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SUMMARY

As a major foodborne pathogen, Campylobacter jejuni receives much attention in quantitative

risk assessment. To date, all dose–response assessments have been based on a single human

feeding study which unfortunately provides incomplete and possibly biased information on the

dose–response relation. An incident at a dairy farm, where several children from a school class

became ill as a result of drinking raw milk contaminated with C. jejuni, appeared to show a very

clear dose–response relation between the amount of milk consumed and the attack rate. This

relation was very nearly exponentially shaped and, therefore, seemed to conflict with the rather

slowly rising dose–response relation established in the feeding study. Here we show that both

datasets can be reconciled when illness and infection are considered separately. This not only

provides new information on the illness dose–response relation for Campylobacter, but also

amends the infection dose–response relation because of their conditional dependence.

INTRODUCTION

Campylobacter jejuni is a very common human

pathogen causing substantial health and economic

losses to society and as a result this food- and water-

borne bacterium prominently features in microbial

risk assessment.

Somewhat in contrast with its significance to public

health, dose–response information on Campylobacter

infection in humans is scarce. Results from a single

human feeding study are available [1, 2] but un-

fortunately only high doses, resulting in high attack

rates were applied. Therefore, the low-dose behaviour

of Campylobacter especially is not well known [3, 4],

but its success as a parasite suggests high infectivity.

Dose–response information on the probability of

acute illness resulting from Campylobacter infection is

also not well known. Results from the same human

feeding study mentioned above show a decreasing

probability of illness with increasing dose [1, 5].

Although this has been established in a statistical

sense, many risk scientists are not at ease with such a
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dose–response relation and new observational data

are very much needed.

A few years ago, a small outbreak of campylo-

bacteriosis was reported in the United Kingdom [6].

Illness appeared to be linked to the consumption of

raw milk, and a very clear dose–response relation was

found. Recently a similar incident took place in The

Netherlands : during a farm visit children consumed

raw milk and subsequently became ill [7–9]. Here too,

a clear relation of the attack rate with the amount of

milk consumed could be established. Unfortunately,

in both case studies the investigating scientists were

denied a sample of the contaminated milk and the

concentration of bacteria in the contaminated milk

could not be determined. As a result we only have

relative dose information.

Our goal here is to show that this outbreak infor-

mation can be used to obtain improved insight in the

dose–response relationship for Campylobacter, both

for illness and for infection. We will approach this

problem by investigating whether and how the

epidemiological outbreak data are consistent with the

published dose–response models based on the data of

Black et al. [1].

DATA

We assume that bacteria are suspended homo-

geneously in the raw milk storage, so that their

occurrence may be described by a Poisson distri-

bution with a fixed concentration. The quantity of

milk consumed was expressed as numbers of cups; in

the Dutch study [8] consumption of a small quantity

(one draught) was also recorded. It is assumed that

one cup contains the equivalent amount of six

draughts : children who had one cup of contaminated

milk were exposed to six times as many bacteria as

those who only had one draught. One cup of milk is

assumed to correspond to a volume of 0.188 l.

A case was defined as a person with diarrhoea or

vomiting combined with two or more other symp-

toms, e.g. fever (>40 xC), abdominal pains, nausea.

Median period between exposure and appearance of

symptoms was 3 days [8]. Three adult teachers also

drank unpasteurized milk, but none of them became

ill. The children were aged between 8 and 13 years.

In the English study cases suffered from abdominal

pain, diarrhoea, fever and/or vomiting. Median incu-

bation period was 4 days [6]. Child cases were 3 or 4

years old, there were also three adult cases.

METHODS

Likelihood supremum

The recorded responses are binary (ill or not ill) so

that the likelihood is binomial and models can be

tested against a binomial likelihood supremum.

The binomial likelihood supremum gives the

maximum value of the (log)-likelihood for the ob-

served responses, without any constraints, by setting

the probabilities at all observed doses equal to the

observed fractions [10]

lsup=x2 log
Y
8i

ki
ni

� �ki

1x
ki
ni

� �nixki
" #

(1)

when in dose group i, ki of ni subjects are infected.

Illness cases who were not exposed to milk

To account for the cases who had not been exposed to

raw milk, we assume an alternative route of trans-

mission causing illness with an equal probability p0 to

all children who visited the farm.

If Pmilk (CVing) is the probability of campylo-

bacteriosis due to ingestion of Ving l milk with a

concentration C c.f.u./l (dose CVing c.f.u.), the total

probability of illness is

Pill=1x(1xp0)(1xPmilk(CVing)): (2)

Exponential model for illness dose response

The exponential dose–response relation

f(CVingjpm)=1xexpmCVing (3)

can be used to model the illness dose–response

relation. Because this is a scalable relation, any

change in dose can be compensated for by a change

in the infectivity parameter pm [4], the binomial

likelihood can be calculated without knowing the

pathogen concentration. The likelihood function

becomes

lexp(Cipm)=x2 log

r
Y
8i

f(CVing, ijpm)ki(1xf(CVing, ijpm))nixki

" #
(4)

using the same notation as above for exposed and

infected subjects.

584 P. Teunis and others

https://doi.org/10.1017/S0950268805003912 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268805003912


Beta Poisson model for infection dose response

The exponential relation can also be used to model

the infection dose–response relation. It can be con-

sidered a special case of the ‘single-hit ’ model for

microbial infection, in the absence of heterogeneity

[4]. In general, the beta Poisson dose–response

model# can be used

f(CVingja, b)=
Z 1

pm=0

pax1
m (1xpm)

bx1

B(a, b)
(1xexpmCVing )dpm

=1x1F1(a,a+b;xCVing):

(6)

This model incorporates heterogeneity into host–

pathogen interaction by using a beta distribution for

the infectivity parameter pm [4]. Parameters can

be estimated using a binomial likelihood function, as

given above for the exponential case.

Conditional illness dose response

Whilst infection may be asymptomatic, the occur-

rence of illness symptoms can be considered con-

ditional on infection: without infection, we assume

illness does not occur. The (unconditional) prob-

ability of illness can be calculated as the product of

the probability of infection and the conditional

probability of illness given infection.

Usually, this conditional illness probability is treated

as a fixed quantity. For some pathogens, however,

there appears to be evidence indicating a dose-

dependent response for illness (among infected sub-

jects). We have previously described such conditional

dose–response relations with a model based on illness

hazard during infection [5]. Both sets of observations

in Table 1 indicate increasing probability of illness

with dose, saturating at levels close to 1. This means

that, conditional on infection, the dose–response

relation for illness can only increase with dose: a

constant probability would merely scale down the

infection dose–response relation to a level below 1,

and a decreasing relation would lead to decreasing

numbers of illness cases at high doses. Both alter-

natives do not seem to occur here. We, therefore,

choose a conditional illness dose–response model

which increases with applied dose. Teunis et al. [5]

argued that the conditional probability of illness

depends on two properties : the duration of infection

(i.e. the time period colonization exists) and the

hazard of becoming ill when colonized. The longer

infection persists, the higher the probability of

becoming ill. Under mild assumptions (gamma-

distributed duration of infection and linearly increas-

ing illness hazard with dose) the conditional illness

dose–response model simply becomes

h(CVingjr, g)=1x(1+gCVing)
xr, (7)

with parameters g and r.

Consequently, a higher dose not only leads to an

increased probability of infection, but also to an in-

crease in the probability of becoming ill after infection

has occurred. As argued before [5], a possible expla-

nation for such a somewhat surprising observation is

that a higher initial dose allows the pathogen numbers

to quickly reach levels that are damaging to host

tissues, before host defences can slow down growth

sufficiently to prevent tissue damage.

The (unconditional) dose–response relation for ill-

ness can be written as the product of the infection and

illness dose–response functions

f(CVingja, b)h(CVingjr, g)=
[1x1F1(a,a+bixCVing)][1x(1+gCVing)

xr], (8)

parameters can be estimated again with a binomial

likelihood function.

# Here we give the exact equation, involving a Kummer confluent
hypergeometric function [4] ; an approximation

f(CVingja, b)=1x1F1(a,a+b;xCVing)

� 1x 1+
CVing

b

� �xa (5)

has become more widely known [11, 12]

Table 1. Data of van der Brondhof et al. [8] and

Evans et al. [6]

Amount consumed Ill Exposed
Percentage
ill

van den Brandhof et al.
None 2 35 6
1 Draught 2 12 17
1
2 Cup 7 18 39
1 Cup 13 21 62
2 Cups 6 6 100

Evans et al.

None 2 17 12
1
2 Cup 3 7 43
1 Cup 14 21 67
2 Cups 4 5 80
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Combining information from volunteer and outbreak

studies

In the outbreak studies we have observations of illness

cases. As these ill subjects must also have been

infected, these observations provide us with infor-

mation on infection, as well as illness probabilities.

If we assume that the dose–response relations for

infection (including asymptomatic cases) for the out-

break data and the volunteer data are the same, we

can combine dose–response models for infection and

illness into a single likelihood function:

linf, ill(C, p0,a, b, r, g)=

x2 log
Y
8i

f(Dija, b)ki(1xf(Dija, b))nixki

" #

x2 log
Y
8j

g(CVing, jjp0,a, b, r, g)kj
"

r(1xg(CVing, jjp0,a, b, r, g))njxkj

#
: (9)

The first part of this likelihood function uses the

information from the volunteer data [1], with known

dose (Di) and only the infection dose–response model

as infection has been observed directly. The second

part describes the information from the outbreak

data, using the same infection dose–response model

and the conditional illness dose–response model for

the observed illness cases. A fraction (p0) again takes

care of illness cases attributed to other causes than

exposure to contaminated milk. The dose–response

model for the outbreak data then is

g(CVingjp0,a, b, r, g)=
1x(1xp0)[1xf(CVingja, b)h(CVingjr, g)]: (10)

Parameter estimation and uncertainty analysis

Parameter estimation for the hypergeometric model is

improved by transformation to

u=a=(a+b)
v= log (a+b)

�
(11)

so that we are estimating the mean value (u) of the

beta distribution for pm and a quantity that is

inversely related to its variance (for very large positive

values of v the variance tends to zero).

Similarly, parameter estimation for the illness

model is improved by the transformation

w= log (rg)
z= log (r=g):

�
(12)

In addition to this, both u and p0 are logit-trans-

formed so that they can be estimated on an interval

(xO, O).

We use non-informative normal (0, 10) priors for

all transformed parameters. Priors for u, v, w, z, and

p0 are assumed to be uncorrelated. For the log-trans-

formed concentration of bacteria in milk a normal

prior was used, located at 10 times the local optimum

(152 c.f.u./l), with 4 S.D. to curb the increase in like-

lihood at concentrations >100 c.f.u./l (see Fig. 1a).

The product of the likelihood and the joint prior

parameter distributions is the joint posterior distri-

bution for (u, v, w, z, p0). Posterior mode (maximum

posterior probability) parameter values can be found

by direct numerical optimization of the posterior

probability.
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Fig. 1. Combined model for infection and illness dose re-
sponse. (a) Shape of the deviance function (keeping all other
parameters at their optimum values) to show the local

optimum near a concentration of 15.2 c.f.u./l. Also shown
(x2 times the log of) the posterior density, shifted arbi-
trarily to align with the deviance function. (b) Uncertainly in
estimated concentration.
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Bayesian uncertainty estimates were calculated

using a Markov chain Monte Carlo [4]. Markov

chains were constructed with the algorithm of

Metropolis and Hastings [13], implemented in

Mathematica1 [14]. To improve the speed of calcu-

lations, values for the confluent hypergeometric

function were calculated by means of a series

approximation (adapted from NetLib; Source code

available from the corresponding author). This

was implemented as an external application, via

MathLink1 [15].

RESULTS

Agreement of the two outbreak studies

The outcomes of both outbreak studies [6, 8] can be

compared by looking at their respective binomial

likelihood supremum (lsup) values, and comparing

these with the same quantity for the pooled data:

adding all observations with equal ingested volumes

of milk.

We see that when the fractions from the pooled

data are used, this only leads to an insignificant

decrease in (log)-likelihood (Table 2). We conclude

that the shapes of the two observed dose–response

relations are quite similar.

Obviously this tacitly assumes that similar ingested

amounts imply similar doses : the concentrations of

bacteria in milk are assumed equal (at least close) for

both outbreaks. The similarity of these two dose–

response relations offers some support for this

assumption. Not only are the two observed dose–

response relations very similar in shape, they also

involve virtually the same amounts of contaminated

milk.

Shape of the illness dose–response relation

Likelihood analysis indicates that the observed

dose–response relation for campylobacteriosis is not

significantly different from an exponential model

(deviances in Table 3) are smaller than x20.95 with the

appropriate number of degrees of freedom). This is

true for both outbreaks, and when we pool the two

datasets by simply grouping all cases that consumed

the same amounts of milk, the dose–response relation

for the combined data also appears exponential in

shape.

The concentration of bacteria in the milk is not

known. However, since the exponential dose–

response relation always has the same shape, irres-

pective of the dose scale – the probability of becoming

ill depends only on the product of dose and a single

parameter – we can study their agreement with this

dose–response model without knowing the exact dose.

Illness model : reconciliation of with the volunteer

data

Naturally we would like to know what could have

been the most likely dose in these two outbreaks.

Since we do know the amounts of milk consumed by

the exposed subjects, we need to attempt to infer

the concentration of the bacteria, to determine the

position of the exponential relation on the dose axis.

The dose–response relation from the volunteer study

might be useful, but this relation gives the probability

of infection as a function of the dose, including

asymptomatic cases. To employ this model we need to

translate infection-to-illness probabilities. The con-

ditional (hazard) model for dose response of illness

given infection can be used here to augment the

analysis.

First, we applied the conditional illness dose–

response model to the separate outbreak data, using

the (hypergeometric) beta Poisson model on the Black

et al. [1] data to calculate the probability of infection.

Table 2. Likelihood ratio test for difference in dose

response of the two outbreak studies used

Study lsup

van den Brandhof et al. [8] 78.113

Evans et al. [6] 53.614

Sum (lsup,1+lsup,2) 131.727
Pooled (lsup,1+2) 134.117

Difference (�lsup) 2.390

The difference �lsup=lsup,1+2xlsup,1xlsup,2 may be con-
sidered (asymptotically) a x2 deviate with 5+4x5=4

(difference in numbers of dose groups) degrees of freedom,
and is not significant [x20.95(4)=9.49].

Table 3. Exponential dose–response model fitted to

the outbreak data

Study Dev p̂0 x20.95 (D.F.)

van den Brandhof [8] 1.905 0.053 9.488

Evans et al. [6] 0.168 0.119 7.815
Pooled 0.408 0.072 9.488

Deviance (Dev) difference in x2 log-likelihood from a
(unconstrained binomial) likelihood supremum (lxlsup).
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However, we did not fix the infection dose–response

parameters at the values optimized for the volunteer

data. Instead, we let the outbreak data help in

determining the infection dose–response relation since

illness, which can be observed, is conditional on

infection. Hence the dose–response relation for infec-

tion is determined by both the outbreak data and the

data from the Black et al. study [1], whereas the illness

dose–response relation (conditional on infection) is

determined by the outbreak data alone. If we choose a

concentration (of bacteria in milk) we can again

determine all parameters in the model in a straight-

forward manner.

We can see that at a (arbitrarily chosen) concen-

tration of 100 c.f.u./l the infection dose–response

parameters (âa, b̂b)=(0.038, 0.022), are quite different

from those originally found for just the volunteer data

of Black et al. [1] : (0.145, 7.59) [4]. The presence of a

(small) fraction of cases who cannot be directly at-

tributed to consumption of contaminated milk might

influence model fitting by allowing for a dose-related

illness risk <1. This can be investigated by removing

the unexposed cases and setting the parameter p0=0.

When the combined infection–illness model is then

fitted again at a concentration of 100 c.f.u./l, the

minimum deviance is (again from an unconstrained

supremum) 9.83, which is still not significant

[x20.95(4)=12.592]. Therefore, the agreement between

the outbreak data and the volunteer data is not

dependent on incorporating this fraction p0.

If we use the combined likelihood function to

calculate maximum likelihood (minimum deviance)

values as a function of the concentration we see an

interesting profile shown in (see Fig. 1a). At high

concentrations, the probability of infection is always

near 1, and the shape of the outbreak dose–response

relation is attributed completely to the illness dose–

response relation. This is increasingly true at higher

concentrations, and the deviance decreases steadily

with increasing concentration (the likelihood in-

creases).

At very low concentrations the unconditional

probability of illness (the product of the infection and

conditional illness dose–response models) cannot in-

crease beyond the probability of infection. The latter

probability is limited by the probability of exposure

[4] and cannot reach high levels at concentrations

<1 c.f.u./cup: at least a few (one or more) pathogens

must be ingested to have a non-zero response.

Therefore, the deviance must increase steeply below

this concentration.

There appears to be a local minimum in deviance

between these two extreme regions. Concentrations of

y15 c.f.u./l are apparently superior to intermediate

concentrations of 100 c.f.u./l or higher. Here the

information from the outbreak ‘fills in’ the data gap

in the dose–response relation from the volunteer

study, and it is worthwhile noting that here the

deviance remains below the appropriate x20.95 level

(compare left- and rightmost columns in Table 4).

Concentrations higher than this ‘ local ’ optimum

cause an increase in deviance, however, above con-

centrations of 537.9 c.f.u./l the deviance decreases

below that of the local optimum near 15.2 c.f.u./l. We

deemed concentrations in this range to be implausible

(see Discussion below) and an appropriate prior was

Table 4. Infection and illness dose–response models fitted jointly to outbreak data and volunteer data [1],

assuming a concentration of 100 c.f.u./l in the contaminated milk which caused the two outbreaks of

compylobacteriosis. [Also shown (bottom rows of pooled data) : ‘optimum ’ concentration (15.22 c.f.u./l) and

equivalent concentration (537.9 c.f.u./l) with corresponding parameters.]

Study Conc. (c.f.u./l) Dev x20.95 (D.F.)

van den Brandhof et al. [8] 100 10.554 12.592

Evans et al. [6] 100 5.423 11.071
Pooled 100 9.547 12.592

15.22 9.055 12.592

537.9 9.055 12.592

Study Conc. (c.f.u./l) p̂0 (âa, b̂b) (̂rr, ĝg)

van den Brandhof et al. [8] 100 0.058 (0.050, 0.038) (2.13r10x7, 5.02r105)
Evans et al. [6] 100 0.136 (0.068, 0.081) (6.27r10x5, 2.78r103)
Pooled 100 0.077 (0.038, 0.022) (8.13r10x7, 1.23r105)

15.22 0.081 (0.024, 0.011) (3.63r10x9, 2.44r108)
537.9 0.077 (0.057, 0.047) (1.84r10x7, 1.06r105)
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applied to remove this region of ever-increasing like-

lihood values (posterior density in Fig. 1a).

DISCUSSION

By combining data from a human feeding study and

outbreak data from two similar incidents we deter-

mined an updated dose–response relation for infection

by C. jejuni. The updated relation shows increased

infectivity at low doses and a steeper increase with

dose than the one previously reported, which was

based only on the human feeding study. At low doses

the probability of infection is directly proportional

with dose, with average slope âa=(âa+b̂b)=0.686 in

the updated relation, y36 times more infectious than

previously estimated (0.019) [4]. The outbreak data

have also provided us with information on illness dose

response which is also different from the clinical

study, as discussed below.

The estimated concentration of 15.2 c.f.u./l implies

that a milk tanker carrying y40000 l would only

contain 608 000 bacteria, possibly equivalent to

<1 mg of faeces from an infected cow (0.6 mg,

assuming 109 c.f.u./g in faeces), a very minute con-

tamination indeed.

Similarity of the two raw milk outbreaks

The outbreak dose–response data used here show re-

markable similarity. Both are close to an exponential

shape, and even the observed fractions at approxi-

mately the same intake of contaminated milk are

quite close. Since both outbreaks occurred in similar

circumstances, on both occasions involving children

of primary school age, presumably with similar sus-

ceptibilities, the concentrations of bacteria may have

been similar in both outbreaks (Fig. 2). See ‘Esti-

mation of the concentration of bacteria in raw milk’

section below for a more formal argument. For this

reason we pooled data from the two outbreaks and

treated them as a single dataset.

Reconciliation with volunteer data

At first glance, the steepness of the outbreak dose–

response relation appears incompatible with the pub-

lished model, based on the volunteer study of Black

et al. [1]. The latter study differentiated between in-

fection and illness, and it is important to keep in mind

that the published models [3, 4] describe the prob-

ability of infection, including both symptomatic and

asymptomatic cases. It has been argued before that

illness is different from infection and may have a

different dose–response relation [5, 16]. Noting that

illness is conditional on infection (only infected sub-

jects may become ill) we can write the illness dose–

response relation as the product of two functions: the

dose–response relation for infection and a function

describing the (dose–dependent) probability of illness

in infected subjects. The observed outbreak dose–

response relation is the result of this product function.

We have demonstrated that with such a separate

illness dose–response model, the outbreak data can be

easily reconciled with the published infection dose–

response model.

The updated infection dose–response relation for

C. jejuni indicates higher probabilities of infection at

low doses than the relation published previously [3, 4].

Many published dose–response relations for infection

appear to approach the theoretical limit to infectivity

(i.e. pm=1). This could be an adaptation to survival as

a parasite : for pathogens who depend on environ-

mental transmission the probability of encountering a

host is not high and whenever this happens, it is an

advantage if the probability of successful infection is

as high as possible. For this reason it is not surprising

to find that the most infectious organisms in a

sample are often close to the theoretical upper limit of

infectivity [4].

The updated infection dose–response parameters

are both quite small, and not very different from each

other (Table 4). These parameters determine the

(beta) distribution of pm, the ‘single-hit ’ probability

(i.e. the probability of infection per single ingested

pathogen. At the values found here this distribution

is strongly concave with high probabilities near 0

and 1: bacteria have either a very small or a very high

probability of causing infection. The corresponding

dose–response relation rises steeply (‘exponentially ’)

at low doses, but then flattens and only reaches levels

near 100% at very high doses. This can be seen in

Figure 1b. Apparently a small fraction of the exposed

cases is at low risk of becoming infected, even at high

doses.

Estimation of the concentration of bacteria in raw

milk

The use of a separate model for illness given infection,

with increasing illness probability with dose, implies

that the higher the concentration of bacteria in milk,

the better the fit of the combined infection–illness

Campylobacter dose response 589
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model, (see Fig. 1a). If the illness risk starts to rise

only at high doses the shape of the infection dose–

response relation has less bearing on the combined

dose–response relation, because at doses where the

illness risk starts increasing, the infection risk is

already high and changes little when the dose in-

creases further. But is this plausible? We have seen

that a concentration ofy250 c.f.u./l is less likely than

15 c.f.u./l, and it is only near 550 c.f.u./l that the

likelihood increases again above the local optimum

near 15 c.f.u./l. Below such a high concentration in-

fection could still occur with high probability, but it

would be asymptomatic. Only if the concentration

increases further, would symptoms start appearing,

with probability rapidly increasing with dose. Note

that such a dose dependency would have to exist in an

infected host, with high numbers of bacteria already

present. As argued previously [5] dose dependence of

the illness risk possibly results from events that

occurred during or shortly after exposure : exposure

to a high dose increases the probability that many

bacteria initiate infection and this might shorten

the time needed to reach a certain critical number

(for the appearance of symptoms) within an infected

host.

If the concentration of bacteria in the contaminated

milk is low (<500 c.f.u./l) the observed steep dose

illness response relation can be easily reconciled with

the results from the human feeding study. If the con-

centration is high this is not so straightforward. We

would also need to explain how the two outbreaks

could show such similar dose dependence, which is

also more plausible at low concentrations. High con-

centrations would either have to be equal or the

susceptibilities of the children involved would need to

have exactly the inverse ratio of the two concentra-

tions. At sufficiently low concentrations of the bac-

teria the infection dose response would have a strong

influence on the illness dose response and it is again

determined to a large extent by the probability of

exposure at low doses, which does not depend on the

host susceptibility nor the infectivity or pathogenicity

of the microorganism.

As mentioned earlier we have expressed our belief

that high concentrations are less plausible as a

lognormal prior distribution for the concentration,

centred around 10 times the local optimum

(152 c.f.u./l) with log-standard deviation 4. The pos-

terior dose–response relations in Figures 3 and 4

appear not to depend strongly on such prior assump-

tions (a 10-fold increase in the prior geometric mean

concentration changes the posterior mode concen-

tration y10%).

Several studies report the presence of Campylo-

bacter spp. in raw milk, but few provide concen-

tration estimates. Humphrey & Beckett [17] report

16¡30 c.f.u./100 ml, slightly higher than we have

inferred. Use of real-time PCR appears to produce

less negative results than culture methods [18] and

results in high concentration estimates: 6.4r107

¡5.3r105 c.f.u./ml [19], but the fraction of infectious

units remains to be established.

Earlier we assumed that both outbreaks involved

milk contaminated with the same concentration of

Campylobacter. Thus far we have treated both out-

breaks as a having the same concentration, and all

dose–response parameter estimates were based on

that assumption. We can formally test the validity

of this assumption by applying the combined

infection–illness model but treating both outbreaks

as completely separate events, with separate con-

centrations of bacteria in the contaminated milk. The
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Fig. 2. Separate estimation of concentrations of bacteria in
contaminated milk. Combined model for infection and ill-
ness dose response. Posterior uncertainty in (a) concen-

tration in the milk in the Dutch outbreak [8] and (b) the UK
outbreak [6].
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optimum concentrations (cf. Fig. 1a) then are 14.14

and 16.42 c.f.u./l for the Dutch and UK outbreaks

respectively, while the other parameters remain close

to their previous estimates (Table 4). At optimum, the

deviance between the models with shared and

separate concentrations is 0.119, which is insignificant

(against x2D.F.=1,0.95=3.841). Figure 2 shows (pos-

terior) uncertainty distributions of the two separate

concentrations, illustrating their similarities, as well

as a slight difference : the Dutch data allow slightly

more precise estimation of the concentration. Prior

distributions for all parameters were the same as used

earlier (see Parameter estimation section). We may

conclude that a small difference in concentrations

might have been present, but that our assumption of

equal concentrations is valid.

Illness dose response

The human feeding study also resulted in some

volunteers with symptoms and, interestingly, also

with a dose-dependent probability. However, here the

illness risk appeared to decrease with increasing doses

[1, 5]. Even at the lowest dose applied (800 c.f.u.) one

(out of five) subjects became ill, and dose–response

analysis clearly suggested increasing risks at lower

doses (Fig. 3a). Therefore, we have on the one hand

the volunteer study showing, if anything, a high

probability of illness in infected subjects at low doses,

and on the other the observation of an illness risk

increasing with dose, in children, so that higher doses

are more likely to cause illness.

The two illness dose–response relations in Figure 4

are strikingly different. The relation derived from the

volunteer study data predicts decreasing illness risks

with increasing dose, while the relation derived from

the outbreak data predicts a steeply increasing illness

risk with increasing dose. An obvious difference is the

host population for these two models : Figure 4a is

for adult, immune competent volunteers, whereas

Figure 4b concerns children. Black et al. [2] note that

protective immunity can develop after infection with

C. jejuni, by rechallenging some of the previously

infected subjects. It is tempting to attribute the
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Fig. 4. Unconditional probability of illness (probability of
becoming infected and ill) in adults. (a) Volunteer study
of Black et al. [1] and (b) children (milk outbreaks).
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Fig. 3. Infection and conditional illness dose response
(illness among infected subjects) : posterior mode curves and
predictive intervals. (a) Human feeding study [1] ; (b) com-

bined model based on human feeding study and the two
milk outbreaks.
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differences in dose–response relations to acquired

immunity, but we have no additional information to

support this idea. If the dose–response relation of

Figure 4a were valid for adults in general, exposure of

adults to contaminated milk similar to the outbreaks

studied here may often remain unnoticed because

only few illness cases would occur.

CONCLUSION

C. jejuni is important as a foodborne pathogen, and it

is, therefore, subject to many risk studies. The results

from our analysis show that it may not be correct to

assume that the infection risk is low at low doses, as

suggested by the published infection model [3–5]. The

used data [1] do not exclude a much steeper relation,

mainly because of the absence of low dose observa-

tions. Another conclusion from the volunteer study,

that the illness risk may be small, and possibly lowest

at high doses, should also be put into perspective:

while this may still be true for adult subjects with a

history of campylobacteriosis, children may have a

high risk of becoming ill, possibly due to a lack of

protective immunity.
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