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THE GROUP OF POISSON AUTOMORPHISMS OF
POISSON SYMPLECTIC SPACE

SEl-QwoN OH AND EuUN-HEE CHO

The group of Poisson automorphisms of the coordinate ring of Poisson symplectic
2n-space is isomorphic to the algebraic torus (k*)**! and it confirms that the algebra
constructed by K.L. Horton (2003) is a quantisation of the coordinate ring of Poisson
symplectic 2n-space.

INTRODUCTION

In [6], Horton constructed a class of algebras K,I:, '? which includes the multiparameter
quantised coordinate rings of symplectic and Euclidean 2n-spaces, the graded quantised
Weyl algebra, the quantised Heisenberg space, and is similar to a class of iterated skew
polynomial rings constructed by Gémez-Torrecillas and Kaoutit in [4]. As a Poisson case,
in [9], the first author constructed a class of Poisson algebras A::l? which includes the
coordinate rings of Poisson symplectic and Euclidean 2n-spaces and whose quantisation
is K: 9 for suitable I', P’ and Q'. Moreover Gémez-Torrecillas and Kaoutit proved in
[5] that the group of automorphisms of the coordinate ring of quantum symplectic 2n-
space is isomorphic to the algebraic torus (k*)**!. The main purpose of this paper is to
find the group H of Poisson automorphisms of the coordinate ring of Poisson symplectic
2n-space which is isomorphic to the algebraic torus (k*)"*!. This confirms that K,’: 19 is
a quantisation of A,’::I? .

This paper consists of three sections. In the first section, we review several ele-
mentary but basic and important properties which are used in the next sections. In the
second section, we define H-actions on Ai’? which act as Poisson automorphisms and
prove that every H-prime Poisson ideal is generated by an admissible set. In the final
section, we prove that the group of Poisson automorphisms of the coordinate ring of
Poisson symplectic 2n-space is just H defined in the second section.
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1. THE POISSON ALGEBRA AL{

1.1 Let I' = (i) be a skew-symmetric n X n-matrix with entries in k, that is,

vij = —vji for all 4,5 = 1,...,n. Let P = (p1,p2,...,Px) and Q = (q1,¢2,...,qn) be
elements of k™ such that p; # ¢; for each i = 1,...,n. Then, by 9, 1.2], the polynomial

ring k(y1, Z1,. . ., Yn, Zn) has the following Poisson bracket:
{vi, vi} = sviy; (all 4, 5)
{zi,y;} = (P; — i)y (i <J)
(1) {vi,z;} = — (@i +vi5)¥iz; (i<3)
{zi,z;} = (@ — pj + Vi) TiT; (i <j)

i-1
{zi, i} = qiyizi + Z(Qk —pwze  (all4)
k=1
The Poisson algebra k{y, 1, . . ., Yn, Zn) is denoted by A,':’? or by A, unless any confusion
arises.

One should observe that the class of multi-parameter algebra K,’: IF,Q' constructed
by Horton in [6] is a quantisation of the Poisson algebra A:,’Ig , where P', @' and I" are
multiplicative forms for P, Q and T, respevtively.

1.2. In A,, set .
i
Q=) (q — p)mze
k=1

foreachi=1,...,n and let P, = {Q, 41, 21,.-., 0, Yn,Zn} € An. A subset T of P, is
said to be admissible if it satisfies the following conditions:

1. yyorz; €T Qand €T (2€i<n)

2. yyorr; €T &M eT. _
1.3. An element a of a Poisson algebra A is said to be normal if {a, A} C aA. Note
that ¢A is a Poisson ideal if a is normal.

LEMMA. In A,, we have the following:

{v:, Q} = —qiyiQ;, {zi,Q;} = ¢izi8y, (1< j)
(2) {vi, 5} = —piviQYy, {zi, 5} = pizi;, (i>7)

{2, 9} =0, : (all 3,7)
(3) Qi1 = {zi, v} — qvizi, Qi = {zi, i} — pavizs

Hence, all §;,7 > 1, are normal elements of A,, and y; and z; are normal modulo the
ideals (€2;) and (£2;_1).
PROOF: See [9, 1.3]. ]
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LEMMA 1.4.
(a) For every admissible set T, the ideal (T') is a prime Poisson ideal of A,
(b)

For every prime Poisson ideal P of A,, P NP, is an admissible set
PROOF: See [9, 1.5 and 1.6].

1.5. We define an order on the generators of A, by

N<T1 <Y <z2< <Y < Zn

and give the grade lexicographic order on the set of all standard monomials

T1 72,73 .74 T2n~1 512
Y1 Z17°Yy T ...yn" Iﬂ"

of A, where r; are nonnegative integers. That is,

T1,.72,,73 T4 T2n—1 72 31 4082,,83 5084 | | ,,52n—1 .52
Vi Zry'Zy YTyt R Y1 I Y T Yo T T

=
E ri < E S§; or
1<ig2n 1<i<2n
E Ty = E Siy Ton = S2n,---,Ti+1 = Sit1 and 7y <055
1<i<2n 1€ig2n

Note that, for standard monomials X® and X? of A, with X* < X? we have X°X"

< X#X" for all standard monomials X7, that is, the grade lexicographic order < is a
monomial order by [2, Section 2.2).

Fix an admissible set T of A,. Foreachi=1,...,n, set

S,‘={j|1<j<i,Qj€T}
io maxS,- 1fS‘9é¢

For each : = 1,2,...,n, define an element ] € A, by

o= Q—-Q, ifSi#¢
' Qi if S,' - ¢
and denote

Gr={zi|z; e T}U{yi | e T}U{% | U €T,z ¢ T,y: ¢ T}

Note that the leading terms of 2, and Q; are equal and if O} € Gr, 7 > 1, then ;_, ¢ T.

In order to find a k-basis for A,/(T), we use an argument for the Grébner basis.
Refer to (2, Chapter 2] for further background and terminologies on the Grébner basis.
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LEMMA.

(a) For every admissible set T of A,, Gr is a Grébner basis for (T').

(b) The algebra A, /(T) has a k-basis Br consisting of the natural images of
all the standard monomials which are not divided by any leading terms of
elements in Gr.

(c) The elements Q; € A,/(T), Q, ¢ T, are algebraically independent over k.

PROOF: (a) Note that (T') = (Gr) by the definition of admissible set. We use the
notation given in {2, Chapter 2]. Arrange the elements of Gr by the order induced by
the following arrangement

TnyYny Tn-1,Yn-1,.--,Z1, Y1, Q:p Q;;_la RS} Q,],
Now the S-polynomials of the forms S(z;, z;), S(x,-,yj) and S(y;, y;) are all zero and the

S-polynomials of the forms S(z;, ;) and S(y;, ;) are clearly reduced to zero modulo
Gr by the division algorithm. Finally consider the S-polynomial of the form

S(¢y, Q;) =(g; — Pj)_yjIjQ; - (g — pi)yiziQ;‘
= (g; — P;)¥izi %y — (@ — pi)yi-'riQ;'_l- (i<i)
Since €2; is the first element in Gr such that its leading term divides each term appearing

in (g; — p;)y;x;%_, and §; is the first element in Gr such that its leading term divides
each term appearing in (g; — p;)yiz:i{?;_,, we have that

S(%, Q) = (g5 — p)yizi Qo1 — (@ — Pa)yiz_,
= (Q; - Q;'-l)Q"-l - (Q: - Q;—I)Q;-l
-0, - O,

19 65-1"
It follows that S(£;, Q) is reduced to zero modulo G by the division algorithm.

(b) It follows immediately by (a) and [2, Section 2.6 Proposition 1].

(c) Let {Q4,...,9,} ={Q: | Q ¢ T} and suppose that 0 # f € k[z, ..., 2] such
that f(%,,...,$%,) = 0, where z,...,2; are indeterminates. Let a be the coefficient
of the leading term of f under the grade lexicographic order of monomials for z; < 2z,
< -+- < z. Since the coefficient of the leading term of f(£,,...,€Q;,) under the grade
lexicographic order of standard monomials given in 1.5 is equal to af for some nonzero
P € k and f(Q;,,...,8,) is reduced to zero modulo (T") by the division algorithm via G,
we have a = 0, which is a contradiction. Hence Q; € An/(T), ; ¢ T, are algebraically
independent over k. 0

2. H-ACTIONS ON ALY
2.1. Denote
H = {(hl, ey hgn) € (kx)2" | hz,‘-]hg,’ = h.gj_lhzj fOI‘ all ‘L,]}
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The multiplicative subgroup H of (k*)2" acts on A, as follows. For h = (hy, ha, ..., hon)
€ Hand f € A,
h-. f = f(hlyl; hazy, ... 7h2n—1ym h2n$n)-

Note that each element of H acts on A, by a Poisson automorphism and H is isomorphic
to the algebraic torus (k*)™+1.

2.2. Let A be a Poisson algebra and let a group G act on A by Poisson automorphisms.
A proper Poisson ideal @) of A is said to be G-prime Poisson ideal if ) is G-stable such
that whenever I, J are G-stable ideals of A with IJ C @, either I C Qor JC Q. A
Poisson algebra A is said to be G-simple if 0 and A are the only G-stable Poisson ideals
of A.

LEMMA. For each admissible set T, (T') is an H-prime Poisson ideal of A,,.

PROOF: Since every element of T is H-eigenvector, (T} is H-stable and thus the
result follows from 1.4. 0

2.3. Let an affine algebraic group G act on a k-algebra A by algebra automorphisms.
Remind that the action G on A is said to be rational if A is a direct union of finite
dimensional G-invariant subspaces V; such that the restrictions G — Aut A — GL(V)
are morphisms of algebraic varieties.

LEMMA. Every H-prime Poisson ideal of A, is a prime Poisson ideal.

ProOF: Note that H is an irreducible affine algebraic group since its coordinate
ring is the prime ring

k[2f, 28, .. 22/ (zze — zpia20i | =2, n).

Moreover H acts rationally on A, by algebra automorphisms since H acts semisimply
with rational eigenvalues. Hence every H-prime Poisson ideal is a prime Poisson ideal by
(1, I1.2.9 Proposition]. (In the proof of [1, I1.2.9 Proposition], replace the k-torus by an
irreducible affine algebraic group.) 0

THEOREM 2.4. Every H-prime Poisson ideal of A, is generated by an admissible
set.

PROOF: Let P be an H-prime Poisson ideal of A, such that PN P, = T. Then
T is an admissible set by 2.3 and 1.4. By way of contradiction, suppose that P # (T').
Express each element of A, = A,/(T) by a linear combination of elements of Br given
in 1.5 Lemma (b). Choose a nonzero element f € P such that f has the shortest length
among those elements and let

H; = {(hl,hi—l,hg,hq-l,...,h",h;l) €H|hj=1forall j# z}
Suppose that y; € T and z; ¢ T. Applying H; on f, the degrees of all nonzero terms

of f with respect to Z; are equal since each element z € By is an eigenvector of H; with
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eigenvalue depending on the degree of z with respect to Z;. Hence we may assume that
the degree of f with respect to T; is zero since z; ¢ P and P is a prime ideal by 2.3. By
the same way the degree of f with respect to ; is zero, where y; ¢ T and z; € T

Suppose that Q; € T,y; ¢ T,z; ¢ T. For z € Br, let r and s be the respective degrees
of z with respect to J; and T;. Then rs = 0 and, for each h € H;, z is an eigenvector of
h with eigenvalue ¢"*, where c is the (2i — 1)-th component of h. Hence, applying H;
on f, the degrees of all nonzero terms of f with respect to J; (respectively, Z;) are equal.
Therefore we may assume that the degree of f with respect to 7; (respectively, Z;) is zero
since y;, z; ¢ P and P is a prime ideal by 2.3.

Finally suppose that Q; € T. For z € Br, let r and s be the respective degrees of z
with respect to 7; and Z;. Then z is an eigenvector of h € H; with eigenvalue ¢"~*, where
¢ is the (2 — 1)-th component of h. Thus, applying H; on f, the differences between
the degrees of all nonzero terms of f with respect to 7; and those with respect to Z; are
equal. Hence f is the product of 37 (or Z7), r > 0, and a linear combination of elements
%, z € Br, such that the degree of z with respect to ¥; is equal to that of z with respect
to Z;. Since y;,z; ¢ P and P is a prime ideal by 2.3, we may assume that f is a linear
combination of elements z € Br, such that the degree of z with respect to ; is equal to
that of z with respect to Z;. Replace §,Z; in f by (g; - p;)"1Q; — Q;_; for each Q;¢T
since (g; — p;)y;z; = Qj — Q1. Then we have that f is a polynomial with variables Q;
such that Q; ¢ T.

That is, P/(T) contains a nonzero element which is a polynomial with variables Q;
such that Q; ¢ T. Note that Q;’s, Q; ¢ T, are algebraically independent over k by
1.5 Lemma (c). Suppose that g € P/(T) has the smallest length among such elements.

Denote
g —_ Za'_‘rll_fﬂ . —;;k,
i=1
where
ai¢0’ {an“'aﬂjk}={9i|9i¢T}
and

j] <j2 < .- <jk'
For each z; such that Q; ¢ T, there exists a derivation t,; on the localisation
(An/(T))[z;!] defined by

’(/)Ij (a) = {fj: a}fj-l
for all

ac (An/(T))[fJ—l]
Moreover the extension P is stable under ., and g is an eigenvector of ¢, by (2). Now
acting H on g and applying ¢, , wxjk—x yo oo Yz, to g, by (2), we have the following linear
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system
T +Ti+ - +Tik=cC
(ra +ria+ -+ + Tik—1)Pj, + Tik Qi = Ck
(4) (ria +rio + - + Tik2)pj, + (Tik—1 + Tik)jp_, = Ck—1
TaPj, + (Te +ria + -+ + Tik)gj, = C2
foralli=1,2,...,m, where c,c, Ck-1,...,Co are constants which are independent to 1.
Since p; # ¢; for all ¢, we have from (4) that ryy =rgp =+ =rpeforall£=1,2,... %k
and thus g is of the form a—ﬁ;:ﬁ;: x ﬁ;: for some nonzero o € k. It follows that P
contains some §2; which is not in T, a contradiction. 0

2.5. For a Poisson algebra A, denote by pspec(A) the set of all prime Poisson ideals of
A. For each ideal I of A, denote by (I : H) the largest H-stable ideal contained in /
and, for a H-prime Poisson ideal J of A, and an admissible set T, set

pspec,(A,) = {P € pspec(4,) | (P: H) = J}
pspecy(An) = {P € pspec(4,) | PNP, =T}.

PROPOSITION.

) pspec; (An)

J H-prime Poisson ideal
[ pspecr(4n).

T admissible set

pspec(A,)

ProoOF: Let P be a prime Poisson ideal of A,,. For H-stable ideals I, J, suppose that
IJ C(P: H). Then P contains I or J because P is a prime ideal, hence (P : H) contains
I or J and thus (P : H) is H-prime. Moreover (P : H) is an H-prime Poisson ideal since
(P : H) = Npegh(P) and every element h € H acts as a Poisson automorphism. Now
the statement follows immediately from 2.4 and 1.4. 0

3. THE GROUP OF POISSON AUTOMORPHISMS OF A,’:'?

LEMMA 3.1. Let A be a finitely generated Poisson algebra, a any normal element
which is not a unit, and P a prime Poisson ideal minimal over aA. Then P has height
at most 1.

Proor: If Q is a prime ideal such that a4 C @ C P then the maximal Poisson ideal
contained in @ is a prime Poisson ideal containing aA by (3, 3.3.2], and thus P = Q.
It follows that P is a prime ideal minimal over aA. Hence P has height at most 1 by
(7, 4.1.11). 0
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3.2. Let N be the set of all nonnegative integers. Now we give an order < on the set
N?" defined by

(rlar2a-"172ﬂ) < (31a52"'-y32n)
—

Ton = S2n,T2n—1 = S2a—1,- - ., Ti+1 = Siy1, and 7; < s;.

Every element of A, can be uniquely written as a linear combination of standard

monomials X* = y'z?y5*zy* - - - yrn-1zf?». For 0 # f € A, expressed by
f= caX®,
aEN2n

define exp(f) to be the maximal element in the set {o | ¢, # 0} under the order <. It
is easy to see that exp(fg) = exp(f) + exp(g) for all nonzero elements f,g € A,.

Let V, be the k-vector space spanned by €y,$,,...,Q,. Note that y;z,,yszs,...,
YnZn form a k-basis for V,, since Q; = (¢; — pi)yiz: + Q.

LEMMA 3.3. Suppose that the set of all prime Poisson ideals of A,, with height 1
is '

P= {(y1>, (z1), (Qz% (), ., (Qn)}

and let q; # 0. If o is a Poisson automorphism of A, then for any i € {2,3,...,n}, there
exists j € {2,3,...,n} such that

(%) = Xij8Y, a(3) =y, o(zy) = 51Ty

for some Ai;,71,$1 € k*.

PROOF: For each P € P, P is generated by a normal element z which is not a
unit. Since 0 # o(P) is generated by a normal element o(z), o(P) is a prime Poisson
ideal with height 1 by 3.1, and thus ¢(P) € P. That is, P is invariant by o. Let
z € {y1,21,,...,2,}. Then there exist h,h' € A, \ {0} and y € {y1,21,,...,}
such that o(z) = hy and 0~!(y) = h'z. Hence ho(h’) = o(h')h = 1, and so h,h' are
invertible. It follows that h, h' € k*.

Suppose now that there exist ¢ € {2,3,...,n} and j € {2,3,...,n} such that
a(Q%) = ay, o(R;) = Pz, for some a,f € k*. Since i # 0 and {€;,Q;} = 0 by
(2), applying o to this equality we get af = 0. So for each i € {2,3,...,n} there exists
j €{2,3,...,n} such that o(;) = A;Q; for some A;; € k*.

If o(y1) = az,, o(z1) = By, a,f € k* then 2qaf = 0 by applying o to the
equality {z;,11} = 11y given in (1). Therefore o(y1) = riy1, o(z,) = 81z, for some

T, S € k*. D
LEMMA 3.4. Let f,g € A, \k such that fg= Y. cyizi € V, with ¢; € k and
1<ign
cn # 0. Then there exist A, X' € k* such that f = Ay, and g = Nz, (or f = Nz, and
T g = Ayp).
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PROOF: It is clear that exp(fg) = (0,0,...,1,1), so we have
exp(f) = (0,0,...,1,0), exp(g) = (0,0,...,0,1)

or
exp(f) = (0,0,...,0,1), exp(g) = (0,0,...,1,0).

Then we have, for example,
f=An+fo. 9 =’\'zn+go
for some A\, N € k*, fo € Ap—; and go € An_1[yn). So

fg= ’\’\,ynzn + )"fozn + Ago¥n + fogo
and
u= /\'fol?n + /\goyn + ngo € Vn-

But
exp(X' forn) = exp(u) = (»,0,1)

for some v € N2("=1_ Tt follows that u ¢ V, if fo # 0. Hence we have that fo = go = 0.
By the same way we get the other case. 0

LEMMA 3.5. Suppose that the set of all prime Poisson ideals of A, with height 1
is
P= {<y1)1 <.’E1>, <Q2>) (93)1 seey (Qn)}

Let 0 be a Poisson automorphism of A, and let ¢; % 0 for alli = 1,2,...,n. Then for
eachi € {1,2,...n}, we have

(%) = A&, o(yi) = riyi, o(x:) = sz

for some A\;, 1y, 8; € k*.

PRrROOF: For i = 1, we know that o(y,) = niyi, o(z1) = s1z1, 11,81 € k* by 3.3,
and so o(§;) = A1y, where A} = rys,. Suppose that there exist i # j € {2,3,...,n}
such that o(€;) = AQ;, A € k*. Let m be the maximal element in the set

{7 | o(Su) = AQ; for some A € k* and | # j}.
Let o(€%) = AoQm, Ao € k*. Note that
1<i<mgn, o) =N, (i) =N,
for some X', A’ € k* and r, s < m. Applying o to & = (¢ — pi)yiz: + -y, we get
o(wo(z) = Y ki

1€I<m
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with

m = (¢i - pi)_l(qm — Pm)Ao.
By 3.4 (with m = n) applied to o(y;)o(z;), we have for example o(y;) = 'z, ' € k*. If
we apply o t0 Q41 = (gi+1 — Pi+1)Yis1Zi+1 + 4, then we get o(yiy1) = p'zm, 4" € k*(or
0(zi+1) = p"z.m), which is a contradiction to the injectivity of . In conclusion we have
o () = A\§Q; for some A; € k*. Now applying o to

Q= (g — Pi)yiTi + Qior, 1=2,3,...,0,
we get o(y;)o(z;) € V,. By 3.4 (¢ = n) applied to o(y;)o(z;), we have either o(y;)

= 1y, 0(z;) = siz; or o(x;) = riyi, o(y:) = siz; for some 7y, s; € k*.
Finally, if o(2;) = riys, o(y:i) = s:2; then one have

o({zi, v:}) = aqirisiyizi + Aic1%y
{o(:),0(ws)} = —qirisivizi — risiQu_
and thus we have r;s; = 0, a contradiction. It completes the statement. 0
THEOREM 3.6. Suppose that the set of all prime Poisson ideals of A,, with height
lis
P= {(Zh)» (331): (Qz)a (), . '-r<Qn)}

and q; # 0 for each ¢ = 1,2,...,n. Then the group of Poisson automorphisms of A, is
equal to the multiplicative group H. '

PRroOF: Clearly h = (hy, hg, ..., -1, hon) € H is a Poisson automorphism. Con-
versely, if o is a Poisson automorphism of A, then o(y;) = ryi, 0(z;) = siz; for some
i, 8; € k* by 3.5. Since

( ﬂ) = A Q zlgxgn(qt l) nYiTi
Z (qt = Pi U(yn-’ﬂ:) = 2 (q: P: e

1<i<n 1<ign
we have that r;s; = )\, for each 7 = 1,2,...,n. It follows that o can be identified to
(Tl,sl, .. -,Tn,s,,) € H, as required. u

3.7. Here we assume that
gi=-2,p;=0,7;=1
for each i and for each j > i. Then A, is called the coordinate ring of Poisson symplectic
2n-space.
COROLLARY. The group of Poisson automorphisms of the coordinate ring A, of
Poisson symplectic 2n-space is the multiplicative group H.

PROOF: By 3.6, it is enough to prove that the set of all prime Poisson ideals of A,
with height 1 is

P = {{n), (z1), (02), (Qs), ..., (W) }.
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Clearly all elements of P are prime Poisson ideals of A, with height 1 by 2.5. Let P
be a prime Poisson ideal with height 1 and suppose that (P : H) = 0. Then P does not
contain any elements y;, §, ¢ = 1,...,n since they are H-eignevectors. Set

B = Ayt vt wn L s 90Y

By (8, Section 2] or [10, 2.2 and 2.3], the algebra B is presented by the Poisson algebra
k.(Z?), where u : Z?" x Z?" — k is an antisymmetric biadditive map defined by the
skew-symmetric 2n x 2n-matrix

0N Yz oo Yn Ql QZ Qn

n (0 1 e 102 2 20

v | -1 1 0 2 2

%) wm|-1 -1 -+ 0 0 0 .- 2
&%l-2 o - 0 0 0 -+ 0

Q-2 -2 ... 0 0 0 -~ 0

Q,,K—z -2 .- =20 0 - 0

Since the determinant of the matrix (5) is nonzero, the radical of u
{a €Z™ | u(e,B) =0 for all B € Z*"}

is trivial, thus k,(Z?") has no nonzero prime Poisson ideal by [8, 2.3]. But the extension
of P to B is a nonzero prime Poisson ideal, a contradiction. Hence (P : H) # 0. It
follows that P € P by 2.4 and 2.5, as required. a0
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