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LENGTH AND AREA INEQUALITIES
FOR THE DERIVATIVE OF A

BOUNDED AND HOLOMORPHIC FUNCTION

SHINJI YAMASHITA

The Schwarz-Pick lemma,

for / analytic and bounded, | / | < 1 , in the disk \z\ < 1 ,

is refined:

( l - | 3 | 2 ) | / ' U ) | / ( l - | / U ) | 2 ) 5 $(2 , r) S <P(a, r) £ 1 ,

where $(s, r) is a quantity determined by the non-Euclidean

area of the image of

D(z, r) = {w; \w\ < 1, |u -2 | / | l - iw | < r} , 0 < r < 1 ,

and V(z, r) i s that determined by the non-Euclidean length of

the image of the boundary of D(z, r) . The multiplicities in

both images by / are not counted.

1. Introduction

Let f be a function nonconstant, holomorphic, and bounded,

\f\ < 1 , in the uni t disk D = {\z\ < 1} . Let

/*(*) = | / ' ( 3 ) | / f l - | / ( 3 ) | 2 ) , z 6 D ,
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and let

D(z, r) = {w € D; | u - z | / | l - i w | < r} , z € D , 0 < r < 1 ,

be the non-Euclidean disk of the non-Euclidean center z and the non-

Euclidean radius tanh r . Let A(a, r) = f[p{z, r)) be the image of

D(z, r) , that i s , the projection of the Riemannian image of D(z, r) by

/ . Let A(z, r , f) be the non-Euclidean area of A(s, r) , and let
u

L{z, r, f) and L (z, r, f) be the non-Euclidean lengths of the boundary
u

3A(3, r) and the exact outer boundary 9 A(s, r) of A(z, r) ,

respectively. To explain 3 A(s, r) we let E be the unbounded

complement of the closure of A(z, r) in the complex palne. Then
ft U

3 4 ( z , r ) i s the boundary of A (z, r) = D\E => A(g, r) . Roughly,
u

A (z, r) is the "island" h(z, r) plus i ts reclaimed "lakes" and "bays".

Apparently, L#(s, r , /) S L(z, r, f) by 3 A(s, r>) c 9A(s, r) .

The Schwarz-Pick lemma

(1.1) [ \ - \ z \ 2 ) f * { z ) S I , z € /? ,

referred to in the abstract, will be refined in

THEOREM 1. Let f be a function nonaonstant, holorrvrphic, and

bounded, \f\ < 1 , in D . Then, for each z € D , and for each r ,

0 < r < 1 ,

(1.2) ( l - | 2 | 2 ) /*( 2 ) < $(-4(3, r, fj) 5 V[L#{z, r, f)) 5 V[L(z, r, f)) 5 1 ,

where

0 < x < +°° .

For the sharpness, i t is apparent that if / is a conformal

homeomorphism from D onto D ,

(1.3) f{w) = eZ'a(

where a is a real constant and 8 € D , then all the equalities in (1.2)

hold because the left- and the right-most are identical. Conversely, i t
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will be shown that if the last equality in (1.2) holds, ¥(£) = 1 , for a

certain pair z, r , then f is a conformal homeomorphism of (1.3).

2. Proofs of some parts of Theorem 1

Since ¥ i s increasing, the th i rd inequality in (1 .2 ) ,

V[L } 5 V(L) , i s obvious by L S L . Furthermore, since

(2.1) L(s, r, f) < I f*(w)\d»\ 5

= 2irr / ( l -r2)

by (1 .1 ) , the fourth inequality <?(£)< 1 in (1.2) immediately follows.

The second quantity in (2.1) i s the length of the Riemannian image of

dD{z, r) .

To prove t h e second i n e q u a l i t y $(4) 5 V ( L ) i n ( 1 . 2 ) , we l e t

it If
A ( 3 , r, f) be the area of the simply connected domain A (2, r ) . Since
the Gauss curvature of the non-Euclidean space D endowed with the metric

in the d i f fe rent ia l form (l- |w| J \dw\ i s the constant -h , the

isoperimetric inequality [3 , Theorem ^ . 3 , (U.25), p. 1206] reads

(2.2) X2 > h-no + ha2 ,

where a is the non-Euclidean area of a simply connected domain in D and

X is the non-Euclidean length of its boundary. Applying (2.2) to

A (2, r) we obtain

(2.3) L§(z, r, f)2 > UTT/(3, r, f) + U#{z, r, f)2

> kvA(z, r, f) + kA(z, r, f)2 ,

from which we have $(4) < f[l ) .

3. An area theorem

To complete the proof of Theorem 1 use is made of

THEOREM 2. Let f be a function nonconstant, holomorphic, and

bounded, \f\ < 1 , in D . Then the function $(i4(0, r, f)) of r ,

0 < r < 1 , is nondecveasing.
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Proof. The proof is based on a version of Dufresnoy's idea [2]. We

fi rs t find a simply connected domain G(r) in the disk 0(0, r) , where f

is univalent and

(3.1) A(r) = 4(0 , r, f) = ff f*(w) dudv (u = u + iv) .

The projections of al l the branch points of the Riemannian image of

D(0, r) by / are a finite number of distinct points, a . . . , a^ in

A(r) = A(0, r) . First we find a finite number of analytic cross-cuts and

analytic end-cuts of A(r) [1 , p. 168], Y, , . . . , Yfc , such that

k k
A (r) = A(r) \ U y. is simply connected and a7 f U y.

1 J=l " J j=l ^

1 £ I 5 n . Then find an analytic end-cut y of A (r) on which al l the

points ai •> 1 S Z 5 n , l i e . See Figure 1. Let G(r) be one of the

preimages of A (r) \y. by / . Since the area of A(r) is the same as

that of A (r)\yQ we have (3.1).

for

Figure 1
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I t now follows from

A(r) = f tdt
J0 }T(r,t)

where

r ( r , t) = {9; 0 S 6 2 2TT, te%Q € G(r7} ,

that

(3.2) dA(r)/dp = r

Furthermore, the length L(r) = L{0, r , / ) i s given by

(3.3) L(r) =

It then follows from the Schwarz inequality

{[ /*(»*V}2<f f^Ydel dB,
^ ( r j r ) ' • ' r ( r , r ) • ' r ( r> , r )

wi th

[ d9 S 2TT , .

( 3 . 2 ) , and ( 3 - 3 ) , t h a t

On the o t h e r hand , i t fol lows from ( 2 . 3 ) for 3 = 0 t h a t

( 3 . 5 ) L(r) > L ( 0 , r , / ) > UUi4(r) + l+i4(r)

Combining (3 .*0 wi th (3 -5) we have

( 3 . 6 ) {2/r)dr 5 J4(r)~1ci4(r) - (/l(r)+Tr)~1<i4(r) , 0 < r < 1 .

On integrating (3.6) from r to r 2 ' " < r < r. < 1 , we observe,

after a short computation, that $(/4(0, rt, /)) S $(/l(o, r?, /)) .

4. Completion of the proof of Theorem 1

For the proof of the first inequality in (1.2) we set
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(U.I) g(w) = /((u+a)/(i+iw)) , w € D ,

so that g*(0) = {\-\z\2}f*{z) . Since

lim *(i4(0, 6, #)) = <g*(0) and A(0, r , <?) = A{z, r, f) ,
6-H-O

Theorem 2 now yie lds the desired conclusion.

I t remains t o show tha t i f V(L) = 1 in ( 1 . 2 ) , then f must be of

the form ( 1 . 3 ) . We may suppose that 3 = 0 ; otherwise, we examine g of

( U . l ) . Consider the par t

P = [re^; 6 € T(r, r ) } = ~G(r) n 3D(0, r )

of 30(0, r ) . Then

f f*(w)\du\ = L(0, p, /) = 2TTr/(l-r2) i f (l-|u| 2 ) " 1

Jp Jp

This, combined with (l.l), shows that f*(w) = (x— |w| ) ~ at each point of

P . Thus / must be a conforms! homeomorphism of D onto itself.
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