal cover §]:(2, R) of
SL(2, R). We rewrite it using the exponential map:

log(1 + x?)
exoo—exolfxzex_ 2 0
P x 0) p 0 0 P 0 log(1+x2)

2

ox 0 — arctan x
P arctan x 0 ’

Mapping the above equation by the homomorphism SL(2, R) — G, we get
x log(1 + x?)
exp(xX_;) = exp(H_—szﬁ\> exp(—THl{
-exp(arctan x(X”_, — X})). (8)
Note that

exp(xX’;) € e%* C N¢v, exp(lL

log(1 + x2
Xp<_wlﬂ> c A.

Since O(X", — X)) = X", — X}, wehave X" ; — X/ € ¢ hence

+x2 X;) ee? C Nc,

exp(arctan x (X", — X})) € K.

Thus (8) gives the Iwasawa decomposition of exp(x X’ ,) as an element of G = NcAK.
Therefore,

x?2 2

log(1 + x?
:d(exp<_w[ﬂ)]{’ NcK)

log(1 + x2
dexpe X’ VK. NeK) = d( exp ——x! ) exp( = 221D 5\ g nek
p X 1+ A A
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log(1 + x2
- d(exp(— WHQK, K)

B H log(l+x2)H/
=|-———> —H
. log(l+x2)

VB(H: H)

This shows that N¢v K contains points arbitrarily far from Nc K. O

Thus C;1 = Cpandsoyn=n.Hence Lop = Lo |q € Xy if A € X .

5.2. The case where G is of real rank 1
PROPOSITION 18. If

AN —1 o AN

”l i”

A—y—=A
is fiber-respecting, fis a quasi-isometry and h is a map, then h is close to the identity map.

The map ¢ is close to the identity map by this proposition. But since ¢ is a
homomorphism, ¢ must be the identity map. Hence Ao = A € X forall A € X, and
this concludes the proof of Proposition 12.

Proposition 18 is Farb and Mosher [5, Proposition 5.8] when G is locally isomorphic to
SOg(n, 1). For the other cases it is basically Reiter Ahlin [19, Theorem 33], but the proof
there seems incomplete. To get the conclusion of Proposition 18 we need to argue at some
point in the same manner as Farb and Mosher do. Here we give a proof of Proposition 18
following the arguments by Farb and Mosher and Reiter Ahlin.

We have X, = {A} for G locally isomorphic to SOq(n, 1) and X4 = {A, 21} for the
other cases. Accordingly n = g, in the former case and n = g, @ g2, in the latter case.
Take H € a such that A(H) = 1. Hence a = RH. We identify A with R by e/ — 1.

We write the proof for the case of X = {A, 21}, but no change is needed when we have
¥ = {A} except a notational one.

Let g; be the Riemannian metric on N induced from g by the embedding N —
AN, x — xe'f. Let d and d; be the metrics induced from g and g, respectively.
Since x(ye’H) = (xy)e'f, ie. the embedding N < AN is N-equivariant, g, is a
left-invariant Riemannian metric on N. Let [|-||; be a norm on g;,(j =1,2) and

1
set |x| = max{||&|1, ||v||22} for x € N, where logx =& +v for £ € g5, v € go. Let
¢;: N — N be the map defined by ¢, (x) = e’ xe="H . Then

g ()] = e TP e™H | = |exp(e! (£ + v)))

1
= lexp(e'€ + ¢*'v)| = max{e' |€]1, €' [[v]|3 }
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1
e max{[|£]l1, [v]3} = €' |e* ]
=e'lx|
forany x € N and r € R.

LEMMA 19. There exists K1 > 1 such that

I, _ P
K—e f|lx 1yI—K] <di(x,y) < Kje lx ly|—}—K1
1

forallt e Randx, y € N.
Proof. Since ¢! x = ¢, (x)e'®, ¢;: (N, go) = (N, g) is an isometry. Hence
di(x,y) = d (1, x~'y) =do(1, g1 (x~"y)).

It is known that there exists a constant K| > 1 such that

1
ra |x| — K1 <dp(1,x) < K1 x|+ Ky
1

for all x € N. See for example Breuillard [3, Proposition 4.5]. Therefore,
di(x,y) < Kilgp— (x7' Y|+ K1 = Kie™'|lx 7'y + K,

and

| 1 -1

— — K1 =—|¢— — Ky <di(x, ).
K¢ Xyl = Ki X g1 (x™ W) = K1 = di(x,y)
COROLLARY 20. There exists Ko > 1 such that for any fixed ty € R we have

Let()_t < M < Kzzet()_t
K22 - dto(x’ y) -

ift <toand|x 'y| > (K12 + 1)e.

Proof. Ift < tgand x~ly| > (K12 + 1)e’, then we have e~/ [x ' y| > K12 + 1, and hence

(L -k )e_’lx_lyl <d(x,y) < <K1 T )e_’lx_lyl
Ki  K?+1 - Ki+1
by Lemma 19. Since

1 K

— = > 0,

K Kl2 +1
there exists K, > 1, which is independent of £y, such that

1 —t,—1 —ty,.—1
—e '|xTy| < di(x,y) < Kae x|

K>
under the above conditions. In particular
L —t0),—1 <d < Kre 10 -1
¢ X7yl < diy(x, y) < Kae P lx "yl

We get the conclusion from these two inequalities. (]
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A map o: § — X between geodesic spaces is called uniformly proper if there exist
constants K > 1, C > 0 and a function p: R>9 — R>¢ with lim,_, p(a) = oo such
that

pd(x,y)) <d(o(x),0(y) < Kd(x,y)+C
for all x, y € S. We call p, K and C the uniformity data for o.

LEMMA 21. The embedding (N, d;) <— (AN, d) is uniformly proper for each t € R, and
the uniformity data are independent of t. In fact there exists a function p: R>g — Rxq
with lim,_, o p(a) = oo such that

p(d;(x, y)) < d(xe'™, ye'?) < dy(x,y)
forallx,y € Nandt € R.

Proof. The second inequality is obvious. For the first inequality, define p1: R>9 — Rxo
by
p1(R) =sup{dp(1,x) | x € N, d(1,x) = R} .
Then p; is strictly increasing and limg_, 5 p1(R) = 0o0. We have dp(1, x) < p1(d(1, x))
for any x € N; hence dy(x, y) < p1(d(x, y)) forallx, y € N. Since
d[(x, y) — do(e—terl‘H’ e—tHyetH)
S p](d(eitH.xetH, e*[HyelH))

= pi(dxe'™, ye'™y),
we get pl_l(d, (x,y) <d(xe'f, ye'™). So p = p; ! satisfies the required properties. [

LEMMA 22. Let X, Y, S, T be geodesic spaces, let f: X — Y be a quasi-isometry, and let
0:8 — X, t: T — Y be uniformly proper maps such that dy;(fo (S), T(T)) < oo. Take
any map g: S — T satisfying sup,.sd(fo(x), 18(x)) < oo. Then g is a quasi-isometry
and the quasi-isometry constants depend only on the quasi-isometry constants for f, the
uniformity data for o and v, and sup . ¢d(fo (x), Tg(x)).

Proof. This is Farb and Mosher [5, Lemma 2.1]. O

We identify h: A — A with h: R — R by (') = "OH Define f;: (N,d;) —
(N, di@r)) by f(xe'f) = f,(x)e"™DH Then f, satisfies the property of Lemma 22.
In fact since f is fiber-respecting over h, there exists a constant C; > 0 such that
dy (f(p~ (™)), p~1("DHY)) < C; for all 1+ € R. Hence there exists y € N such that
d(f(xetf), ye"WHY < C;. Therefore,

d(f(xe'™), fr)e" O™y = d(f; )", f,(x)e" O
< d(fi(x)e" O, ye Oy < ©)

for all x € N and t € R. By Lemma 21 and Lemma 22, f;: (N, d;) — (N, dp)) is a
quasi-isometry with quasi-isometry constants independent of 7.
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Let 9 AN be the Gromov boundary of AN. Then 0AN = {oo} U N. The quasi-isometry
finduces amap df: JAN — JAN.

LEMMA 23. 9f(oc0) = oo.

Proof. Assume the contrary: 3f(00) = x € N. Take y € N with y # (3f)~!(00). Let y
be the directed geodesic connecting y and co. Then the Hausdorff distance between f(y)
and the directed geodesic ' connecting df (y) and x is finite. Hence the height of f(y)
is bounded above. Since & is a quasi-isometry, we can choose 7o € R so that h(¢y) is as
large as we wish. Therefore, the height of f( p_l (")) is also large. But we always have
fyety e f(p~l(e™f)) N f(y) # @, which is impossible. O

For any x € N, xe'" (t € R) is a geodesic of AN connecting x € AN and co. Then
f(xe'™)(t € R) is a quasigeodesic of AN. By Lemma 23 there exists a constant C, > 0
such that dy; (f (xe®H), 3f (x)eRH) < C,. By (9)

lu(x, 1) —h@®| |H|l < C;. (10)
There exists s(x, 1) € R such that d(f (xe'™), 3f (x)e* ™) < C,. We have

lu(x, 1) — s, O H| = d@f (x)e" O §f (x)es D)
— d(pfl (eu(x,t)H)’ af(x)es(x,t)l‘])

<d(fxe'™), af (x)e' ™y < . (1)
By (10) and (11) we get
ls(x,£) —h@®)| |H|| < Cy + Co. (12)
Therefore,
d(fi(x)e" O 3f (x)e"OH)
< d(fi()e" O, f e M) 1 d(f, (eI g f (x)et O
+d@f ()M Bf (0O
<lu@x, ) —h@| 1H| + C2+ Is(x, 1) — h()| | H]|
< 2C1 +2C,.
Hence

diy (fr(x), 3f (X)) < p @ fr(x)e" D 3 f (x)e" DY) < p~ 120, +2C2).

That is, f; and df are close, and the constant of closeness is independent of ¢. Thus
df : (N,d;) = (N, dnq)) is a quasi-isometry with constants independent of ¢, so there
exists a constant K3 > 1 such that

1
Edr(x, ¥) = K3 < dpipy(0f (x), 3f (y)) < Kzd;(x,y) + K3

forallx,y e Nandt € R.
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LEMMA 24. For any fixed ty € R we have

1
2K3

di(x,y) = dpy(@f (x), 3f (y)) =< 2K3d;(x, y)

forallt < tyandx, y € N with |x~'y| > VK (2K? + K).

Proof. Ift <tpand |x~'y| > €K (2K3 + K)), we have

1 —t..—1 2
di (x, Y)EK—E lx7 y| — K1 = 2K3.
1

Hence
dpy(3f (x), 3f (y)) < K3d;(x,y) + K3 < 2K3d;(x, y)
and
d (3f()3f())>1d( ) 12K2> 1d( )
h® ) Y _thx’y 2K3 3_2K31x’y' O

It is easy to show that £ is a quasi-isometry of R. See Farb and Mosher [5, Lemma 5.1].

LEMMA 25. There exists L > 0 such that foranyt, to € Rwitht + L < to we have h(t) <
h(tg).

Proof. Recall that & is close to s (x, - ) as we saw in (12). By the definition of s(x, 7) we see
s(x,t) —> oo ast — +00. So h(t) - *oo ast — +oo. Let K > 1 be a constant such
that (1/K) |s —t| — K < |h(s) —h()| < K |s —t|+ K for all 5, r € R. Take L = 4K?
and assume the contrary; i.e. suppose there were sg, fo € R with so + L < 79 such that
h(tp) < h(so). We have |h(so) — h(t9)| = 3K and |h(sg) — h(¢)| > 3K for any ¢ > t¢. For
to <t <ty+ 1 we have |h(t) — h(tg)| < 2K. Hence we must have h(t) < h(sg) for all
to <t <ty+ 1.Nowwehave so + L <19+ 1and h(tg + 1) < h(sp). Hence this time we
get h(t) < h(sp) forall 1o + 1 <t <ty + 2. By repeating we see that h(z) < h(sg) for all
t > 1o, which is a contradiction. U

LEMMA 26. For any fixed to € R, we have

L -y o 0 @F ). 0f () _ K2eh @010
K3 T i) Qf (), 3 () T

ift <ty— Land

1 K
—1 2 —h(0) 1 2 h(to)
lx7 y| > K{K3ze (—Kle—h(o) (_K3 +K3+K1>+(K1 + De 0).
Proof. Ift <ty— L and

1

-1 2 —h(0)
[x7'y| > KiK3e <—K1e—h<0)

K
(?1 + K3+ K1> + (K24 l)eh(’O)),
3
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then

1
af () ~'af ()l = m(dh(O)(af(X), af (y)) — K1)
1

1
> m (K—gdo(x, y) — K3 — Kl)

1 L
> (— (= 'y -k ) - K3 — K
= Kie h® <K3 <K1|x ) 1) 3 1)

L P I S o
K12K3e—h(0)|x yl_Kle_h(o) 73+ st

> (K} + 1)l
and h(t) < h(tp). So we get the desired inequality by Corollary 20. ]
LEMMA 27. There exists C3 > 0 such that for any ty € R and t < ty, we have
h(t) >t —ty + h(tp) — Cs.

Proof. Fix 1 and take x, y € N with |x~!y| large enough so that we can apply Corollary
20, Lemma 24 and Lemma 26. Then for any ¢ < fy — L, we have

1 _ 1 B
2K2K3 eh(to) h(t)dlo(xa y) < Feh(z‘o) h(t)dh(to)(af(x)7 8f(y))
2 2

< dny)(0f (x), 3f ()
< 2K3d;(x, y)
< 2K3K3e" ' dyy(x, y).
Hence
eh(to)—h(l) < 4K§K§€to_[,
Taking log we get
h(to) — h(t) < to — t + log(4K5K?3).

Since A is a quasi-isometry, h(tg) — h(t) — to + ¢ is bounded above for fo — L <t <ty by
a constant independent of #y. Hence the claim is proved. U

Let f: AN — AN be a coarse inverse of f; i.e. f is a quasi-isometry such that f o f
and f o f are close to the identity map. Let /: R — R be a coarse inverse of /. It is easy
to show that f is fiber-respecting over 4. Apply Lemma 27 to f and & rather than f and h.
Then there exists C5 > 0 such that

h(s) = s — 50+ h(so) — C}

for all s < sg. Now we can argue completely in the same way as in Farb and Mosher (see
p. 167 just after Claim 5.9 in [5]) to prove that # is close to the identity map.
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6. Necessary conditions for parameter rigidity

From this section forward we consider necessary conditions for parameter rigidity. (For
the definition of parameter rigidity, see the beginning of §2.) These necessary conditions
are given by a certain vanishing of zeroth and first cohomology of the orbit foliation. The
main results are Theorem 20 and Theorem 32.

Let M A S denote a C® locally free action of a connected simply connected solvable
Lie group S on a closed C* manifold M, with the orbit foliation F.

Recall that a connected simply connected solvable Lie group S is called of exponential
type if the exponential map exp: s — S is a diffeomorphism, or equivalently, every
eigenvalue of ad X either is O or has non-zero real part for each X € s. For a proof of
this equivalence, see Dixmier [4, Théoréme 3] or Saito [20]. A derivation of a Lie algebra
is called an outer derivation if it is not an inner derivation.

The first necessary condition is the following.

THEOREM 28. (Vanishing of H®) Assume that S is of exponential type and there is an

outer derivation of s. If M A Sis parameter rigid, then M is connected and H*(F) =
HO(s).

We will prove Theorem 28 in §7.

COROLLARY 29. Let N # 1 be a connected simply connected nilpotent Lie group and let
M AN bea parameter rigid action. Then M is connected and H*(F) = HO(n).

Proof. Every non-zero nilpotent Lie algebra over any field has an outer derivation. See
Jacobson [9]. U

Note that H(F) consists of real-valued leafwise constant C*° functions on M, and
HOYs) (as a subspace of H%(F)) consists of real-valued constant functions on M. Hence
we have HY(F) = HO(s) if and only if leafwise constant C*° functions are constant. This
is satisfied if there is a dense leaf of F. In the proof of Theorem 28 we do not prove the
existence of a dense leaf of F. We prove H O(F) = H'(s) somewhat algebraically, without
studying dynamical properties of the foliation F.

Remark. The author does not know whether Theorem 28 remains true if we drop one

of the two assumptions on S. One possibility of constructing counterexamples which are

parameter rigid but where H°(F) is huge is the following. Take a connected simply
connected solvable Lie group S and a cocompact lattice I" in S such that the following
hold.

e S has no outer automorphisms.

e T is arigid lattice in S, which means that if T'" is a lattice in S and o: ' — I/ is
an isomorphism, then o extends to an automorphism of S. (This terminology is taken
from Starkov [21].)

The author does not know whether such S and I' exist. But if we have such a pair,

Maruhashi [17, Proposition 4] says that the action I'\S v\~ § defined by right multiplication

is parameter rigid, because in this case parameter rigidity is equivalent to the rigidity
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of the lattice I". Then the action §' x I'\S ~~ S defined by (x, y)s = (x, ys) is perhaps
parameter rigid by the first condition, whereas H°(F) is now identified with the space of
all real-valued C™ functions on S'.

Recall the following theorem.

THEOREM 21. (Maruhashi [16]) Let N be a connected simply connected nilpotent Lie
group, and let M AN beaC® locally free action. Then the following are equivalent.

e The action py is parameter rigid and H*(F) = H'(n).
e H'(F)=H'(m).

Hence we have the following.

COROLLARY 31. Let N be a connected simply connected nilpotent Lie group, and let M A
N be a C* locally free action. Then the following are equivalent.

e The action pg is parameter rigid.
e HYF)=H'm).

Proof. Thisis trueevenif N = 1. O

If we have vanishing of H? for the trivial coefficient, then we can deduce vanishing of
HY for various non-trivial coefficients by an easy argument. This will be done in Lemma
40 in §7.

The second necessary condition is on the vanishing of H!. The following will be proved
in §8.

THEOREM 32. (Vanishing of H 'Y Let V C s be an ad-invariant subspace (i.e. an ideal of

d
5) for which n AV is trivial. Assume that any eigenvalue of ad X on s/ 'V either is 0 or

00 o . ..
has non-zero real part for any X € s. If M A Sis parameter rigid, then we have

H'(F:s 8 v)= HF) @ H (s:5 2 V).

Note that the assumption is weaker than the assumption that S is of exponential type, as
it allows ad X : V — V to have purely imaginary non-zero eigenvalues.

Here an element [w] € Hl(}";ﬁflgv V) is in HY(F) @ H'(s; s ‘rdgv V) if and only
if [w] is represented by a leafwise constant form, that is, represented by a form
¢ o wo for some C*° leafwise constant map ¢: M — Hom(s, V). If we assume also
that s has an outer derivation, then by Theorem 28, the conclusion simplifies to
H(F:s X V)=H'(s:5 X V).

Let us consider the coefficients appearing Theorem 32. We have V C n; thus V is
contained in the center of n, and is an abelian ideal of s. (For the first part, if not,
take X € V \ n; then n+ RX would be a nilpotent ideal of s which is larger than the
nilradical n.)

As an example of a coefficient V satisfying the property, we can take V = n®, where
n>n?> ... > n' D 0isthe lower central series of n.
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As a more concrete example, we consider the two-dimensional solvable Lie algebra

. . . d
ga = RX @& RY defined by [X, Y] = Y. Then the one-dimensional representation ga A
RY satisfies the condition of Theorem 32, but the trivial representation s ~ ga/RY does
not satisfy the condition.

7. Vanishing of H'—proof of Theorem 28

The proof of Theorem 28 is immediate after proving Lemma 37, whose proof is the
main part of this section. Several lemmas before Lemma 37 prepare an ‘integration’
map pu, which will be used in the proof of Lemma 37. Sublemma 1 inside Lemma 37
is similar to Lemma 43 in the next section, and the same kind of argument already
appeared in Maruhashi [16], where the vanishing of H! was proved under the assumption
of parameter rigidity together with the vanishing of H for actions of nilpotent Lie
groups.

Let M A S be a C® locally free action of a connected simply connected solvable
Lie group S on a closed C* manifold M, with the orbit foliation F and the canonical
1-form wy.

Let s AV be a finite-dimensional real representation, and let S fnx V denote the
representation whose differentiation is 7. Then the trivial bundle M x V — M is an
S-equivariant vector bundle with the action defined by

(x, v)s = (po(x, s), TI(s ™).

Let I'p;c (V) be the space of all bounded sections of M x V — M which are continuous on
each leaf. (An element & € I'j;.(V) can be discontinuous on M.) We have a representation
§ ™~ Tpe(V) by

(s8)(x) = I1(s)§(po(x, 5))

fors € S,& € T’y (V) and x € M. We equip V with a norm coming from an inner product.
Then I'y;(V) is a Banach space with the supremum norm. Let I';.(V) be the closed
subspace of I'y;. (V) which consists of bounded leafwise constant sections.

LEMMA 33. There is an S-equivariant continuous linear map
w: Tpie(V) = T (V)
which is the identity on I'jc(V).

Proof. Since S is amenable, by one of the characterizations of amenability, we have
a bi-invariant mean po: Cp(S) — R on the space Cp(S) of all bounded continuous
real-valued functions on S. See Greenleaf [6, pp. 26—29]. Recall that po(1) = 1 and its
operator norm is 1. Take a basis vy, ..., v, of V. For & = Z?:l fivi € Tpje(V) and
x € M, we define

u(E)x) =Y ol fi(polx, - ))vi.

i=1
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Then this is independent of the choice of a basis of V. We have
n
wE(po(x, ) = Y po(filpolx, s - Nvi = p(€)(x)
i=1
by left-invariance, and

1(sE)(x) = TI(s) Y po(fi(po(x, - $))vi = su(§)(x)

i=1

by right-invariance. We also have u(§) = & for & € I'j.(V) since po(1) = 1. By taking
V1, . . ., Uy to be an orthonormal basis and using |||l = 1, we see that

n
@I <Y il <n gl - O
i=1
Let V denote the flat leafwise connection of M x V — M defined by s AV.
LEMMA 34. Forv € V, xo € M and sufficiently small s € S, the locally defined section
§o(po(xo. )) = (po(x0, $), TL(s™)v)

of M x V.— M on the leaf containing xq is a parallel section for V; that is, V&) = 0.

Proof. For any y = po(xg, so) with small so € S and any X € s, we have

d tX
V%po(y’etxw:oéo = df$o<apo(y, e ) + 7 (X)&0(y)

=0

d
= EH(e_th(;l)v

=0. (]

1=0 + T(X)M(sy Hv

Therefore, the directions of orbits of the action M x V .~ § are horizontal for the
leafwise connection V. By the expression for covariant derivative by parallel transport,
we have

(e *)E(po(x, ™)) — £(x)
t

_ 1 (X&) (x) — £(x)
=lim ————~ >~ °©
t—0 t

forany £ € I'(V), X € s and x € M. Note that X € s is regarded as X € ['(T F) using the
locally free action py.

(Vx§)(x) = lim

LEMMA 35. Forany & e T'(V) and X € s, (e'XE — &)/t converges uniformly to Vx& as
t — 0.

Proof. Take abasis vy, . .., v, of V and write (e’XE)(x) = Z?:] fi (¢, x)v; for some C*°
functions f;: R x M — R. Then we have (Vx§)(x) = >/, f/(0, x)v;. The function
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fi(¢, x) has the Taylor expansion

2
t
fit,x) = fi(0, x) +1£/ (0, x) + Efi//(ei,x,t, x),
where 6; , ; is a number between 0 and ¢. Since

(€*§)(x) — £(x)

t — (Vx€)(x) = % ; £ )0

and f/"(6, x) is bounded for —1 <6 < 1 and x € M, we get the conclusion. O
LEMMA 36. Let u: Tpie(V) — T5c(V) be the map in Lemma 33. Then

nw(Vxé) = Vxu(é)

forall§ € T (V) and X € s. (Note that u(§) might be discontinuous on M.)

Proof. By Lemma 35, (¢!X& — £)/t converges uniformly to Vy£ as ¢ — 0. By continuity
and equivariance, we have

X)) — @
— = Vxu®. O

n(Vx§) = lim

t—0

LEMMA 37. Assume that S is of exponential type. Let V: M — Aut(S) be a C*° map
which is constant on each leaf of F. If po is parameter rigid, then W: M — Out(S) is

constant on M, where the bar denotes the projection Aut(S) — Out(S). In particular, if
Out(S) # 1, M must be connected.

Proof. Define M As by p(x,s) = po(x, \Il;l(s)). This defines an action because W is
leafwise constant:

p(x,ss") = po(polx, W, ' (5)), ' (s)
= po(p(x, ), W | (s)
= p(p(x,s), s).

Since p is a C™ locally free action with the same orbit foliation as pg, p is parameter
equivalent to pg by parameter rigidity. Note that W, wq is the canonical 1-form of p. By
Proposition 1.4.4 of Asaoka [2], there exist ® € Aut(S) and a C*° map P: M — S such
that

Vw0 = Ad(P~H)®,w9 + PO, (13)

where ® denotes the left Maurer—Cartan form of S. (In [2], & is referred to as an
endomorphism, but it is the same ® that appears in the definition of parameter equivalence
which we saw in §2, so ® can be taken as an automorphism. It is easy to see P*® is
equivalent to the expression P~ 'dz P in [2]. There is a small difference between our
definition of parameter equivalence and the one in [2], since in [2] the map F is assumed
to be homotopic to the identity through diffeomorphisms. But this does not cause any
problem here.)
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Let a denote both projections s — s/nand S — S/N, where n is the nilradical of s and
N is the Lie subgroup corresponding to n. By projecting (13), we get

aVy,wo = ad.wg+draP, (14)

since s/n is abelian. For any x € M, X € s and T > 0, we integrate (14) over the curve
po(x, e X ) for 0 <t < T. Then, noting that W is leafwise constant, we have

TaV,, X = Ta®, X +aP(po(x, e’ X)) — aP(x).

Since a P is bounded due to the compactness of M, we must have aWV,, X = a®, X, and
a P is leafwise constant. Hence there exists a leafwise constant C*° map R: M — S such
that Q = R~'P: M — N. Since R is leafwise constant, we have

P*® = (RQ)*® = 0*©
and (13) becomes
W00 = Ad(Q™H Ad(R™H D, + 0*O. (15)

Letn D n? D - .- D n® D 0 be the lower central series of n. Recall that exp: n — N is
a diffeomorphism and log: N — n is defined.

SUBLEMMA 38. Assume that there exist a C®° map Q: M — N and a leafwise constant
C*® map R: M — S such that:

e V. wy=AdQ ") Ad(RHP.wy + 0*O;

o logQe nkforsome 1 <k<s.

Then we can find a C*° map Q': M — N and a leafwise constant C*° map R': M — S
such that:

o Wnwo=Ad(Q)7) Ad(R) ™) s + (Q)*6;

e log Q' enktl,

Proof. Take subspaces Vp, ..., Vs such that s = Vy @ n and n =V, @nt! for i =
1,...,s. We can write Q = exp(}_;_; Q;) for some C* maps Q;: M — V;. We will
calculate the V; component of

Voo = Ad(Q ™) Ad(R™) ®u9 + 0*O. (16)

First note that
0*0 = dr Q) mod n*t!.

In fact, for all X = %X(I)|t:0 e T F,

d
0"O(X) = EQ()C)*1 Q(x(1))

=0

d : :
= exp(— ; Qi(x)> exp(§ Qi(x(t))>

= it exp<i§(g,-(x(t)) — 0;(x)) + an element of nk+1)

t=0

d t=0
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- % exp(Qk (x (1)) — Qk(x) + an element of n**1)|,_g

= dr Qr(X) mod n**!.
L 0 . . ad  p o k4 . . . N
ets ~ Vi be the representation obtained from s ~ n*/n*"" by the identification Vj =~
nk/nk+ Put 7y = n,? o d,. We take s A Vi ass AV considered in the beginning of
this section; we let V be the leafwise connection defined by 7y, and we let pu: ' (Vi) —
I (Vk) be the map in Lemma 33.
Write Wyswp = > i_o @ and Ad(R™1)®,wp = > 7_, Bi according to the decomposi-
tion s = @;_, Vi. Then we have

Ad(Q™Y Ad(R™ M Dy = exp <ad (- Z Q,-)) Z Bi
i=k i=0

Bi + [Bo, Qx] mod n**!

1]
~ HM»
o

Bi + 0 BoQx mod ntl,
i=0

Take the Vi components of (16) to get
ak = B + 70 BoQk + dF Qk.
Since
@00 = Ad(R™ ) Pywp = o mod n
and rr,? vanishes on n, we have mwy = n,? Bo. Therefore,

VO = drQk + mrwo Ok
= dr Qi + 70 Bo Ok

and we get
ax = B + VO (a7
Hence
ar(X) = Br(X) + Vx O

for any X € s. Note that oz (X) and B;(X) are leafwise constant because R is leafwise
constant. Applying x and using Lemma 36, we get

ap(X) = B (X) + Vxu(Qk).

Therefore,

Vx (Qk — u(Q1) = 0.
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Put Q; = Or — n(Qr). We shall see Q) is leafwise constant. Let S p\kv Vi be the

. . S n
representation with the derivative s 7 Vi. Then for any t € Rand x € M, we have

("X Q) (po(x, X)) — O} (po(x, e'X))
h

4 (@* Q) (x) = lim Tx(e'™)
=t h—0

= k(") (Vx Q) (po(x, %))
=0.

Thus (¢ Q) (x) = I (e’X)Qjc(po(x, ¢'X)) is constant with respect to . So
Qi (po(x, ¢™)) = Tx(e ™) 0 (x) = e~ ™M) Q) (x)

for all + € R. Note that Q;((,oo(x, ¢'X)) is bounded with respect to ¢. Take a basis of Vi
which turns —m; (X) = —n,? (9. X) into a real Jordan normal form. Since any eigenvalue
ofad X: s — sforany X € s either is O or has non-zero real part by our assumption that s
is of exponential type, the same is true for n,? (X): Vix = Vi forall X € s. Therefore, each
Jordan block of —m(X) = —n,? (@4 X) has eigenvalue either equal to 0 or with non-zero
real part. For a Jordan block whose eigenvalue has non-zero real part, the corresponding
components of e~/ (X) Q). (x) have the following forms:

e * c1
0 e'd Cm
if the eigenvalue a is real, and
'R, * 1
. s
0 'R, Cm

where

R — costb sinth
"7 \—sinth costh)’

if the eigenvalue a + bi is not real. Since this must be bounded forallt e R, ¢; =+ - - =
cm = 0, which implies the corresponding components of Q;{ (po(x, e’ X)) must be constant.

On the other hand, for a Jordan block with eigenvalue 0, the corresponding components
in e ™ X) 0 (x) is

1 * Cl
0 1 Cm
where the entries in the x part of the matrix are now polynomials in ¢. Since bounded

polynomial functions must be constant, we see that the corresponding components in
0, (po(x, e'X)) are also constant.
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So Qy is leafwise constant. Put Q' = ¢~2+ Q. Then log Q' has values in n**! and
Weswo = Ad((Q)71) A((R) ™) s + (0O,
where R’ = Re@* is leafwise constant. (]
Applying Sublemma 1 to (15) repeatedly, we finally get O = 1 and therefore
W00 = Ad(R™H P
for some R. Therefore, W, is equal to ® modulo inner automorphisms. O
Theorem 28 is restated and proved here.

THEOREM 39. Assume that S is of exponential type and there is an outer derivation of s.
IfM A S is parameter rigid, then M is connected and HO(F) = HOs).

Proof. Since there is an outer derivation of s, the outer automorphism group Out(S) of §
is non-trivial; hence M is connected. Take an outer derivation ¢ of s and set ®, = % €
Aut(S). For any f € HO(F), consider a map M — Aut(S) defined by x = @ (). Since
this is leafwise constant, x +— m € Out(S) is constant by Lemma 37. Let Inn(S) denote
the inner automorphism group of S. This is a connected normal Lie subgroup of Aut(S).
We must be a bit careful because Inn(S) might not be closed in Aut(S) in general. See
Hochschild [8]. But the cosets of Inn(S) define a foliation on Aut(S), and &, is a curve
transverse to the foliation. Since the automorphisms @ 7,y for all x € M are contained in a
single leaf of F and M is connected, ® (,) must be constant with respect to x. This implies
f is constant over M. U

Finally we see the vanishing of H® with non-trivial coefficients.

LEMMA 40. Assume HO(.F) = HO(s). Let s A Vbea representation for which w(X) has
no non-zero purely imaginary eigenvalues for each X € s. Then HO(F; w) = H(s; 7).

Proof. Take& € H O(F: 7). The function & satisfies d r& + mwoé = 0. This means X§& +
7(X)& =0 for all X € s. For each x € M this is solved as £(pg(x, ¢'X)) = e X g(x)
for all + € R. As in the proof of Sublemma 1 we transform 7 (X) into a real Jordan
normal form, and £ being bounded implies £(po(x, ¢’*)) must be constant. Therefore,
& is leafwise constant. By the assumption H O(F) = HYs), £ is constant on M. Hence
£ € Vand m(X)€ = 0forall X € s, which shows & € HO(s; ). ([l

8. Vanishing of H'—proof of Theorem 32
Here we prove the following (a restatement of Theorem 32).

. . . . . d
THEOREM 41. Let V C s be an ad-invariant subspace (i.e. an ideal of s) for which n AV
is trivial. Assume that any eigenvalue of ad X on s/ V either is 0 or has non-zero real part

forany X e s. If M A Sis parameter rigid, then we have

H'(F:s 2 V)= H (F)@H'(s:5 2 V).
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Proof. Takeany [w] € H'(F; s ?gv V). Let wg be the canonical 1-form of pg. Fix ane > 0
and put n := wg + ew € I'(Hom(T F, s)). Let us see that n satisfies the Maurer—Cartan
equation. As we saw in §6, V is abelian, and then

drn+[n,n] =drwo + edrw + [wo, wo] + €([wo, w] + [w, wo])
=e(drw + [wo, w] + [, wp]).

But this is zero, because w satisfies d rw + (ad wg) A w = 0 and (ad wp) A @ = [wg, w] +
[w, wo].

Since M is compact, we can assume 1y : TxJF — s is bijective for all x € M by taking
€ > 0 small enough. Then there exists a unique action p of S on M whose orbit foliation
is F and whose canonical 1-form is 7. See Asaoka [2, Proposition 1.4.3]. By parameter
rigidity, p is parameter equivalent to pg. Thus by [2, Proposition 1.4.4], there exist a C*>
map P: M — S and an automorphism & of S satisfying

wo + €w = Ad(P™ ) ®,wp + P*O, (18)

where ® is the left Maurer—Cartan form of S. By considering this equation modulo n,
we get

wy = Do + d]:? mod n,

where the bar denotes the projection S — S/N. The same argument as in the proof of
vanishing of H? yields

wo = P,wp mod n,
drP =0 mod n.

So we can take a leafwise constant C*° map R: M — S suchthat Q := R~'P € N.Then
equation (18) becomes

wo + €w = Ad(QT'R™H P,y + (RO)* O
= Ad(Q™ )W + 0*0,
where ¥, = Ad (R’1)¢>* is leafwise constant.
LEMMA 42. There exists a filtration
sOn=Wi DWW, D---DW;=V D Wy =0,
where the W; are ideals of s such that [n, W;] C W4 1.

Proof. If

1

non’>.---on o0

denotes the lower central series of n, then the filtration
sOnon? 4+ Vo4 Vo..on VDOV DO0
gives the desired filtration. U

Note that we have wg = W,wg modulo Wj.
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LEMMA 43. Assume there exist a C®° map Q: M — N and a leafwise constant C* map
W: M — Aut(S) such that

wo + €w = Ad(Q ™ H W,y + 0%6, (19)
log O € Wi

and
wo = Vewp mod Wy.

(1) Ifk < s, then there exist a C*° map Q': M — N and a leafwise constant C*° map
W' M — Aut(S) such that

wo + ew = Ad((Q/)fl)\I‘;wo + (0",
log Q' € Wiy

and
wp = Vg mod Wi1.
(2) Ifk =s, then w is cohomologous to a leafwise constant cocycle.

Proof. The proof is similar to the proof of Sublemma 1. Take complementary subspaces
Visothats = Vo @ nand W; = V; @ W; 1. Write

N N N
wy = Z aj, W= Z Bi and Q= eXP(Z Qi)
i=0 i=0 i=k

according to the decomposition s = ;_, V;.
The same calculation as in Sublemma 1 gives

0*0 =drQr mod Wiyy.
We have

Ad(Q™ Wy = exp(ad(— > Q»)) Y b
i=k i=0

k
=" Bi + [Bo, Okl mod Wi
i=0
k—1
=Y i+ Bi + 2o, Ox] mod Wiy,
i=0
Equation (19) gives
k k—1
Z a; + Spsew = Z a; + Br + [ao, Okl + drQr mod W.
=0 =0

Thus
ag + dksew = B + [ao, Okl +drQr mod Wiy ;.

If k = s, we have
=€ "B —a) +dre ' Q) + oo, e Q5.
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If V denotes the covariant derivative defined from s ?Qv V, then by [n, V] = 0 we have
V(e '0y) =dr(e™ Q) + [wo. €' Q]
=dr(e ' Q) + [0, €' Q1.

Therefore, w is cohomologous to e (,BS — ozs), which is leafwise constant since so are wy
and W, wy.
If k < s, then

ok = P + oo, Okl +drQr mod Wig.
Lets A Vi denote the representation obtained from s ﬁg Wi/ W41 by the identification

Wi/ Wik41 =~ Vi, and let V be the leafwise connection defined by mx. Recall that VQy =
dr Qk + mrwo Q. Since

s
Trwo Ok = Tk (Z ai) Ok
i=0
= [ag, Okl mod Wiy,
we have
ok = P +drQ + mkwoQk  mod Wi,
which implies
ok = Pr +dr Qk + mkwo Ok
= B+ V.

By the same argument as that starting from equation (17) in the proof of vanishing of H?,
using the assumption on the eigenvalues of ad X, we can conclude that Qy is leafwise
constant. Define Q': M — N by Q = ¢2¢Q’. Then equation (19) becomes

w4 ew = Ad((Q") e~ )W, wp + (€24 Q") O
= Ad((Q) HWwy + ("8,
where ¥, = Ad (e_Qk)\If*. Now we have log Q" € Wy and

W = e 2w, w

k—1
— o 2d Ok (Z a; + B + an element of Wk+1>

i=0
k—1
= Z o; + Br + [ao, Qk] mod Wiy
i=0

k
= Z o mod Wiy
i=0
=wg mod Wiy

since drQy = 0. O
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Applying Lemma 43 repeatedly, we see that w is cohomologous to a leafwise constant
cocycle. Note that we have used the assumption on the eigenvalues only on Vi, ..., V,_1,
butnoton Vy, = V. O
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