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Non-extendable Zero Sets of Harmonic
and Holomorphic Functions

P. M. Gauthier

Abstract. In this paper we study the zero sets of harmonic functions on open sets in R and holo-
morphic functions on open sets in CV. We show that the non-extendability of such zero sets is a
generic phenomenon.

Recall that a subset Y of a topological space X is said to be residual (in X) if X is
of second Baire category and X \ Y is of first Baire category; i.e., it can be written
as a countable union of nowhere dense subsets of X. In particular, if X is of second
category and Y is a dense G subset of X, then Y is residual in X.

We will show that the zero sets of most (in the sense of Baire category) harmonic
functions are not extendable near every boundary point. Also, we shall consider the
analogous situation for holomorphic functions on domains in CV. These results relate
well to the work of other authors on the genericity and non-extendability of universal
functions. Bernal-Gonzalez and Ordéiiez Cabrera [1] among others have made con-
tributions that touch on the results here. Many of these authors have also considered
topics like “lineability” of properties considered in this paper. We might study this in
the future.

1 The Harmonic Case

We begin with an example that motivated our results.

Example 1.1  Consider a bounded open set D in RN. We show that there exists a
harmonic function u on D with the property that there is no harmonic function on
any open set G containing D, whose zeros on D are the same as those of u. Let F
be a closed subset of D consisting of the union of pairwise disjoint closed segments
[ak,bi], k =1,2,...,in D, whose respective lengths tend to zero, form a locally finite
family in D, and accumulate at each point of dD. We note that for this set F c ), the
hypotheses of [2, Theorem 3.19] are satisfied. Define a continuous function f on F
by mapping each segment [ay, by ] to the interval [-1, +1] ¢ R. Let u be a harmonic
function on D, which approximates f within 1/2 on F. Let p be an arbitrary point of
oD and & > 0. We may choose a segment [ay, by | within ¢ distance of p. There is a
point ¢ € [ag, b ] such that u(c) = 0. Thus, u is a non-constant harmonic function in
D, whose zeros accumulate at every point of dD. Now, if G is an open set containing
D and v is a harmonic function on G whose zeros on D coincide with those of u, then
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v vanishes at each point of dD. By the Maximum Principle, v must vanish identically
in D. This contradicts the assumption that the zeros of v on D are the same as those
of u.

In this section we will show that the non-extendability of zero sets of harmonic
functions is a generic phenomenon. To formulate our results we introduce some no-
tation. For a function g, defined on a set E, let | g| 5 := sup{|g(x)| : x € E} denote its
supremum norm on E. Further, we denote by Z(g|U) the set of zeros of the function
gonaset U c E. Finally, for an open set Q ¢ RN, we denote by H(Q) the space of
harmonic functions on Q) endowed with the topology of local uniform convergence.

Definition 1.2 Let Q be a proper domain in RY (N > 2). We say that a function
u € H(Q) belongs in the class N(Q) of hypernull functions on Q if it satisfies the
following property:

For every p € 0, for every ball B, centred at p, and for every component U of
Q N By, there are no functions v, real analytic in B, and not identically 0 such
that Z(u|U) c Z(v,|U).

Theorem 1.3  Let Q be a proper domain in RN, Then N(Q) is a dense G4 subset of
the space H(Q).

For the purposes of the proof we introduce the following notion. By an horoball in
an open set ), we understand a pair (A4, q), where A is an open ball in Q such that
{g} =0Q noA.

The following remark is borrowed from a paper we are currently writing with
Myrto Manolaki.

Remark 1.4 Let B, be a ball centered at a point p € RY and let C be an open cone
with vertex at p. Then there is a sequence x,, tending to p in C n By, such that if u is
analytic in B, and vanishes on this sequence, then u = 0.

Proof We may assume that p =0, Bp istheunitball BandC=r0:0eU,0<r <],
where U is an open subset of the unit sphere. Let 8y, 0,,..., be a countable dense
subset of U, and consider the countable set of radial segments S, S,, ..., emanating
from 0, where S; = {rf; : 0 < r <1/j},j = L,2,.... Now, let {x,,} be a sequence
tending to 0 on the union of the S;, such that for each j, there is a subsequence on
S;. If u is analytic in B and vanishes on this sequence, then u = 0 on the segment
L; n B, where L; is the line on which §; lies, since the zeros have an accumulation
point, namely 0. Since u is continuous and zero on a dense subset of the cone C, it
is zero on all of C, but since C is an open subset of B, it follows that 4 = 0 on all of
B. |

Lemma 15  For each proper open subset QO c RN, there is a countable collection of
horoballs (A, qx) in , such that for each p € 0, for each ball B, centred at p and
Sfor each component U, of O n By, we have Ay c U, for some k and gy € B,.
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Proof Let X be a countable dense subset of 0Q). For every fixed x € X and j € N, let
{Uy,ji 11 €l j}, where I, ; c Nisthe set of connected components of QN B(x,1/7).
For each component Uy j ;, choose a point y € dU, j ;nB(x,1/j) andlet V beaballin
Uy, j,i» whose closure is closer to y than to the boundary S(x,1/j) of B(x,1/j). Let S,
be the segment from the center of V' to the point y. We displace the ball V by moving
its center along the segment S, until V first meets a boundary point q of Uy j ;. By
construction, g € dV n dQ, but it may not be the only such point. We may choose an
horoball (4, g), by taking A to be an open ballin V, such that g = dAndV. With each
X, j, i we have associated an horoball (4, q). This gives a countable family of horoballs
(Ax.j,i»qx,j,i)» We may arrange these in a sequence (A, gx ), where the g, may not
be all distinct. We thus obtain a countable family of horoballs, whose boundary points
qx are dense on 0Q.

Let p € 9Q, B, be a ball centred at p and U, a component of Q n B,. Choose
g € 0U, n B, and j € N such that the ball B, ; of centre g and radius 1/ is contained
in B,. Let Ug,j,; be a component of Q N By ; that meets U,,. By construction, one
of the horoballs (A, gx) corresponds to this U, j ;. Thus, A c Ug,;,; ¢ U,. This
concludes the proof. ]

Finally, we will make use of the following fact.

Harmonic Hurwitz Theorem  Let Q be a domain in RN and suppose u,, is a sequence
of zero-free harmonic functions in Q converging locally uniformly in Q to a function u.
Then either u is a zero-free harmonic function or u = 0.

The proof of this fact is straightforward. We can assume that u,, > 0. Hence, u > 0.
Suppose u(zp) = 0. Then, u assumes its minimum and so u = 0.
Now we have all the tools to prove the main theorem of this section.

Proof of Theorem 1.3
Step 1. First, we show that N(Q) is non-empty.

Suppose first that dQ) consists of finitely many points p;, ..., pm. Let r; > rp > -
with 7; 0, and for each k € {1,2,..., m}, denote by By ; the ball of radius r; centred
at px. Choose r; so small that the closed balls Ek,l are disjoint and contained in Q,
except for their respective centres pj. For each k, let Kj be an open cone, with vertex
Px- We may form the spherical caps Cy j := Kx n 9By ;. Let F be the relatively closed
subset of ) formed by the union of the caps Cy ;. We define a continuous function
¢ on F, by setting ¢ = (-1)’ on Cy j, for each j. By [2, Theorem 3.19], there exists
a harmonic function u on Q such that |u — ¢| < 1/2 on F. On each ray R c K, the
function u has a sequence of zeros converging to pi. Suppose u is real analytic in an
open ball By, centred at py. If the zeros of & contain those of u in Q N By, then 7 = 0
on a sequence of points tending to py on R N By. Thus, % = 0 on R N By. Since this
is true for every R c K, we have that & = 0 on Ky n By. Consequently, 4 = 0 on B.
This completes the proof in case d€) is a finite set.

Now suppose that 0 is infinite. We claim that to prove a function u belongs in
N(Q) it is sufficient to show the following. For every g in a dense subset Q of 0,
for every ball B, centred at g, and for every component U of Q n B, there are no
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functions v, real analytic in B, and not identically 0 such that
Z(u|U) c Z(vy|U).

To see this, suppose that the above holds for a dense subset Q of 0Q). Let p € 9Q.
Suppose there is a ball B, centred at p, a component U of 2 n B,, and a function v,
real analytic on B, such that Z(v,|B,) > Z(u|U). Choose g € QN dU n B, and a ball
B, c B, centred at q. Let v, := v,|B, and let U, be any component of U N By. Then,
v4 is a real analytic function on By for which Z(v4|(Ug n By)) 2 Z(u|(Ug N By)).
From the definition of Q, it follows that v, = 0 on B, and consequently that v, = 0 on
B,. This establishes the claim.

By Lemma 1.5, we may choose a dense sequence of points q;, ¢z, . . . on 0Q) with the
property that for each p € dQ), for each ball B centred at p, and for each component
U of QO n U, there is an open ball Ay contained in U for which dAx N 0Q = {gy }.

In general, suppose we have an open ball A whose closure is contained in () except
for one point g € dA n dQ). Let B, be a ball centred at g and of radius r less than that
of A. Then the closed spherical cap C = An 9B, is non empty. Let K be the cone with
vertex g generated by the cap C. Letr = r; > r, > --- with r; v 0. We may form the
spherical caps C; = K n 0B, where B; is the ball of radius ; centred at g.

We apply this procedure for each gy, to form a sequence Cy,; of corresponding
spherical caps converging to g, but we must do this carefully. First, we choose Cy ;.
Next, we choose C;,; and C,;, making sure that C,; is disjoint from C;; and Cj,.
The general procedure is as follows. Consider the infinite matrix

(ki) k=1,2,...,j=12,...}.
{(k,j j }

Let Dy := {(m,—m+1) : m=1,2...., ¢} be the entries of this matrix along the £-th
anti-diagonal, that is along the segment starting at (1, #) and running southwest in a
straight line to (¢,1). We choose the caps successivelyin Dy, D,, ... , Dy, .. .. Ateach
step, for an entry (k, j) in some D,,, we choose a cap Cy, ; sufficiently close to gy that
it is disjoint from the previously constructed caps.

The union of these caps is a relatively closed subset E of Q) that satisfies the hypothe-
ses of [2, Theorem 3.19]. Define a continuous function ¢ on E by setting ¢ = (-1)/ on
Cy,j for each k and j. There exists a harmonic function u on €, such that [u — ¢| < 1/2
on E. Fix gy, a ball B centred at i and a component U of Q n B. There is an horoball
(A, qx) with Ay c U. The argument used for the case that dQ was finite shows
that u has the desired property for each gi. Since these points are dense in dQ), this
concludes the proof of Step 1.

Step 2. Next, we show that the family of functions u € N(Q) is dense in H(Q).

Let h be a function in H(Q)), let K be a compact subset of (), and let ¢ be a positive
number. Denote by K the Q-hull of K, that is, the union of K and all bounded com-
ponents of RN \ K that are relatively compact in Q. Then K is also a compact subset
of Q. In Step 1, we can drop finitely many caps, and so we can assume that all caps are
disjoint from K. Since K U E satisfies the hypotheses of [2, Theorem 3.19], instead of
merely approximating ¢ on E, we can simultaneously approximate # on K. We thus
obtain a function u € H(Q), which, not only has the desired behaviour on E, but also
approximates h within & on K, and a fortiori on K. This concludes the proof of Step 2.
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Step 3. We now prove that the family X, of functions in H()) that fail to have the
property of non-extendability at a particular boundary point p is of first Baire cate-
gory.

Fix a compact ball K c Q. If u € X, then certainly u # 0 so

max{ |u(x)|: x € K} >0.

Also, there exists a ball B, centred at p, a component U of Q n B, and a function
v, real analytic and not identically 0 on B, such that Z(u|U) c Z(v,|B,). We can
consider RY as the real part of CN = RN + iRN. In a neighborhood of p = p + i0,
the function v, extends to a holomorphic function v,. By choosing B, smaller, we
can assume that 7, is bounded on the ball B, centered at p + i0 in C¥ = RN + iRV
and having the same radius as B,. Multiplying by a small positive number, we may
assume that [v,| < 1. Since v, # 0, it follows that ||v,[s > 0, where S is the sphere
centred at p whose radius is half that of B,,. Let j and k be positive integers. Denote
by Bj the ball centred at p and of radius 1/j and S(j) the sphere of centre p and radius
half that of B;.

Let U; j, i = 1,2,..., be the components of Q N B; and denote by H; j(u) the
family of functions v analytic in the ball B;j, which are respectively restrictions of
holomorphic functions ¥ bounded by 1 on Ej, for which Z(u|U; ;) ¢ Z(v|Bj). Let

Xijk = {u € H(Q) : |ullx > 1/k, thereisv € H; j(u), |v|s¢j) 2 l/k}.
Then
Xp c U Xi,j,k’
i,k
and we will show that each X; j . is closed and nowhere dense in H(Q)).

To show that X; ;  is closed, suppose u, uy, ... are in X; jx and u,, — u locally
uniformly on Q. Then |u|x > 1/k and so u # 0. For each u, let v, be a function
associated with u,, by the definition of X; ; x; that is,

Ve € Hij(u,) and  |vu]sc) 2 1/k.

Also, let 7, denote the holomorphic extension of v,, on the complex ball B j. Since
{v,} is a normal family, we may assume that v,, > v, where v is an analytic function
on Bj, which is the restriction of a function ¥ holomorphic on B j-

Clearly |[v| < 1and max|v| > 1/k on S(j). Thus, v # 0 on U; ;. Let g € U; j be a
point where v(q) # 0. Let B, be a closed ball centred at q in U;,; on which v is zero
free. Then, v, is zero free on B, for large n, and consequently u,, is also zero free on
B,. By the harmonic version of Hurwitz Theorem, either u = 0 on B, or u is zero-free
on By. Since u # 0 on €, it follows that u is zero-free on By. In particular, u(q) # 0.
We have shown that

Z(M|Ui’j) c Z(V|U,,J)
Thus, v € H; j(u) and X; j « is closed.

Next, we claim that the sets X; ; x are nowhere dense. Indeed, suppose we are given
a function h € H(Q), a compact set K ¢ Q, and ¢ > 0. In Step 2, we showed that
there exists a function u € H(Q) having the property that for each p € 9(Q, for each
ball B, centred at p, and for each component U of Q2 n B, there is no non-constant
analytic function v, on B, whose zeros contain those of # on U. Hence, u ¢ X,. In
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constructing this function u we were able moreover to ensure that |u — k| < € on K.
Thus, H(Q) \ X, is dense, and consequently each X x is a nowhere dense set. It
follows that X, is of first Baire category in H((Q). Since H(Q) is a complete metric
space, the subset X, is residual. This concludes the proof of Step 3.

Since a countable union of sets of category one is still of category one, for every
countable subset Q of 0Q), the family of functions in H(Q), that fail to satisfy the
conclusion of the theorem for some g € Q, is still of first category. Let Q be a dense
countable subset of Q. Then the family X of functions in H(Q) that satisfy the
conclusion of the theorem with respect to each point in Q is residual, that is its com-
plement is of first category. But, as in Step 1, if a function u has the desired property
for a dense subset of the boundary, then it has it for every point of the boundary. This
concludes the proof. ]

2 The Holomorphic Case

For a complex manifold X and an open set U c X, denote by O(U) the family of
functions holomorphic on U. For a compact set K c X, we denote O(K) the family
of functions f on K, which are holomorphic on some open neighbourhood U of K
(depending on f) .

The following lemma on simultaneous approximation and interpolation is a par-
ticular case of [3, Theorem 3.1].

Lemma 2.1 Let X be a Stein manifold and let K c X be a compact set that is holo-
morphically convex. If B = {b;}72, is a discrete sequence of points in X with Bc X\ K,
and if {w;} 32, is a sequence in C, then for every f € O(K) and every € > 0, there exists
a function g € O(X) such that

(i) |g(x)-f(x)|<eforallx €K, and
(i) g(b;) =w; forallieN.

We also need the following Hurwitz type lemma.

Lemma 2.2 Ifasequence g, of zero-free holomorphic functions on a domain Q ¢ CN
converges locally uniformly to a function g, then g is either zero-free or identically zero.

Proof Let g, be a a sequence of zero-free holomorphic functions on Q that con-
verges locally uniformly on Q to a function g and suppose that g(p) = 0 for some
p € Q. If Bisaballin Q centred at p, then we can apply the one-variable Hurwitz the-
orem, for every complex line € through p, to conclude that the function g is identically
zero on ¢ N B. Thus, g = 0 on B and consequently on Q. |

To state our result for the case of CV, we first generalize the notion of hypernull
functions in the natural way.

Definition 2.3 A holomorphic function f on a domain Q of CV is called hypernull
on Q if it has the property that, for every p € 9Q and for every ball B, in CV centred
at p, if gpisa function holomorphic in B, and, for some component Uy of O n By,
we have Z(f|U,) c Z(g,|U,), then g, = 0.
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Remark 2.4 We have shown that for each domain Q c R¥ there exist nonconstant
harmonic hypernull functions on Q, and so harmonic functions on ) that cannot be
extended harmonically to any larger domain. This is no longer true for holomorphic
functions on domains of CV for N > 2, as a consequence of the Hartogs Lemma. For
this reason, in the statement of the following theorem, it is essential to restrict our
attention to domains of holomorphy.

Theorem 2.5 Let Q be a domain of holomorphy in CN. Then the set of hypernull
holomorphic functions on Q is a dense G subset of the space O(Q) of holomorphic
functions on Q, endowed with the topology of local uniform convergence.

Proof If QO = CY, the theorem is trivial, since there is nothing to prove. Suppose
Q # CN. The proof is similar to that of the harmonic case, except that we will replace
caps by points.

By Lemma 1.5 there is a countable collection of balls A; c €, such that for each
p € 9Q, for each ball B, centred at p and for each component U, of O n B, we have
that A, c Up, for some k, and there is a point g in B, N 0Q N dA.

We claim that a function f € O(Q) satisfies the required conclusion at each point
p € 0Q if it does so at each g. To see this, let f satisfy the required property at each
gk and let p be an arbitrary point of dQ2. Suppose we have a ball B, centred at p and
gp a function holomorphic in B, and, for some component U, of Q n B,, we have
Z(f|Up) c Z(gp). Choose Ay c U, with g € 0Q n dAj. Let By be a ball centred
at g and contained in B, and let Uy be the component of Q) N By which meets Ay.
Then Uy c U, and so Z(f|Ux) c Z(f|U,) c Z(g,). Since g, is holomorphic in By,
it follows that g, = 0 on By. Consequently, g, = 0 on B, which confirms the claim.

For each k, it follows from the definition of A and g that we may construct a
sequence by j as in Remark 1.4 that converges to g, in Q as j — co. By a diagonal pro-
cess, we may construct a sequence b, of distinct points in () that is eventually outside
of every compact subset of Q) and that, for every gy, contains such a subsequence that
tends to gx.

Given a function h € O(Q), an O(Q)-convex compact set K ¢ Q and & > 0, we
may assume that the sequence by is disjoint from K. There is a function f € O(Q)
such that |f — k| < e on K and f(b,) = 0, for each £. This follows from Lemma 2.1,
since domains of holomorphy are Stein manifolds. The function f has the properties
required in the theorem. We have shown that the functions satisfying the required
properties form a dense subfamily of O(Q).

We shall now show that most functions in O(Q) have the required properties.
Namely, we shall show that the exceptional functions form a family of first Baire cat-
egory and since the space O(€Q) is of second Baire category, functions satisfying the
conclusion will be generic in the sense of Baire category. Since we have shown that
the family of functions that fail to satisfy the property is the same as the family of
functions which, for some k, fail to satisfy the property at gi, and since a countable
union of first category sets is still of first category, it suffices to fix a boundary point
P> and show that the family X, of functions that fail to have the property of the con-
jecture, for this particular boundary point p is of first Baire category. Fix a compact
ball K c Q. If f € X,, then certainly f # 0, so maxg [f| > 0. Also, there exists a
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ball B, centred at p and a function g, holomorphic and not identically 0 on B, such
that Z(f|U,) c Z(g,) for some component U, of Q N B,. Since the same is true for
every smaller ball, we can assume that g, is bounded on the ball B,. Multiplying by
a small positive number, we can assume that [g,| < 1. Since g, # 0, it follows that
maxs |g,| > 0, where § is the sphere centred at p whose radius is half that of B,,.

Denote by B; the ball centred at p and of radius 1/j and S() the sphere of centre
p and radius half that of B;. Let U;, i =1,2, ..., be the components of (2 n B;. Denote
by O;,;(f) the family of functions g holomorphic in the ball Bj, bounded by 1 on Bj,
for which Z(f|U;) c Z(g). Set

Xijk = {f € 0(Q) - max|f] > 1/k, 3g € Oi,;(u),gl(a;< gl > 1/k}.
J

Then
Xp c U Xi,j,k
i,j.k
and we will show that each X j  is closed and nowhere dense in O(Q2).

To show that X; ; x is closed, suppose fi, f2,... are in X; j x and f, — f. Then
maxg |f| 2 1/k and so f # 0. For each f,, let g, be a function associated to f, by the
definition of X j k. Since {g, } is a normal family, we may assume that g, — g, where
g is a holomorphic function on B;. Clearly, [g| < 1 and max|g| > 1/k on S(j). Thus,
g #0. Let g € U; be a point where g(q) # 0. Let Q be a compact ball centred at g in
U; on which g is zero free. Then, g, is zero free on Q for large n, and consequently,
fn is also zero free on Q. By Lemma 2.2, either f = 0 on Q or f is zero-free on Q.
Since f # 0 on Q, it follows that f is zero-free on Q, and in particular f(g) # 0. We
have shown that

Z(f1U;) < Z(g).
Thus, g € O; j(u) and X; j 1 is closed.

Finally, we claim that each closed set X; j x is nowhere dense. This is equivalent
to showing that its complement is dense. But its complement contains all functions
satisfying the property of the theorem and we have shown that the latter is dense. W
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