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LENGTH AND AREA INEQUALITIES
FOR THE DERIVATIVE OF A
BOUNDED AND HOLOMORPHIC FUNCTION

SHINJI YAMASHITA

The Schwarz-Pick lemma,

(1213 1£7() 1/ (11721 1?) =1
for f analytic and bounded, |f| <1 , in the disk |z| <1,
is refined:
(=123} |7 (2) |/ (-172)|°) = &z, ») < ¥z, r) s1 ,

where &(z, r) is a quantity determined by the non-Euclidean

area of the image of
Dz, r) = w; |w| <1, |w-z]|/|2-2w| <P}, O<r<1,

and Y¥(2, r) is that determined by the non-Euclidean length of
the image of the boundary of D{(z, r) . The multiplicities in

both images by f are not counted.

1. Introduction

Let f be a function nonconstant, holomorphic, and bounded,

|fl] <1, in the unit disk D = {|z] < 1} . Let
) = 7@/ 172 7). 2 €D,
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and let
Xz, r) = {w € D |w-z|/|1-2w| <r} , 2 €D, 0<r<1,

be the non-Euclidean disk of the non-Euclidean center 2z and the non-

Euclidean radius tanh 'r . Let Mz, ») = f(D(z, »)) be the image of
Dz, r) , that is, the projection of the Riemannian image of D(z, r) by
f . Let A(z, r, f) be the non-Euclidean area of A(z, r) , and let

L{z, r, f) and L#(z, r, f) be the non-Euclidean lengths of the boundary
3A(z, r) and the exact outer boundary B#A(z, r) of A(z, »r) ,

respectively. To explain B#A(z, r) we let E be the unbounded

complement of the closure of A(2, r) in the complex palne. Then

B#A(z, r) is the boundary of A#(z, r) = D\E D A(z, r) . Roughly,

A#(z, r) is the "island" A(2, ») plus its reclaimed "lakes" and "bays".
Apparently, L#(z, r, f) =Lz, r, f) by B#A(z, r) < Az, »r

The Schwarz-Pick lemma
(1.1) (-1213)f*z) <1, z €D,
referred to in the abstract, will be refined in

THEOREM 1. Let f be a function nonconstant, holomorphie, and
bounded, |f|l <1, in D . Then, for each z € D, and for each r ,

O0<r<1l,

(1.2) (1—|z|2)f*(z) < o(a(z, r, f)) = \P(L#(z, r, )} = vz, r, ) =1,

where

o(x)

x}i/{r(xﬂr)%} ,

Y(x) {[x2+ﬂ2)%-n}/(rx) , 0<zx <40,

For the sharpness, it is apparent that if f is a conformal

homeomorphism from D onto D ,

(1.3) Flw) = ¢ w-8)/(1-B)

where a is a real constant and B8 € D , then all the equalities in (1.2)

hold because the left- and the right-most are identical. Conversely, it
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will be shown that if the last equality in (1.2) holds, ¥(L) =1 , for a

certain pair z, r , then f is a conformal homeomorphism of (1.3).

2. Proofs of some parts of Theorem 1
Since V¥ is.increasing, the third inequality in (1.2),

W(L#} < ¥(L) , is obvious by L# < [ . Furthermore, since

EOIET N N (SN0 R EY
aD(z,r)

(2.1) Lz, r, ) = I o)
allz,r

= 2nr/[l—r2}

by (1.1), the fourth inequality W¥(L) <1 in (1.2) immediately follows.

The second quantity in (2.1) is the length of the Riemannian image of
Nz, r) .
To prove the second inequality &(4) < W(L#) in (1.2), we let

A#(z, r, f) be the area of the simply connected domain A#(z, r) . Since
the Gauss curvature of the non-Euclidean space D endowed with the metric

in the differential form (l—lw|2)_l|db| is the constant =L , the

isoperimetric inequality [3, Theorem 4.3, (4.25), p. 1206] reads
(2.2) 32 > ko + bo® ,

where ¢ 1is the non-Euclidean area of a simply connected domain in D and

A 1is the non-Euclidean length of its boundary. Applying (2.2) to

A#(z, r) we obtain
(2.3) L'(z, », 2 2 v’ (2, », £ + 1475, », PP
> hud(z, r, f) + bA(z, r, f)2 s

from which we have ¢(4) = W(L#)

3. An area theorem
To complete the proof of Theorem 1 use is made of

THEOREM 2. Let f be a function nonconstant, holomorphic, and
bounded, |f| <1, in D . Then the function ®(4(0, r, f)) of r,

0 <r <1, is nondecreasing.
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Proof. The proof is based on a version of Dufresnoy's idea [2]. We
first find a simply connected domain G(r) in the disk D(0, r) , where f

is univalent and

(3.1) A(r) = A(0, r, f) = [I f*(w)Qdudv (w=u+ iv)
G(r)

The projections of all the branch points of the Riemannian image of

D(0, r) by f are a finite number of distinct points, Ay oees a_ in

n
A(r) = A(0, r) . First we find a finite number of analytic cross-cuts and
analytic end-cuts of A(r) [1, p. 1681, Yi» -> Yp » such that
k k
A(r) =A(r) \ U vy, is simply connected and a, § U vy, for
1 g1 K L7 K

1 =<1 =n . Then find an analytic end-cut Yo of Al(r) on which all the

points a; , 1 =1 =n, lie. See Figure 1. Let G(r) be one of the

preimages of Al(r)\YO by f . Since the area of A(r) is the same as

that of Al(r)\Y0 we have (3.1).

Figure 1
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It now follows from

r .
Alr) = f tdt f f*(teze)ede ,
Jo Ir(r,t)
where
I(r, t) = {6; 0 <6 < on, o8 € 6(r)} ,
that
(3.2) dA(r)/dr = » ( f*(reie]zde .

IT(r,r)

Furthermore, the length L(») = L(0, r, f) is given by

(3.3) Kr) = f r*(re®®) e .
I'(r,r)

It then follows from the Schwarz inequality
8y . \° i8y2
{f £*(re )de} < f f*(re"")<do f das ,
r(r,r) r(r,r) M(p,r)

with

de =2m , .
It(r,r)

(3.2), and (3.3), that

(3.4) L(r)2 < 2mrdA(r)/dr .
On the other hand, it follows from (2.3) for 2 = 0 that
)2

(3.5) w2 = tfo, r, /HZ = bna(z) + bA(r)? .

Combining (3.4) with (3.5) we have

(3.6) (2/r)dr < A(r») " da(r) - (A(r)+m)HdA(r) , 0 <r <1 .

On integrating (3.6) from r to r, 0 < r =r, < 1 , we observe,

after a short computation, that ¢(4(0, », f)) = ¢(4(o, r,, )

A

4, Completion of the proof of Theorem 1

For the proof of the first inequality in (1.2) we set
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(4.1) g(w) = f{(w+z)/(1+z0)}) , w €D,

so that g*(0) = (l—|z|2)f*(z) . Since

1im ¢(4(0, 8, g)) = g*0) and 4(0, r, g) = A(z, r, f) ,
6++0

Theorem 2 now yields the desired conclusion.

It remains to show that if ¥(L) =1 in (1.2), then f must be of
the form (1.3). We may suppose that z = 0 ; otherwise, we examine g of

(L.1). Consider the part

)

P.= {rei ; 6 €T(r, »)} = G(x) n 3D(0, r)

of 3D(0, r) . Then

( FHw)|aw| = L(o, », f) = 2nr/(l—r2] > ( [1-|w|2)'1|dm| )
Jp Jp

This, combined with (1.1), shows that [f*(w) = (l—|w|2}-l at each point of

P . Thus f must be a conformal homeomorphism of D onto itself.
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