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Summary

We study multi-locus models for the accumulation of disadvantagenous mutant alleles in diploid
populations. The theory used is closely related to the quasi-species theory of molecular evolution.
The stationary mutant distribution may either be localized close to a peak in the fitness landscape
or delocalized throughout sequence space. In some cases there is a sharp transition between these
two cases known as an error threshold. We study a multiplicative fitness landscape where the
fitness of an individual with j homozygous mutant loci and k heterozygous loci is wjk = (1 —s)1

(1 —hs)k. For a sexual population in this landscape there are two types of solution separated by an
error threshold. For a parthenogenetic population there may be three types of solution and two
error thresholds for some values of h. For a population reproducing by selfing the solution is
independent of h, since the frequency of heterozygous individuals is negligible. The mean fitnesses
of the populations depend on the reproductive method even for the multiplicative landscape. The
sexual may have a higher or lower fitness than the parthenogen, depending on the values of h and
u/s. Selfing leads to a higher mean fitness than either sexual reproduction or parthenogenesis. We
also study a fitness landscape with epistatic interactions with wjlc = exp(—s(2j+k)a). The sexual
population has a higher fitness than the parthenogen when a > 1. This confirms previous theories
that sexual reproduction is advantageous in cases of synergistic epistasis. The mean fitness of a
selfing population was found to be higher than both the sexual and the parthenogen over the
range of parameter values studied. We discuss these results in relation to the theory of the
evolution of sex. The fitness of the stationary distribution in cases where unfavourable mutations
accumulation is one factor which could explain the observed prevalence of sexual reproduction in
natural populations, although other factors may be more important in many cases.

1. Introduction

Many problems in population genetics may be viewed
as a competition between selection and mutation.
Selection acts to increase the numbers of individuals
with the fittest genes, and mutation continually
produces new genes which are often of lower fitness.
In many cases a balance arises between these effects
leading to a stationary distribution of disadvantageous
mutations. If a mutant gene has a large dis-
advantageous effect then selection will act strongly
against it, and its frequency in the population will
remain low. If a mutant gene is only slightly
disadvantageous then selection is less effective against
it, and it may occur with a significant frequency.
Kimura (1983) has argued that many naturally
occurring mutations are close to being neutral in
effect. Gillespie (1991) has also discussed the evidence

for and against the neutral theory. If slightly dis-
advantageous mutations occur at many places on the
genome the overall effect on the fitness of the
individual may be severe, even if each mutation alone
is almost neutral. In this article we will consider the
balance of selection and mutation for multi-locus
models with slightly disadvantageous mutations.

Theoretical biologists have usually studied diploid
models with one or two loci (Wright, 1969; Crow &
Kimura, 1970). Such mocels can easily be solved in a
wide variety of cases. Generalization to multi-locus
models is possible for some simple cases, and often
requires the use of numerical methods (Kimura &
Maruyama, 1966; Haigh, 1978; Kondrashov, 1982;
Charlesworth, 1990). Another approach is the 'molec-
ular quasi-species' theory (Eigen et al. 1989; Swetina
& Schuster, 1982), which is intended to describe
populations of self-replicating macromolecules. In the
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language of population genetics these would be
haploid multi-locus models. It is the object of this
article to show how ideas from the quasi-species
theory are relevant to diploid multi-locus models.

In the quasi-species theory for molecular evolution
each macromolecular sequence has a ' fitness' associ-
ated with it which represents its rate of replication. In
the absence of mutation the sequence with the highest
replication rate would grow to dominate the popu-
lation, and all surviving sequences would become
identical. If mutation occurs then new sequences are
continually being formed which are not of optimal
fitness. In this case the concentrations of the different
sequences converge to a stationary distribution in
which sequences which differ from the optimal
sequence are present in non-negligible amounts. This
stationary distribution has been termed the quasi-
species.

The stationary distribution which arises will depend
on the shape of the fitness peak, i.e. on the way in
which fitness decreases as successive mutations are
made to the optimal sequence. The stationary dis-
tribution can be obtained analytically for simple
choices of fitness landscape. In general the distribution
becomes broader as the mutation rate is increased.
For large mutation rates selection becomes ineffective,
and the stationary distribution is spread over the
whole of sequence space. In some cases there is a well
defined transition between a localized and a delocal-
ized distribution as the mutation rate is increased.
This transition is called the error threshold, and has
analogies with phase transitions in statistical physics
(Leuthauser, 1986; Tarazona, 1992).

In this article we will ask how the stationary mutant
distribution depends on the method of reproduction,
and on the shape of the fitness peak. The plan of the
article is as follows. Section 2 discusses haploid
models and points out the relationship to the quasi-
species theory of Eigen et al. (1989). Section 3 presents
new results on multi-locus diploid models. The
stationary mutant distributions are obtained for
sexual, parthenogenetic and selfing species, in the
simplest case where the effect of the different loci is
multiplicative. Section 4 looks at the effect of epistatic
interactions which alter the shape of the fitness peak,
and hence of the stationary distribution. Analytical
solutions can be obtained in certain cases, and these
are compared to previous approximate solutions and
to numerical results. Section 5 discusses the relative
fitness of sexual and asexual populations in different
landscapes, with reference to the widespread recent
debate on the evolution and costs of sex.

2. Haploid Models

The simplest possible case is a single locus haploid
model. We consider one single gene in each individual,
which may either exist as an optimal fitness allele with

relative fitness w0 = 1 or as a mutant allele having a
lower relative fitness wl = 1 — s. Usually s is called the
selection coefficient (Crow & Kimura, 1970). Let x be
the frequency of the optimal allele, and y = 1 — x be
the combined frequency of the mutant alleles. Let
there be a probability u per generation that the
optimal allele mutates into one of the other alleles.
Subsequent mutations occurring on already mutant
genes are very unlikely to recreate the optimal allele,
thus we may neglect 'back mutations'. If the allele
frequencies at generation t are x{t) and y{t) then at
generation t + \ we have x(t + l) = (l-u)x(t)/
(x(t) + (\ — s)y(t)). Upon repeated iteration of this
equation x(t) will converge to x = 1 — u/s, if u < s, or
to x = 0, if u > s. Although this argument is trivial it
contains the essence of the error threshold idea. In
cases where the back mutation rate may be neglected
selection can only counteract the effects of mutation if
the mutation rate is small enough. In this case the
error threshold is at u = s. If u > s the optimal allele
disappears.

Now consider a haploid genome sequence of L loci.
At each locus there may either be an optimal allele or
a mutant one. Let wk be the fitness of a genome
sequence containing k mutant alleles. It will be
assumed that fitness simply depends on the number of
mutant genes and not on their precise positions in the
sequence. Hence the fitness landscape is a single peak
with maximal fitness w0 = 1. At generation t let Ck{f)
be the combined concentration of all sequences having
k mutations. The Ck are normalized so that the sum of
the concentrations is equal to 1. In the subsequent
generation

(2.1)

where W is the constant needed to maintain the
normalization condition. In fact, Wis the mean fitness
of the popultion.

W=^wkCk(t). (2.2)
A-

In equation (2.1) the mutation matrix Mjk is the
probability that a sequence with k mutant genes
mutates into a sequence with j mutant genes in one
generation. Since we are neglecting back mutations j

(2.3)

A simplification of the mutation matrix is possible if
LP \, and the mutation rate per locus u <§ 1. In this
case the total mutation rate per genome is U = uL,
and the binomial distribution of equation (2.3)
becomes a Poisson distribution.

(2.4)
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It is possible to write a mutation matrix which
includes back mutations at a finite rate. This would be
necessary in a binary sequence space, such as the one
considered in Eigen (1989), or in a DNA sequence
space with four possible nucleotides at each site.
However, in the limit L P 1 we still end up with
equation (2.4), which is independent of the back
mutation rate. This is because of combinatorial factors
which occur for large L. Thus we are always entitled
to neglect back mutations for long sequences.

If we are interested in a numerical solution then we
have merely to iterate equation (2.1). The fitnesses wk

may be set according to any model which we choose,
and starting from any initial choice of concentration
distribution, the concentrations will eventually con-
verge to the stationary distribution for the given wk.
We will now look at some particular choices of wk for
which the stationary distribution may be obtained
analytically, at least approximately.

One landscape which has been widely studied is the
'master sequence' landscape or 'isolated peak' land-
scape (Swetina & Schuster, 1982). In this case the
optimal sequence (called the master sequence) has a
high fitness (w0 = 1) and all the other sequences have
a lower fitness which is the same for all of them (wk =
1 -s for k 4= 0). If L P 1 the stationary distribution Ck

satisfies

pendently of the others, so that wk = (1 — s)k. We will
use the form of Mjk for finite L.

(2.8)

As before, if we work to first order in s and in u then
we obtain

W=(\-u)L, (2.9)

(2.10)

This result means that the loci are behaving in-
dependently of each other in the multiplicative
landscape. There is a fraction x = 1 — u/s of optimal
alleles and a fraction y = u/s of mutant alleles at each
locus just as in the single locus problem. The mutant
genes are distributed randomly along the sequence
giving rise directly to the binomial distribution in
(2.10). The error threshold thus remains at its value
for the single locus model: u = s. In fact, if L is large
then the threshold has little significance since the
fraction of the optimal sequence is Co = (1 —u/s)L,
which becomes very small even for u much less than s.
If we take the limit L >̂ 1 then U becomes the
appropriate variable instead of u, and (2.10) becomes

(2.5) C, = e- ,(u/sy (2.11)

Setting./ = 0 gives straight away that W = e~u. In fact
this result is independent of the choice of the wk, hence
for a haploid asexual population the mean fitness
is independent of the shape of the fitness landscape.
This result is at first sight surprising, but has been
known for some time (Kimura & Maruyama, 1966;
Kondrashov, 1982). If the selection strength is
increased the stationary distribution will become more
strongly concentrated about the fitness peak, but the
mean fitness is not affected.

Setting j = 1 givs Cx = (U/s) Co. We may obtain an
approximate solution for higher j if we suppose that
s <̂  1 and U <^1, and work to first order in these
small parameters. In this case

(2.6)

and using the normalization condition we have

C0 = l-U/s (U^s). (2.7)

This is the same as the single locus result except that
u has been replaced by the whole genome mutation
rate U. The error threshold is thus at U = s in the
master sequence landscape.

Another simple landscape is the multiplicative
fitness landscape. Each mutant gene reduces the
fitness of the sequence by a factor of 1—5 inde-

Thus the error threshold disappears altogether in this
limit and we simply have a gradual delocalization of
the population from the fitness peak as U is increased.
This solution has previously been given by Haigh
(1978).

3. Diploid models with multiplicative fitness
landscapes

In diploid models each locus may either be
homozygous for the optimal gene or heterozygous
optimal/mutant, or may have two mutant genes. We
will usually call this latter state 'homozygous' for
mutant genes, although it should be remembered that
the two mutants will usually be different since there
are very many possible mutant alleles. The concen-
tration of individuals withy loci which are homozygous
for mutant genes, and k loci which are heterozygous
optimal/mutant will be denoted Cjk. If there are L loci
then the number of loci which are homozygous for
optimal genes is L—j—k. The concentrations are
normalized so that their sum is equal to 1.

In this section we consider models where the fitness
contributions from different loci are multiplicative.
Each homozygous mutation contributes a factor 1—5
to the fitness, and each heterozygous mutation
contributes a factor 1 — hs, where h is known as the
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dominance coefficient. The fitness of individuals of
type jk is

wjk = (1 — sy (1 — hs)*. (3.1)

This landscape has been studied for both finite and
infinite population sizes (Charlesworth et al. 1992,
1993). Here we will give a general solution for all
values of the number of loci L. We consider three
types of breeding system.

(i) Parthenogen

By a parthenogen we mean a diploid organism
reproducing asexually by straightforward copying of
the whole of its diploid genome. More specifically, this
is known as apomixis (Maynard Smith, 1978). The
offspring are therefore identical to the parent apart
from any new mutations which have occurred. By
analogy with equation (2.5) we may write

Cjk(t +1) = -1 S S* Miknm wnm CnJt), (3.2)
" n-0 m-0

analytical solution. One way to do this is to assume a
solution of the form

where

(3.3)

and M]knm is the probability that an individual of type
nm mutates to an individual of type jk.

mjknm — u \ i u)

m \ / L — n—m

-n)\j-i

-2u)L-)-k2u)

(3-4)

To arrive at 7 homozygous mutations it is necessary to
make j—n mutations from among the m sites which
were initially heterozygous. To make up the number
of heterozygous sites to k requires j—n + k — m
mutations from among the L — n—m sites which were
originally homozygous for the optimal allele. These
mutations occur at rate 2M since there are two possible
genes at which mutation may occur. It has been
assumed that simultaneous mutations of the two
genes at the same locus do not occur. In other words
if more than one mutation occurs in a generation then
they will occur at different loci. This is entirely
reasonable if the number of loci is large. To include
the possibility of simultaneous mutations at a single
locus would require the introduction of an extra
summation variable in (3.4) and would complicate the
subsequent analysis. Also we are interested principally
in the limit u <^\ and s <̂  1 as before. The additional
terms would be of higher order in u and would not
contribute to the answer in this limit.

Numerical iteration of equation (3.2) will lead to
the stationary distribution for any choice of wjk. For
the multiplicative landscape it is possible to find an

C}k j\k\(L-j-k)\'
(3.5)

Here a is the fraction of loci which are homozygous
for mutations, b is the fraction of heterozygous loci,
and c = 1 — a — b is the fraction of homozygous
optimal loci. The factorials are simply the com-
binatorial factor appropriate to random distribution
of mutations throughout the sequence. Substitution
of this into (3.2) with the multiplicative landscape
(3.1) leads to a solution for a, b and c. In the usual
limit of u 4, 1 and s -4 1 everything becomes a function
of u/s as before and we find

a =

c =

2{u/sf 2u/s{\-2u/s)
h + (l-2h)u/s' ~ h + (\-2h)u/s'

(h-u/s){\-2u/s)
h + {\-2h)u/s '

(3.6)

The fact that a consistent solution can be found by the
substitution procedure shows that (3.5) was the correct
form of solution to begin with. The fractions a, b and
c do not depend on L, i.e. the fraction of mutations at
each site in the L loci model is the same as for a single
locus model (L = 1). Thus we have proved that the
different loci are acting independently. Recall that the
same thing happened for the haploid model in
equation (2.10). This is a special property of the
multiplicative landscape, and it is not true for the
epistatic landscapes considered below.

It is worth examining this solution in more detail,
since it has several features which can be interpreted in
terms of the error threshold idea. If u/s < h and u/s
< £ then a, b and c are all non-zero. We will call this
range of the parameter space phase /. In phase / all the
different genotypes occur with a non-zero probability.
As the mutation rate is increased the fraction of
homozygous optimal loci c first becomes zero when
u/s = I or when u/s = h, depending on whether h is
greater than or less than \. If h ̂  \ then there is an
error threshold at u/s = \. For u/s > § we have a = 1,
CL0 = 1, and all other concentrations are zero. We will
call this phase //. In phase / / only mutant genes
remain. If h < \, on the other hand, c becomes equal
to zero when u/s = h, and at this point b is still non-
zero. Thus for u/s > h, another form of trial solution
is appropriate (phase / / / ) .

L\
(3.7)

It is found by substitution into (3.2) that a =
(u/s)/(\ —h), and b = 1 — a. In phase / / / there is at
least one mutant gene at every locus, i.e. Cjk = 0 if k
=1= L—j, but there is still a non-zero fraction of the
optimal alleles. The highest fitness genotype which
remains is heterozygous at all loci. This solution
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applies in the range h < u/s <\—h, since when u/s =
1-Awe have a = 1, and we enter phase //. There are
thus two error thresholds in this model when h < \.
All the transitions are continuous (second order). The
fraction of optimal alleles is b/2 + c. This is shown as
a function of u/s in figure 1 for various values of h.

The mean fitness of the population is

W = (1 - ufL x (1 - 2u)L, phase /,

W={\-sf, phase//,

W=(\-u)L{\-hs)L, phase///. (3.8)

The result for phase / is independent of the fitness
landscape for the same reasons as in the haploid case.
If j = k = 0 in (3.2) and C00 #= 0 then we have
immediately that W = Moooo. A similar argument in
phase / / / shows that W is only dependent on the
totally heterozygous fitness w0L and not on the rest of
the landscape.

(ii) Sexual

We will now consider a sexual population with random
mating, and free recombination between loci. In
addition to the concentrations Cjk defined before, it
will be necessary to calculate the gamete concen-
trations Xn, defined as the fraction of haploid gametes
having n mutant and L — n optimal genes. It is
necessary to account for three processes occurring in
the reproductive cycle: the random fusion of gametes
to give a new diploid population, the production of
new gametes by individuals according to their fitnesses,
and the possibility of mutations occurring. The general
equations for the stationary distribution are

(3.9)

(3.10)

(3.11)

" ] k

wjk g{m Jk)

Equation (3.9) represents the random fusion of
gametes. P(Jk;nm) is the probability that two gametes
with n and m randomly positioned mutations fuse to
give an individual of type jk. Combinatorial arguments
give

n\(L-n

P{jk;nm) =

L-n

k+j-n

UJ \k + 2j-n)

(3.12)

Note that only three of the four variables jk n and m
are independent, since they are related by k =
n + m — 2j, hence the two alternative forms given in
(3.12). In equation (3.10) X'm is the fraction of gametes
of type m which would be formed if there were no
mutation, whilst Xn in (3.11) is the gamete con-
centration after taking account of mutations. In (3.10)

g{m ;jk) is the probability that a gamete produced by
a type jk individual will be of type m.

g(m;jk) =
1

m (3.13)

The mutation matrix Mnm in (3.11) is the usual
haploid mutation matrix of equation (2.3). It is
simpler to take account of mutation after the gamete
production in equations (3.10) and (3.11). This does
not mean that events happened in that order. The
mutation could have occurred in the line of cells which
eventually divided to form the gamete. This does not
change the equations. It would be possible to combine
(3.9), (3.10) and (3.11) into one single equation for
Cjk. We have not done this since the result is very
unwieldy and the meaning of the different terms is less
easy to see.

Let us assume that there is a fraction x of optimal
alleles and a fraction y = l—x of mutant alleles at
each locus, and that the concentrations at each locus
are independent (or in other words linkage dis-
equilibrium is very weak). This implies that

(3.14)

If a solution of this form can be found which satisfies
the equations then this justifies the assumption of
independent loci, and shows that linkage dis-
equilibrium can be neglected in the stationary state.
Substituting into (3.9) gives the diploid concentrations.

/" _ .
ik j\k\{L-j-k)V

(3.15)

This is of exactly the same form as (3.5) with a = y2,
b = 2xy, c = x*. These proportions are just the
Hardy-Weinberg equilibrium values in single locus
models. If we now substitute this into (3.10) and (3.11)
we find that the Xn which emerges is indeed of the
form (3.14) provided y satisfies equation

y(l—2n) + hy — u/s = 0. (3-16)

It has again been assumed that u <̂  1 and s <? 1. The
general solution is of course

+ 4(1 -2/i) u/s]
(3.17)

and y = 2u/s in the particular case of h = \. The error
threshold occurs when y = 1, and from (3.16) it can be
seen that this will occur when u/s — 1 — h. However, if
h>\ there is potentially a problem with (3.17) since
the term in the square root becomes negative if u/s >
h2/4(2h-\). As long as h < § then the error threshold
occurs before we reach this point, in other words x
decreases smoothly with increasing u/s and goes to
zero at u/s = 1 — h. On the other hand if h > § then a
problem occurs at u/s = h2/4(2h — l). In fact x goes
discontinuously to zero at this value. There is always
a trivial solution with x = 0, and this must be the

5-2
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Fig. 1. The fraction x of optimal alleles as a function of
u/s for the parthenogenetic population in the single locus
problem (or equivalently in the multi-locus problem with
multiplicative fitnesses). The curves for h < \ show a kink
at the first error threshold u/s = h, and decrease to zero
at the second threshold, u/s = 1 — h. The curves for h ^ \
have a single threshold at u/s = \: ( • ) , h = 0 1 ; ( • ) , h =
0-25; (A), h = 0-5; (O), h = 0-75; (D), h = 10.

Fig. 2. As Fig. 1, but for a sexual population. The curves
for h < f decrease continuously to zero at u/s = 1 — h.
The curves for h > § jump discontinuously to zero at u/s
= h2/4(2h—l). This is shown by a dotted line. Symbols
as in Fig. 1.

correct solution when (3.17) becomes a complex
number. Thus there is a discontinuous error threshold
(first order phase transition) in this model if h > §.
There is a clear difference between the sexual and
parthenogenetic cases. Figure 2 shows the fraction x
of optimal alleles as a function of u/s in the sexual
population, which may be compared with Fig. 1 for
the parthenogen.

The mean fitness of the population is (1 —u—hsy)L

which is to be compared with (1 — 2u)L for the
parthenogen. Thus sexual reproduction may lead
either to an advantage or a disadvantage in terms of
the mean fitness, according to the values of h and u/s.
The parthenogenetic population has a higher mean
fitness if u < hsy, which is true if h > \ and u/s < \.
The sexual population has higher mean fitness if h <
\ and u/s < 1 — h. If u/s > \ and h> \—u/s then both

h 0 5

Fig. 3. Regions of the parameter space h versus u/s in
which the parthenogen has higher mean fitness (P) or the
sexual has higher mean fitness (S). In the region E both
populations have passed the error threshold and therefore
have equal fitnesses. Fitnesses are also equal along the
line h = \ and when u/s <g 1. This diagram applies for the
single locus problem and the multi-locus problem with
multiplicative fitnesses.

populations have passed the error threshold and
therefore have equal fitness W = (1 — s)L. The ranges
of relative advantage and disadvantage for the sexual
and parthenogen are shown in Fig. 3. The relative
difference in these two fitnesses may be considerable if
L is large and u is of similar magnitude to s.

Although the results for sexual and parthenogen
are in general different, there are certain special cases
when they become equal. If h = \ then the concen-
trations and the mean fitnesses are identical for the
two cases. Also in the limit u <£ s then y « u/sh from
equation (3.16), and therefore Wx(\-2u)L. The
mean fitnesses are thus identical in this limit.

The solution for y in the multiplicative landscape is
the same as in the standard treatment of single locus
models. Equation (3.16) appears in Crow & Kimura
(1970) (section 6.2) and there is an equivalent
treatment in Wright (1969) (chapter 3). They were
both mainly interested in the limit u <^ s. In taking this
limit all the interesting behaviour of the model is lost.
Also it leads to the conclusion that mean fitness is
independent of the reproduction method, and we
stress that this is not true even for single locus models,
although the relative difference of the two fitnesses is
extremely small for L = 1 (it is of order u).

Figure 4 summarizes the phase behaviour for the
parthenogen, and for the sexual population. The two
cases are completely different. There is no equivalent
of phase /// for the sexual case. Figures 5 and 6 show
the shape of the stationary mutant distribution for the
multiplicative landscape with L = 12, and h = 0-25 at
several different values of u/s. The horizontal axis
shows the numnber j of homozygous mutations and
the vertical axis shows the number k of heterozygous
mutations. The grey-scale indicates the concentration,
with darker shades indicating higher concentrations.
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(a) Parthenogen

69

h 0-5

(b) Sexual

Fig. 4. Phase diagrams for the multi-locus problem with multiplicative fitnesses for (a) parthenogenic and (b) sexual
populations. In phase / all the genotypes are present with non-zero concentration. In phase / / only the completely
homozygous mutant genotype is present. In phase /// (which occurs only for the parthenogen) there is at least one
mutant gene at every locus, and the best surviving genotype is heterozygous at every locus. Dotted lines indicate
continuous (second order) transitions, and the solid line in (b) is a discontinuous (first order) transition.

Parthenogen, h = 0 25

12

- :

uls = 0005 1ds-= 003

u/s = 0-1

_
Lmm•

h uls = 0-3

\

if

12 12

Fig. 5. Representation of the stationary quasi-species distribution for the parthenogen with 12 loci and multiplicative
fitnesses. Four different values of u/s are shown with h = 0-25. The number of homozygous mutations j is shown on the
horizontal axis, and the number of heterozygous mutations k is shown on the vertical axis. The element of the Cjk
matrix which is largest has been coloured black, and other elements of the matrix have been coloured with one of 10
different shades of grey according to their concentration relative to the element with the highest concentration. For small
u/s the population is localized close to the origin. As u/s increases the number of heterozygous mutations increases and
the quasispecies spreads vertically on the diagram. When u/s = 0-3 the population is in phase /// and the distribution lies
entirely along the diagonal of the matrix.
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Sexual, h = 0-25

12

0

uls = 0 0 05

gj_

Ms = 003

11

12

0

I

1

1
I

•
1

-

Ufa = 3-1 1
KfflflS
sags

•I

1 1 1 1 1
1 1 1 1 1 1

=3-3

12 12

Fig. 6. Representation of the quasi-species distribution for the sexual population which may be compared to the
parthenogen in Fig. 5. The figures are very similar for small u/s but become increasingly different for larger u/s. There is
no phase /// in the sexual case.

The highest concentration element of the matrix has
been coloured black, and the other elements have been
assigned to one of 10 different grey levels according to
their concentration relative to the highest concen-
tration. In the case of the parthenogen we see that for
small mutation rates (see figure 5 with u/s = 0005)
the distribution is localized close to the origin. As the
mutation rate increases the distribution begins to
move away from the origin, mostly in the vertical
direction (figure 5 with u/s = 003). This shows that
for fairly small mutation rates most of the mutations
occur in heterozygous form. Further increase of the
mutation rate leads to a significant number of
homozygous mutations as well {u/s = 01). Since h =
0-25 in this example the transition to phase /// occurs
at u/s = 0-25. Only elements on the diagonal of the
matrix (J+k = L) are non-zero in this phase. The
figure with u/s = 0-3 shows the stationary distribution
along the diagonal elements. Further increase of u/s
causes the distribution to move towards the bottom
right hand corner (J = L,k = 0), and phase //will be
reached at u/s = 075 in this example. The sexual case

is illustrated in figure 6 for the same parameter values
as for the parthenogen in figure 5. Figures 5 and 6 are
very similar for small u/s but become different for
larger u/s since there is no phase ///in the sexual case.

The centre of the stationary distribution is at the
point (O>, <&» within the triangular diagrams, where
<y> and <fc> are the mean values of the numbers of
mutations calculated from the distributions (3.5) and
(3.7). In phase / and in phase / / / </>/£ = a, and
<&>/L = b. Figure 7 shows the path traced by the
centre of the quasispecies for the parthenogen as the
mutation rate increases. The path is different for
different values of h. In each case the centre of the
distribution leaves the origin in a vertical direction,
indicating that only heterozygous mutations occur for
small u/s. All the paths eventually end up in the
bottom right hand corner for sufficiently large u/s.
The shape of these paths is independent of L.

In the sexual case the centre of the quasi-species is
at O>/£ = / and <&>/£ = 2y(\ -y). The path traced
out by the centre of the quasi-species is determined by
the parameter y, and its shape is therefore independent
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Fig. 7. Plotting <fc>/L versus <7>/L shows the path
traced out by the centre of the quasispecies as the
mutation rate is increased. The paths are shown for the
parthenogen in the multiplicative fitness landscape for
several values of h (symbols as in Fig. 1). All paths leave
the origin in a vertical direction, indicating that only
heterozygous mutations occur for u/s <? 1. In phase III
the paths lie along the diagonal. In the sexual case the
quasispecies follows the path indicated by triangles for all
values of h, but the position on this path for a given
value of u/s depends on h.

of h. It is the same path as shown in Fig. 7 for the
parthenogen with h = \. For a given value of u/s the
position of the quasi-species on this path does depend
on h, however.

(iii) Selfing

In this case the parent produces gametes of both sexes
which subsequently fuse to give a diploid offspring.
The offspring is descended from only one parent but
is not identical to its parent. It is convenient to define
C'jk as the concentrations of the offspring before
accounting for mutations, and Cjk as the concen-
trations after mutation. Again we assume free re-
combination. The resulting equations are

W ik (3.18)

(3.19)

The mutation matrix Mjknm is as in equation (3.4).
Snmjk is the probability that an individual of type jk
produces an offspring of type nm by selfing, not
accounting for mutations. The heterozygous loci in
the parent segregate in the ratio 5:5:5, therefore:

it!

71

Once again the loci may be shown to be independent.
The fraction of loci homozygous for the mutation is
u/s, and the fraction homozygous for the optimal
alleles is 1 — u/s. Heterozygotes have negligible con-
centration if u <̂  1 and s <̂  1. The result is

(3.21)

which can be checked by substitution into (3.18) and
(3.19). The interpretation of this is that heterozygotes
are being formed at rate 2w from the optimal
homozygotes, but the heterozygotes segregate rapidly
to give the two types of homozygote in equal
concentration. There is thus a net mutation rate of u
from the homozygous optimal genotype to the
homozygous mutant. The solution (3.21) is inde-
pendent of/;. The error threshold is at u = s, which is
a larger value than for either of the other two
reproductive systems. The mean fitness is W =
(1 — u)L. This is greater than either the sexual or the
parthenogen over the whole of the range of h and u/s.
It is the fact that selfing eliminates the heterozygotes
which leads to a higher fitness in this type of fitness
landscape. We have assumed that the fitness of the
heterozygote is intermediate between the fitnesses of
the two homozygotes. If the heterozygote had an
advantage over both types of homozygote then selfing
would clearly lead to a lower fitness than sexual
reproduction and parthenogenesis precisely because it
eliminates the heterozygotes. We will not consider
models of this type here.

(iv) The limit L$> 1

The results of sections (i) (ii) and (iii) are valid for
general L, and therefore apply if L -> 00 with fixed u.
However, for large L it is more natural to consider the
overall mutation rate per genome U instead of the
individual gene mutation rate u. For diploid models U
= 2uL. If we take the limit L -> 00 with U fixed, then
in the case of the parthenogen we obtain from (3.5)

XU/hsY
k\

W=exp(-U). (3.22)

k+j-n-m

(3.20)

For the sexual case, taking the limit of (3.15) gives
exactly the same result. Thus in this special limit the
sexual and parthenogen have exactly the same
stationary distribution and mean fitness. Only hetero-
zygous mutations occur in this limit (Cjk = 0 if j 4= 0).
The error thresholds have disappeared in this limit,
just as they did for the haploid model in (2.11). Most
previous work on multi-locus models has assumed
this limit from the outset (Kimura & Maruyama,
1966; Kondrashov, 1982; Charlesworth, 1990), hence
the general understanding that fitness does not depend
on the reproductive method in multiplicative land-
scapes. In biological terms this limit is probably fairly
reasonable since the per gene mutation rates u are

https://doi.org/10.1017/S0016672300032092 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300032092


Paul G. Higgs 72

exceedingly small, even if the per genome rates U are
sometimes appreciable (see for example Houle et al.
1992). However, in taking the L g> 1 limit and dealing
with U/s we are implicitly assuming that u/s -4 1, and
in view of the evidence that some mutations may be
very nearly neutral we should be careful of making
this assumption.

As a final point, if we take the same limit for the
selfing population, we obtain from (3.21)

^ W = exp(-U/2).
J' (3.23)

This is entirely different from (3.22) since only
homozygotes are involved, instead of only hetero-
zygotes. The fitness in this case may be substantially
higher than for the sexual and the parethenogen if U
is reasonably large.

In summary, it has been shown in Section 3 that
even for the simplest possible diploid model with a
multiplicative fitness landscape the mean fitness of the
population depends on the breeding system. This is
true even for a single locus, since we may just put L
= 1 into the above formulae. Selfing gives an
advantage over both sexual reproduction and par-
thenogenesis for all values of h and of u/s in this
model. Sexual reproduction may be either advan-
tageous or disadvantageous relative to partheno-
genesis, depending on the parameter values.

4. Diploid models with epistatic interactions

Genes may interact with each other in such a way that
the fitness contribution of any one gene depends on
the other genes which are present in the sequence, i.e.
the fitness contributions from the different loci are not
multiplicative. A situation where the disadvantageous
effect of a new mutant gene increases with the number
of mutations already present is called synergistic
epistasis, whilst a situation where the disadvantageous
effect diminishes with the number of mutations already
present is called diminishing epistasis. Consider a
series of fitness peaks governed by the parameter a,
such that the fitness of an individual with n mutant
genes is

w{ri) = exp( — sna). (4.1)

If a > 1 then the fitness decreases more rapidly than
exponentially, and the interactions are of synergistic
form. If a < 1 then the interactions are of diminishing
form. If a = 1 then (4.1) is a special case of the
multiplicative landscape already considered above.
Several approximate solutions and numerical solu-
tions have been given for landscapes very similar to
this (Kimura & Maruyama, 1966; Kondrashov, 1982;
Charlesworth, 1990). We will obtain analytical solu-
tions as far as possible, and only use numerical
solutions for verification. We will establish in what

cases the previous approximate solutions are valid. In
this section we will deal only with the large L limit
where U is the appropriate variable for the mutation
rate. In this case only heterozygous mutations appear
for both the sexual and parthenogenetic populations,
and therefore w0lc = w(k) in terms of the previous
notation.

(i) Parthenogen

The stationary distribution satisfies the equation

1 * JJk-m
WrtJ. rexp(-C/)exp(-*OC0m. (4.2)

The equation for k = 0 gives W = exp ( — U) providing
Coo + 0, which shows once again that £Fis independent
of the fitness landscape for the parthenogen. Working
only to first order in s and U we may obtain a
convenient closed form approximation for the
stationary distribution valid for s <! 1 and U <? 1. In
this limit exp( — sma) « 1— sma. Setting k = 1 gives
Col = (U/s) Coo, and equations for the other k values
give

(4.3)

and CO0 can then be obtained using the normalization
condition. Since the sum

converges for all positive values of a there is no error
threshold with this type of landscape, and there is a
finite concentration Coo for all finite U/s. If a = 1 the
different loci are independent and therefore (4.3) is a
Poisson distribution as in (3.22). For other values of
a the result (4.3) implies that there are correlations
between the positions of mutant genes at different
loci. The fraction of mutant genes is not the same as
for the single locus problem, as it was for multiplicative
landscapes.

Charlesworth (1990) has considered quadratic land-
scapes (a = 2) in detail and finds that the stationary
distribution can be approximated by a Gaussian
distribution. Approximate analytical expressions for
the mean and variance can be found. The method
appears to give a good approximation over a wide
range of parameter values; however there seems to be
no way of generalizing this to non-quadratic land-
scapes. The approximation of (4.3) is only accurate at
small U and small s, but is applicable for all values of

a.

(ii) Sexual

Kimura & Maruyama, 1966, studied quadratic land-
scapes (a = 2) with sexual populations, and obtained
an approximate analytical solution. They assumed
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that the stationary distribution was a Poisson dis-
tribution with mean A and then found an approximate
value for A. The result was found to be reasonably
close to the exact numerical solutions. This result is
unsatisfactory, however, because no proof was given
that the distributin was a Poisson distribution, and no
suggestion was given as to how the approximation
might be improved. In fact we can show that the exact
solution is not a Poisson distribution in general, but
that it tends to a Poisson distribution in the limit s <̂
1 and U <̂  1. Here we will obtain the solution to the
quadratic landscape by more rigorous means, then we
will show how the approximate treatment of Kimura
& Maruyama (1966) can be used for general values of
a.

We will try a solution for the gamete concentrations
of the form

(4.4)

It will be assumed that e is a small parameter of order
s, and work as usual only to first order in U and s. If
e were zero then this would be a Poisson distribution.
It will be shown that the first correction to the Poisson
distribution is in fact the term en2. The constant
required to normalize the distribution is A =
1 -e(A2/4 +A/2). From equation (3.12) with L > 1 we
find that P(0k;nm) = 1 if n + m = k and is otherwise
zero. Therefore from (3.9)

( 4 5 )

+ .... (4.6)

The appropriate form for the mutation matrix in
(3.11) is

= exp(-C//2) (u/2y-m

(n-m)\ '

since the mutation rate per gamete is uL = U/2. From
(3.10) and (3.11) a result for Xn can be found which
has to be compared to (4.4). A solution of this form is
possible only if e = 2s, and A is the root of

2A2 + A-U/s = 0. (4.7)

This is the same equation as was found by Kimura &
Maruyama, 1966 (equation 1.10 of their paper). The
advantage of the present method is that we have
proved that the trial solution (4.4) satisfies the
equations (3.9)—(3.11), whereas the previous approxi-
mate method involved no proof. The approximate
method did not include the correction term en2 in
(4.4), and we note that if this term is not included then
it is impossible to find a consistent solution for A by
the substitution method above. The present method
also shows that the approximation is valid if U <! 1

and s <&\, but U/s may be either large or small. The
approximation could be improved by including higher
order correction terms if it were wished. If we compare
the mean fitness obtained in (3.6) with the parthenogen
result W = e'u x 1 — U, then we find that the sexual
has a higher fitness than the parthenogen in the
quadratic landscape for all values of U/s.

The physical meaning of A is the mean number of
mutations per diploid genome. This number may be
large if U/s is large; however we have already implicitly
assumed when we took the limit L > 1 that the
fraction of mutations per locus, A/L, is small. Because
there is free recombination between the different
alleles in the sexual case the mutant genes are
constantly reshuffled and the stationary distribution is
kept close to a Poisson distribution. This is likely to
happen whatever the shape of the fitness peak. In the
parthenogen there is no such reshuffling and the
stationary distribution (3.3) is not close to a Poisson
in the quadratic landscape. The fact that both sexual
and parthenogen should give a Poisson distribution
solution in the multiplicative landscape (equation
(3.22)) shows that the multiplicative landscape is by
no means a general case.

Having established that the method of Kimura &
Maruyama gives a good approximation in the
quadratic landscape for small U and small s we will
now use a generalized form of their argument for the
landscape with general a. Thus it will be assumed that

A*
COi:~exp(-A) —

for some A which is to be determined. The mean
fitness is therefore

'kl

- A ) ^ . (4.8)

The strength of selection against a new mutant gene
depends on the number of mutations already present.
Kimura & Maruyama define the 'mean selection
coefficient' s* by

s* = -^

(4.9)

The result for s* has only been given up to first order
in s since this argument turns out only to be valid in
that limit anyway. In the stationary state mutation
and selection pressures must balance, therefore U =
s*A. This gives a closed equation for A.

k\
(4.10)
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Fig. 8. Mean number of mutations per genome as a
function of U/s in the quadratic landscape. Solid line
shows analytical theory, which is exact for small U and
small s. Symbols show numerically calculated values:
(O), 5 = 0-1; ( • ) , s = 0-01; +,s = 0001.

30

Fig. 9. Mean fitness of sexual population as a function of
the exponent a which controls the epistatic interactions.
Solid line shows theory for small U and small 5. Symbols
show numerical values for different values of s (as in Fig.
8). For each curve U/s = 2. For parthenogenic
populations (In W)/U = — 1 for all a, (dotted line). Sexual
reproduction leads to a higher fitness for a. > 1.

When a = 2 this is the same as (4.7). If a is an integer
this gives a polynomial for A of order a. A numerical
solution for A is possible from (4.10) for any value of
a (even non-integers).

Figures 8 and 9 show numerical solutions for the
stationary distribution which are compared to the
analytical approximations. Figure 8 gives the mean
number of mutations per genome as a function of U/s
in the quadratic landscape. For small U and small s
this converges to the value A which is the solution of
(4.7). Figure 9 shows the way the mean fitness varies

as the shape of the landscape is changed. For the
parthenogen (In W)/U = — 1 in all cases. The curves
for the sexual population are higher than — 1 for a >
1 indicating that sexual reproduction leads to an
advantage when there is synergistic epistasis, and a
disadvantage when there is diminishing epistasis (cf.
Kondrashov, 1982). The solid line is the theoretical
fitness from (4.8) with the value of A obtained from
(4.10). The theory appears to be exact in the limit of
small U and small s for all values of a.

Another type of approximate analytical solution
has been given by Charles worth (1990) for the
quadratic landscape with sexual reproduction. This
involves replacing the discrete distribution VOk by a
Gaussian distribution and treating the number of
mutations A: as a continuous variable. This method
appears to give a rather good approximation in the
examples given by Charlesworth, although numerical
analysis is required to solve the equations for the
mean and variance of the distribution. The method
given above is exact in the limit considered (small U
and small s) whereas the Gaussian method is at best
an approximation. Also it is not possible to generalize
the Gaussian method to non-quadratic landscapes.

(iii) Selfing

We will now look at a population reproducing by
selfing in the epistatic landscape of (4.1). For an
individual with k heterozygous and j homozygous
mutations the total number of mutant genes is 2j+k,
and the fitness is wjk = exp(—s(2j+k)a). Writing out
equations (3.15) and (3.16) explicitly in this case gives

in oo

— — v y
*' j-t) k-n+m-j

k\ exp(-s(2j+ky)C]k

(n-j)\m\(k+j-n-m)\ 2mAk~m

k yk-m

, (4.11)

(4.12)

The limit L P 1 has been taken, which greatly
simplifies the mutation matrix in (3.16) and (3.4). In
(3.4) mutations at previously homozygous optimal
loci occur at rate 2w, and these are accompanied by a
factor of L from the binomial coefficients when L >
1. Hence U = 2uL appears in (4.12). The mutations
occurring at already heterozygous loci occur at rate u
in (3.4), but these are negligible in the large L limit.
Thus for the selfing population new heterozygous loci
are created by mutation (4.12) and these segregate to
produce homozygous loci in (4.11). The rate of
formation of homozygous mutant loci by mutation
alone is negligible if L > 1.

We have not found a general analytical solution of
these equations, however an approximation is possible
if U 4 1 and s <g 1. In this case the segregation rate is
much quicker than the mutation rate, and the result is
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to give an effective mutation rate of U/2 from
homozygous optimal loci to homozygous mutant loci.
The fraction of heterozygous loci is negligible. Thus
C)k = 0 if k 4= 0, and (4.11) and (4.12) can be combined
to give

Cm = 4 2 \ 7 r . exp ( - U/2) exp (-sQ.jf) Cn0.
^o <J-n)\

(4.13)

This equation is very similar to (4.2) and can be solved
in the same way.

u V c,00

GO*
(4.14)

This implies that W = exp (— U/2) independent of the
fitness landscape. We have verified numerically that
the distribution converges to (4.14) for small s and
small U for several values of a. The mean fitness was
measured numerically, together with the fraction of
the population containing at least one heterozygous
locus (i.e. the sum of the concentrations with k =# 0).
With a = 2 it was found that with j = 0-001 and U =
0002 only 0-4% of the population contained hetero-
zygous loci and (In W)/U = —0-501, whilst for s =
001 and U = 0-02 these values were 4% and -0-51.
These values are very close to the theoretical limit. For
5 = 0-1 and U = 02 there was a substantial difference
from the limit: (lnW)/U = -0-6 and 30% of the
population contained at least one heterozygous locus.
If the mutation rate is too large then segregation does
not remove the heterozygous loci quickly enough, and
the approximation (4.13) is not valid. For each of
these three sets of s and U values the mean fitness was
measured as a function of a, as was done in Figure 9
for the sexual case. With selfing the mean fitnesses
were almost constant over the range 0-5 ^ a ^ 3-0.
This is in contrast to the sexual case where the fitness
varies strongly with a. For these values of s and U the
mean fitness for the selfing population was found to
be higher than both the sexual and the parthenogen
over the whole of this range of a. We also looked at
the numerical solutions in the quadratic landscape
with larger values of U where the analytical approxi-
mations are not valid. For a moderate degree of
selection (s = 005) numerical solutions were obtained
for U varying between 001 and 10. It was found that
the selfing population had a higher fitness than the
sexual population over the whole of this range, and
that both were higher than the value for the
parthenogen (W = e~u).

5. Discussion

We have seen that error thresholds can arise in two
ways. These are seen in the two examples of the
multiplicative landscape and the master sequence
landscape discussed in Section 2. The multiplicative
landscape behaves like a single locus model. There is

an error threshold when u/s ~ 1 (the precise value
depends on h for diploid models). In this case the
single gene mutation rate becomes so high that the
optimal allele at each locus can no longer be
maintained by selection. In the master sequence
landscape there is an error threshold when U/s ~ 1.
In this case the overall genome mutation rate becomes
too high, and the fittest genome sequence can no
longer be maintained by selection. This second type of
threshold can be seen in models where we take the L
> 1 limit and work in terms of U, whereas the first
type requires finite L and analysis in terms of u. The
presence or absence of the second type of threshold
depends on the shape of the fitness peak for large
numbers of mutations. If the fitness continues to
decrease smoothly as we move further from the
optimal sequence (as with the function w(n) = exp
(—sn*)) then there is no threshold. If the fitness
remains constant when the number of mutations is
large (as in the master sequence landscape) then there
is a threshold. There is a clear physical analogy: a
particle in an infinitely deep potential well is always
bound, but a particle in a well of finite depth may be
either bound or free depending on its energy. It
follows that if the landscape decreases in fitness up to
a certain number of mutations n0 and is thereafter
constant then there will still be a threshold whatever
the value of n0. In more realistic landscapes, of course,
if we move too far from the original fitness peak we
will encounter other peaks. We must then ask how
likely it is for the population to shift from one peak to
another (Barton & Rouhani, 1987). Stationary distri-
butions may be of little relevance in complex
landscapes, since equilibrium may never be reached.

The first type of threshold requires single gene
mutation rate of order s. Rates per gene are known to
be very small in cases where they can be measured
(Gillespie, 1991; Houle et al. 1992), and it may be that
the error threshold would not be reached in real
organisms except for alleles which are almost exactly
neutral. The second type of threshold is more likely to
occur naturally, since per genome mutation rates may
be quite large. Since this type of error threshold
depends crucially on the landscape it would be of
interest to know about the shape of the fitness
landscape for real gene systems.

Whether or not there is an error threshold may be
of more interest to mathematicians than biologists.
The calculation of the mean fitness of the population
is of direct relevance to biology, however, since it
relates to the question of the relative advantages and
disadvantages of different reproductive methods, and
the reason for the evolution of sexual reproduction.
The topic is very broad and we can only make a few
very brief points here. For more details see Maynard
Smith, 1978; Lewis, 1987; Stearns, 1987; Kondrashov,
1988; Hamilton et al. 1990; Charlesworth, 1990.

The basic problem is the two-fold 'cost of males'
associated with sexual reproduction. An all female
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parthenogenetic strain arising in a sexual population
should in principle reproduce twice as fast as the
sexual individuals, half of which are male. This means
that sexual strains would die out very rapidly if there
were not some other large advantage associated with
sex. Even though the realised cost of sex may be less
than a factor of two in some cases (Lewis, 1987), the
cost is probably substantial in many cases, and there
must therefore be a rather large advantage of sex to
counter this cost. Many suggestions have been made
for the origin of this advantage.

It has been shown above that even in the simplest
possible fitness landscapes the mean fitness of the
population in the stationary state depends on the
reproductive system. Kondrashov (1988) has argued
that this is a significant factor in the evolution of
sexual reproduction. It has been shown, and we have
confirmed above, that when epistatic interactions are
of synergistic form (a > 1 in our model) there is an
advantage of sexual reproduction relative to par-
thenogenesis. We have also shown that even in a
multiplicative landscape there may be significant
differences in fitness between the two types of
population. The quantity \ — W measures the differ-
ence between the mean fitness and the maximum
possible fitness, and is known as the mutational load
(Kimura & Maruyama, 1966). When the mutation
rate U is small the mutational load is small and the
populations have mean fitnesses close to 1 irrespective
of the reproductive system. For larger U the muta-
tional load will be higher and the fitnesses of sexual
and parthenogen may differ by a factor of order 2.
Thus in principle models of this type can explain the
advantage of sexual reproductive relative to par-
thenogenesis in situations where the mutational load
is high. Kondrashov (1985) has also shown that sex
can also given an advantage to selfing for the case of
truncation selection (which is similar to a >̂ 1 in our
models). On the contrary, for all the examples
investigated numerically in section 4(iii) it was found
that selfing gave the highest fitness of any of the three
reproductive systems considered, although we have by
no means attempted a full exploration of all the
parameter space. In the models discussed here the
heterozygote has a fitness intermediate between the
two homozygotes. If the heterozygote had a fitness
higher than both the homozygotes then there would
be a clear disadvantage to selfing, since selfing removes
the heterozygotes.

A sexual organism has both haploid and diploid
stages in its life cycle. In principle the mutation rate is
twice as high in the diploid phase, and the mean fitness
in the stationary state should therefore be lower.
Kondrashov & Crow (1991) have noted that there is
a twofold cost of diploidy rather like the twofold cost
of sex, and have discussed the reasons why diploidy
may lead to an advantage, despite this cost.

A problem for the theory based on stationary
mutant distributions is that it applies only in the limit

of very large populations. For an asexual population
of finite size there is no stationary mutant distribution
because Muller's ratchet will operate, i.e. if the highest
fitness genotypes are lost due to random fluctuations
then there is no way to get them back again in the
absence of back mutations. The mean fitness of the
population thus continues to decrease indefinitely,
with a rate dependent on the population size. In
sexual populations the ratchet is countered by re-
combination even when there is no back mutation.
This gives a substantial advantage to sex. Occasionally
unfavourable mutations will become fixed in a finite
sexual population due to random drift. Thus there
may be a slow decrease in fitness for a sexual
population even if the ratchet does not occur. It may
be that to explain the advantage of sex we should not
think in terms of stationary fitness values, but rather
in terms of the rate of accumulation of mutations. In
diploid organisms the effect of recombination rate and
selfing rate on Muller's ratchet has been investigated
in a large number of simulations by Charlesworth et
al. 1992, 1993. Muller's ratchet in haploid organisms
has been studied by several authors: Haigh, 1978;
Nowak & Schuster, 1989; Stefan et al. 1993.

A further feature which may be important for the
evolution of sex is that the fitness of any given gene
sequence for a given species may change in time, either
because of changes in the environment or because of
the evolution of other species which interact with the
species in question. It has been argued that the
principal advantage of sex and recombination is to
allow rapid response to changing fitness landscapes.
One of the main features determining the fitness of a
species maybe its ability to resist predators, parasites
and disease-causing organisms (Hamilton et al. 1990).
These organisms are themselves evolving and are
likely to change in such a way as to increase their
ability to prey on (or to infect) the original species. Sex
and recombination are thought to provide a significant
advantage in situations of host/parasite or predator/
prey co-evolution (Hamilton et al. 1990; Stearns,
1987).

The models discussed above all have a single peak
landscape with an optimum fitness genotype sur-
rounded by lower fitness mutations. This is an extreme
oversimplification. It may be more realistic to think of
a rugged fitness landscape where there are many high
fitness gene combinations which are peaks and ridges
in the multi-dimensional sequence space. Evolution of
populations in rugged landscapes has much in
common with the statistical physics of disordered
systems and with other types of complex optimization
problems (Perelson & Kauffman, 1991). In fact, even
in flat fitness landscapes (neutral evolution) many
concepts of statistical physics, such as overlap distri-
butions of genome sequences within a population, can
be applied to problems of evolution (Derrida & Peliti,
1991; Higgs & Derrida, 1991, 1992). Whilst much is
known about stochastic properties of finite popu-
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lations evolving in neutral landscapes (Donnelly &
Tavare, 1987), very little is known about finite
populations in even the simplest non-neutral land-
scapes. More recently the behaviour of quasispecies
has been studied in rugged fitness landscapes with
many local optima (Tarazona, 1992), and in land-
scapes with fitnesses related directly to RNA sequences
(Fontana et al. 1989). RNA molecules have both
rugged fitness landscapes which determine their
evolution and rugged energy landscapes which de-
termine their folding behaviour (Bonhoeffer et al.
1993; Higgs, 1993; Huynen & Hogeweg, 1993;
Fontana et al. 1993). An important aim is to develop
a theory of evolution at the molecular level on realistic
landscapes such as these.

Returning to the models discussed in this paper, it
would appear that considerations of mean fitnesses in
the stationary distribution provide one possible
explanation for the usefulness of sex and recom-
bination, but that other factors such as fluctuations in
finite popuations and time dependence of the fitness
landscape also play a very important part. These other
factors are in general rather difficult to treat ana-
lytically, and any attempt to do so must rely on a full
understanding of the time-independent, infinite popu-
lation case, which we have studied in this paper.

sexual population has a higher fitness when a > 1.
This confirms previous theories that sexual repro-
duction is advantageous in cases of synergistic
epistasis. The mean fitness of a selfing population was
found to be higher than both the sexual and the
parthenogen over the range of parameter values
studied.

The fitnesses of the statinary distributions are one
factor which may explain the evolution of sexual
reproduction and its prevalence over other systems.
The stationary distribution may be of little import-
ance, however, unless the population is of an extremely
large size, since Muller's ratchet occurs in finite
populations. Also if the fitness landscape is changing
continuously then a stationary distribution may never
be reached. In view of these other factors it is unlikely
that the stationary distributions alone can explain the
observed prevalence of sexual reproduction. A
thorough understanding of the stationary case is
nevertheless required before a theory of more com-
plicated time-dependent, finite size population models
can be developed.

I wish to thank the Royal Society and the University of
Sheffield for my recent appointment as Sorby Research
Fellow.

6. Conclusions

The object of this paper has been to draw a link
between the quasi-species theory of molecular evol-
ution and multi-locus diploid models used in popu-
lation genetics. The ideas of the stationary mutant
distribution (or quasi-species) and the error threshold
are relevant in both cases. Sexual, Parthenogenetic,
and Selfing populations have been studied in several
types of landscape. Even in the simplest cases the
mean fitness of the population depends on the
reproductive system.

In the multiplicative landscape with fitness wjk =
(1 — s)1 (1 — hs)k we have given a solution for a general
model with L loci. Several types of solution are
possible which are separated by error thresholds. The
sexual may have a higher or lower fitness than the
parthenogen, depending on the values of h and u/s.
The two have equal fitnesses in the limit u tends to
zero and when h = \. Selfing leads to a higher mean
fitness than either sexual reproduction or partheno-
genesis.

A fitness landscape with epistatic interactions has
also been studied with wjk = exp(—s(2j+k)a). For the
sexual population the stationary distribution is close
to a Poisson distribution for U -4 1 and s <̂  1. This
confirms that a previous approximation of Kimura &
Maruyama (1966) is in fact exact in the small U limit,
but is not valid for general U. We have also extended
the approximate treatment to general a values, and
shown that it is exact for U <^\. Comparison of the
mean fitness of sexual and parthenogen shows that the
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