A MODEL OF THE REAL NUMBERS
Stanton M. Trott

(received July 19, 1962)

The model of the real numbers described below was
suggested by the fact that each irrational number p determines

a linear ordering of Jz, the additive group of ordered pairs

of integers. To obtain the ordering, we define (m,n) < (m',n')
to mean that (m'-m)p <n' - n. This order is invariant with
‘group translations, and hence is called a ""'group linear ordering'.
It is completely determined by the set of its '"positive' elements,
in this case, by the set of integer pairs (m,n) such that

(0,0) < (m,n), or, equivalently, mp <n . The law of
tricho—tomy for linear orderings dictates that only the zero of

an ordered group can be both positive and negative. Hence,

if p 1is rational, the above construction gives, not a group
linear ordering, but only a group quasi-ordering, in which all

of the integer pairs (m,n) with mp =n are both positive and
negative. Modifying the above definition of order to

(@) (0,0) < (m,n) <= mp <n or

mp = n with m>0
produces the same ordering as before when p is irrational
and also produces a group linear ordering when p 1is rational.

The foregoing considerations suggest that it is possible
to define postulationally, with no reference to any real numbers,

2
a set, X, of linear orderings of J , and to define on Z an

order, an addition, and a multiplication so that Z becomes a
complete ordered field and hence a model of the real numbers.
This is precisely how the model of the real numbers with which
this paper deals is to be constructed.
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Hereafter let small greek letters «, B, y, ... denote

the elements of JZ, reserving 6 for (0,0). Let small latin
letters m, n, k, I, a, b, ... denote integers, and let us
agree that m with or without subscripts and primes is always
a positive integer and, in particular, never represents 0 .

We shall indicate binary relations over 32 by capital latin
letters R, S, T,

The « such that 6 R a are called R-positive, and the
set of them is denoted by K;{. Note that this means that if R
+
is reflexive, 0 ¢ KR . But the term '"positive'' applied to an

integer shall have its usual meaning. It is well known that
when R 1is a partial ordering of a group, it is completely
determined by K; .

The integer pairs (k,n) which are positive according
2
to the lexicographic ordering of J form an additive semi-
+
group which we shall refer to as K . Thus

K = {(m,n)} u{(0,m}u{e} .

Let us define a class Z={R,S,T,...} of binary

2
relations over J . Seven postulates will be required. The
first four simply say that the elements of = shall be group

linear orderings of JZ, but this class is far too wide to serve
as a model of the real numbers, and postulates 5, 6, and 7
restrict 2 , in ways to be explained below, so that it may
become a compvlete ordered field.

DEFINITION 1

Re X if and only if R 1is a binary relation over J
with the properties:

1. 6 R©

2. B Ra and 6 RB == 6 R (a+p)

3. a#0 == exactly oneof 8 Ra or 6 R(-a)
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4. aRB<(==)06 R(PB-a)
5. 6 R(0,1)
6. If (m,n) is incompvarably small, then 6 R(m,n)
7. Integers n and n' exist such that
(1,n)R 6 R(1,n') .

To explain postulate 5, when two relations R and Q
have the property ¢« R <<= p Q @, we say that R is dual
to Q. Clearly when R is dualto Q, then Q is dualto R,
and the totality of binary relations on a given set may be
classified into dual pairs. What postulate 5 does is to include
in Z just one relation from each dual pair.

Explanation of postulate 6 requires a discussion of non-
archimedean orderings and incomparably small elements. A
partial ordering R 1is called archimedean if whenever a R b
and a 1is non-zero there is an integer n such that b R na .
Thus under a non-archimedean ordering R there are non-zero
elements a, b suchthat naRb forn=0, 71, 2, .... An
element a with this property is called '"incomparably small
with respect to b '. Since 0.a Rb, b is necessarily
R-positive. We say that ''a is incomparably small' if there
exists b, with respect to which a 1is incomparably small.
Note that a is incomparably small if and only if every positive
and negative integral multiple of a is incomparably small. The
reader will have no difficulty in establishing that the orderings
defined by (@) on page 239 are archimedean if p is irrational
and non-archimedean if p 1is rational. In the latter case the
elements (m,n) with mp =n =0 are incomparably small when
compared with, for example, (0,1). This observation is only a
special case of

2
THEOREM 1. If R is a relation on J satisfying
postulates 1 to 5, and (m,n) is incomparably small, then
(a,b) is incomparably small <<=) mb = an .

Let us first remark that there is no loss in generality in
taking the incomparably small element in the special form
(m,n) , for (m,n) is incomparably small if and only if
(-m,-n) is.
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We shall use the following lemmas in the proof of
theorem 1.

Lemma 1. o R B <<= ma R mpB. That «a Rp ==
mao R mp is obvious from postulates 4 and 2, using induction
on m . The opposite implication is easily proved by assuming
that « R B .

Lemma 2. Let a be not of the form {(0,n). Then «
is incomparably small<==} ka R (0,1) for each k.

We can take o in the form (m,n), since « #(0,n) .
ILet @ =(m,n) be incomparably small and suppose that
h(m,n) R (p,q) for each h. .. @& R {(p,q) .
Putting h=p, we obtain, using m > 0,
(mp,np) R (p,q) R (mp, mq) ,
. 8 R (0,mq-np)
Hence, by postulate 5, 0<mg - np. Nextwe take
h=p+ kimq-np+ 1] and obtain (mp + k[mg-np+1]m ,
np + k[mq-np+1]n) R (p,q) . Because m > 0,
(p,q) R m(p, q) R (mp, m7+ 1)
.. (kfmg-np+1Jm, k[mg-np+1]n - [mg-np+1]) R 6 ,
[mq-np+1] (km,kn-1) R 6
(km, kn- 1) R ©
k(m,n) R (0, 1)

Since this is valid for any integer k , it follows that ke R (0, 1)
for each k. The opposite implication is obvious.

To prove the theorem, let us first suppose that mb =an .
We know that k(m,n) R (0,1) for each k. Hence
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ha (m,n) R (0,1) R (0,m) for each h.
mh(a,b) R m(0,1) for each h,
h(a,b) R (0,1) for each h,
proving that (a,b) is incomparably small.

Conversely, suppose that t=mb - an# 0. Let h be
an integer and calculate

h[m(a,b) - t(0,1)] = ha(m,n) R (0,1) ,

since (m,n) is incomparably small. Hence hm{a,b) R (ht+ 1)(0,1) .
Since t# 0, we can choose h sothat ht+ 1< 0. Then

-(ht+1)> 0, and (0,1) R [-(ht+1)(0,1)] R [-hm(a,b)], proving

that (a,b) is not incomparably small. The proof of theorem 1

is complete.

Theorem 1 establishes that if we display the elements of
J'Z as the points in the cartesian plane which have integer co-
ordinates, then, given R, all incomparably small elements,
if there be any, lie on a straight line through the origin. The
points on this line which lie on the same side of the origin are,
by postulate 2, all R-positive together or all R-negative together.
The effect of postulate 6 is to choose the incomparably small
elements in the right half plane to be R-positive.

All points above the line through the incommnarably small
elements correspond to R-positive elements, while those below
correspond to R-negative ones. More precisely:

2

THEOREM 2. If R is a relationon J satisfying
postulates 1 to 5, and if (m,n) is incomparably small while
(p,q) is not, then 68 R (p,q)<> mgq - pn>0.

First suppose that mq - pn> 0. Then

€ R(0,mg-pn-1).

Since -p(m,n) R (0,1) ,

(0,-1) R (mp, mg - 1)
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0 R m(p,q)

9 R (p,q)

as we wish to show. The opposite implication is proved by
showing that mq - pn < 0 implies 6 R [-(p,q)].

Before discussing postulate 7, let us investigate the set
= of orderings defined by postulates 1 to 6. After introducing
some useful notation, we shall show that Z is a linearly ordered
complete lattice.

It is well known that R 1is completely determined by the
set K;{ = {e|0 Ra}. Because 0 R(a,b) if and only if
(-a,-b) R 6 , we can even say that R is completely determined
by the set R* :K; K\K+, for R* determines K;\ . (For the
definition of K+, see p.240.) It should be appreciated that, if
R vyields incomparably small elements, R* contains just the
ones with the first components greater than zero; that R* is
never void, since it always contains {(0,n)|n> 0} ; and that
R* is simply the totality of the (m,n) which are in the relation
6 R (m,n) together with {(0,n)|n> 0}.
DEFINITION 2

R<S&E=>S CR .

Given R and Se¢ I, either R<S or S<R. To
prove this, let us suppose that R contains an element (m,n)
which is not in S . Then if (m',n') e S", we have
(m,n) S8 S(m',n'),

Therefore

(mm',m'n) S8 S (mm',mn'),
8 S (0, ma' - m'n) ,
OEmn‘ -m'n,

® R (0, ma' - m'n) .
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But ® R (mm',m'n) .
Therefore 8 Rm(m',n'")
6 R (m',n'")

(m',n') € R*

and this proves that given R, Sce¢ = , either R—P cs or

S C R which is what we wish to prove.

Hence the relations in = are linearly ordered. Because
they are linearly ordered, any finite set of them has as a least

upper bound a relation which is in Z . We wish to_show that any
subset whatever of £ has a least upper bound in £ . Let 5\
be such a set. Consider Q?O Q™; we show that there exists
a member of = , say R, such that R =Q?§'\. Q . R is
defined as follows: let
+ sk sk
Ke =~ Q) vi-(mn)flmn)d ~ Q}
QeN Qe
and define
R p=—p-a¢K.
a (==fB-a .
) R
Taking the postulates in turn:
sk . sk . +
1. 6 e Q for Qed. .06 ¢ N Q. ..eeKR

QeN

2. let ® Ra, 6 RpB.

sle

Let R ={-(m,n)|(m,n) ~ Q).
QeNy

Q=:<=:= ={-(m,n)|(m,n) ¢ Q} ’

Observe that the following are equivalent:
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(i) ye ~ Q
Qe

(ii) ye Q forall Qe
(iii) Thereisa Q € {. such that ye Q  for all
o
Q>0Q , Qe
- o
Also note that

(iv) ye R

is equivalent to

JOSON
,,,,,,

(v) Thereisa Q e "% suchthat ye Q for all
o

O>0Q , Qe 72,
)
Hence it follows that
ve K
is equivalent to

+
There isa Q € % suchthat vye KQ forall Q>Q ,
o - o©

Qe v,

Let Q1€ $  such that QifQE ¥ implies ae K

O +

O+

Let Q2€ €L such that Q2_<_Qeﬂ implies Be K

Let Q =the greater of Q , Q_ . Then Q <Qe’:
o 1 2 o

implies o+ B ¢ KQ .
+ .
Therefore a + p ¢ KR , as we wish to prove.

3, 4, 5. That R satisfies postulates 3, 4, and 5 is

obvious from the definition of R 1in terms of KE .
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6. Suppose that (m,n) is incomparably small according
to R . Since

0<m =m(m'n+1) - m'mn,
theorem 2 implies
8 R(m'm, m'n+1)

. (m'm,m'n+1)e N Q*

Qe QL
(m'm,m'n+1)e Q* for Qe N
-m' (m,n) Q (0,1) for Qe and every m!'.

Now let us consider the positive multiples of (m,n) . Let
Qe 0L . Either

(i) m'(m,n) Q (0,1) for every m!'

or (ii) (0,1) Q m' (m,n) for some m'.

In case (i), (m,n) is incomparably small according to Q.
Since Qe I , it satisfies postulate 6.

. 6 Q(m,n).

In case (ii), it follows from postulate 5 that 6 Q m' (m,n) .
Hence by lemma 1 of the proof of theorem 1 ,

8 Q (m,n) .
Thus for Qe 3 , 6 Q (m,n)
(m,n) e Q* for Qe Q)
8 R (m,n).

This is postulate 6.
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Hence R:': = ~ Q isthe star set of a relation, which
Qe
we denote by R, satisfying postulates 1 to 6. That is,
Re £ . Clearly R is an upper bound to £L. Suppose that S

is an upper bound to f*. Then Q< S and S cQ for all

Qe L. Hence, S*C Ia) Q’szRq~ so that RSS. Hence
QeSL

R is the least upper bound to {1
We have proved

2
THEOREM 3. The relations on J satisfying postulates
1 to 6 of definition 1 form a linearly ordered complete lattice.

Theorem 3 tells us that it will be impossible to define
field operations over 3 , for the real numbers form a condi-
tionally complete, but not a complete, chain (linearly ordered
lattice). In topological language, the real line is locally
compact, but not compact. Our objective is to define a set Z
of relations on JZ which can be made into a complete ordered
field by means of appropriately defined operations. In connection
with ordered groups, ''complete' means '"conditionally complete''.
We have framed axiom 7 in such a way as to exclude from X
two elements of £ which correspond to + © and - ® .

Having constructed a conditionally complete chain, we
now turn our attention to defining field operations over it so
that it becomes a complete ordered field.

If X,Y are understood to be elements of an order dense
subfield of a complete ordered field, while A,B are field
elements, then

A+B =sup { X|X< A} + sup{Y|Y<B} =sup {X+Y[X<A, Y< B}

A similar multiplicative formula is valid when A,B,X and Y
are all understood to be non-negative. It is this idea which we
shall use to define the field operations over X .

Certain elements of T will figure largely in the

definitions: let T € 2 be defined by
m,n
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0 Tmn(p,q)(=>0<rnq-np or 0=mqgq - np with p> 0.

3

(Cf. (@) and theorems 1 and 2.)

Since T <T == T -7
m,n— m',n m',n' m.n
> 6 T (m',n'")==Y0<mn' - mn, we have a useful
m,n -

rule for determining the order of two of these orderings:

Z
N

7 0<mn' - m'n.

T <T_ , X
m,n— m',n

If Q, Re Z with Q< R, then there is som= (m.n) in
Qq‘ but not in R’p. The elements (m'm,m'n+ 1) obtained by

varying m' are all in Q but not all in R, for, if they were,

(m,n) would be incomparably small according to R , and hence

£ N
in R . Therefore, for some value of m', T | , is a
m'm,m’'n+1
proper subset of Q and a proper superset of R~ . That is,
between any two distinct elements of £ liesa T . Thus
oton
the T are order dense in Z , and any element of T is
n

’

the supremum of an appropriately chosen set of Tm .

By postulate 7, integers n and n' exist such that
(1,n) RO R(1,n'). Therefore {m,mn) R8 R {m,mn1') for
each m . That is, corresponding to each m , there are
integers a and b such that (m,a) R® R (m.b) . This means
that the sets

{T |T <R} and {Tm |T > R}

m,n m,n , m.,n
are never void.

Since any set of integers bounded above (below) has a
maximum (minimum), corresponding to each m 1is an nm

such that (m,n )R8 R (m,n +1). The integers n will be
m m m

used in the proofs below.
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We are now ready to define addition in Z :
DEFINITION 3

Let Q, Re Z. Thesumof Q and R, Q+ R, is
defined by

Q+R = sup{T | T <Q, T < R}

m, a+b m,a— m,b—

According to this definition, Z 1is closed with respect to
addition. Because addition of integers is associative and
comimnutative, this addition is too.

The reader may find it instructive to verify that

(Q+R) = ~ {T | (m,2)Q6 , (m,b)R6, m=1,2,3,...}
m,atb

Our field must have a zero element. Applying definition 3,

v - <Q, <
C+ Ti’0 sup{Tm}aerITm,a_Q T T }

The values of b which occur corresponding to each m are
simply the integers less than or equal to zero. Hence for each

m, a+b<a, T <T , and b =0 occurs. Thus
— m.atb— m,a

T < , < = <
SUtp{Tm,a+bI m,a—Q Tm,b—-Ti,O} suP{Tm,a,Tm,a—Q}

or Q+ T Q . This fact justifies

1,0
DEFINITION 4

The zero of £, Z , 1is defined by:

It is easily verified that Z" contains every (m,n) with
n > 0 and no others.

DEFINITION 5

Let R e X . The negative of R, -R , is defined by:
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-R = sup {T | 8 R(m,n)} .
m, -n

’

This definition is justified by the fact that R+ (-R) = Z .
To prove this we let n be the greatest integer n such that

T < R and n' the least integer n' such that 9 R (m,n').
m,n — m
For every m, n -n' =0 or -1. If for some m, n =n'
m m m m
then T e {T | T <R, T < -R} , while
m, 0 m,a+b m,a— m,b—
a+b isalways <0. But Tm 0° Z , and so in this case
Z = T <R, < - .
sup { m, a+h l Tm,a— R Tm,b—- R} On the other
hand, if forno m does n =n' , then n -n' 2-1 and
m m m m
T <R, T < -R} = =
Sup{Tm,a+b I m,a— m,b — } Sup{Tm,-i Irn
1,2,3,...} , the star set of which contains every (m,n) with
n > 0 and no others, so that in this case also
Z = T T <R, T <-R} . Th f that
sup { m, ath l m.a s mb S } e proof tha

R+ (-R) =Z 1is complete.

Our definitions have the consequence that Z € Z and that
for all Re€Z we have -Re T, Z+ R=R, and R+ (-R)=2Z.
Thus Z has become an abelian group under addition.

Suppose that Q, R, Se Z and that Q<R . Since

Q+ S

| T <Q, T <S},

SUP {Tm,a+b m,a— m,b —

T <R, T <SS},

R+ S = sup {Tm,a'+b l m,a' — m,b—

and since for each m the greatest a' occurring in the
definition of R + S 1is at least as large as any a occurring
in the definition of Q + S, therefore

Q+S < R+S
We have proved

THEOREM 4. The ordering of Z defined by

Q<R<E= R C S is invariant under group translations.
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In the first stage of defining maltiplication we confine

ourselves to =* 2 {R|Re Z,2Z< R }. Note that Z € Z+.
DEFINITION 6

Let Q, Re Z+ .

The product of Q and R, QR , is defined by

< R}

l’nl —_

QrR =sup {T__, . |zZ<T <Q,Z<T
mm' ,nn — m,n— — m

It may be verified that if Q and R # Z ,

(QR)*zﬁ{T* . l!(rn,O)Q(m,n)Qe ; (m',0) R(m,n)R 8 ;
mm',nn

m

m,m' =1,2,3,...}

The definition of mualtiplication in Z is completed by the
usual conventions of ring multiplication:

DEFINITION 7
If Q, Re T,
(-Q)R = Q(-R) = -((-Q) (-R)) = -(QR) .

One of the quantities of definition 7 can always be evaluated
using definition 6.

Because mualtiplication of integers is commutative and
associative, this multiplication is too. Note that RZ =Z for
Re Z .

Clearly the product of two elements of =t is in Z+ .
This is a form of the ordered field postulate. In the presence of
theorem 4 it is equivalent to another form with which the reader
may be more familiar:

Q_<_R and Z._<_S =>QS§RS.
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+
Let Re X and consider

RT = s T T < , .
1,1 up{ mm',nn'I m,n~R Tm',n'ST’l,i}

For each m', the values taken by n' in the definition of

RT1 { are im' and the value m' 1is taken. Hence

sup { T T
mm' ,nn' m,n — m',n' — 1,1

= sup {Tmn,Tm <R} ,

proving that R ’I‘1 1 R . This discussion justifies:

DEFINITION 8

The unity element of =, U, is defined by:

To define the reciprocals of non-zero elements, we at
first confine ourselves to =V .

DEFINITION 9
let Re T, Z<R. The reciprocal of R, R-1 , 1is
defined by:

= ) ) .
R sup {T [ R (m,n)}

’

We now prove that RR-1 =U . We first show that
RR-1 <U. Corresponding to each m , let n_ be an

integer such that (m,n_ )R 6 R (m,n_+1). Then
m m

8 R(-m'm,-m'n )
m
and

® R (mm',m(n__,+1))
m
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8 R(0O,mn_,+m-m'n_).
m m

0 < mn l+m—rn'n
— m m

i -1
Now RR ~=sup{T

| T <R, 6 R(m',n")} .
ma:n -

''m'n m,n

Take n in the form n -h and n' 1in the form n '+k where
m m

0<h and 1 < k. Hence mn'-m'n:mnm’+k1n-m’nm+hm'

>ma_, +m-m'n_ >0, by the result proved above. Thus
Z m m =
mn' >m'n, and every Tmn',m'n is 5'1‘1’1 .
We next show that among the T_ | ,. are ones which
mn!,m'n
are arbitrarily close to T . Since (m,n J)R6&® R(m.n +1),
1,1 m m
T <R and 8 R (m.,n +1)
m,n_ — m
m
e {T | T <R, 8 R(m',n")}
m{n +1),mn mna',m'n mn —
m m
T e {T | T <R, 8 R(m'n')}
n +1, n mna',m'n m,n —
m m

for m=1, 2, 3,

It is not difficult to see that since Z < R, the n

increase without limit as m increases, and consequently

T = sup {T | T <R, R (m'n")}
1,1 ma',m'n m,n —

-1
The proof that Z < R implies RR =U 1is comnplete.

-1 -1
If R#2Z, oneof R ', (-R) is defined. We use this
fact to extend the definition of reciprocal to all non-zero
elements of X :
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DEFINITION 10
-1
lLet Re Z, R# Z . The reciprocalof R, R ', is
defined by

Using definitions 9 and 10, we see that even when R < Z ,
-1
we have RR =U.

-1
We now have Ue Z andforall R# Z in Z, R € X,

-1
RU =R, RR =U. Thus the non-zero elements of £ have
become an abelian group under multiplication.

Using the distributive law for integers in applying
definitions 3 and 6 to S(Q+R) and to SQ + SR, we see that
they are the same elements of X .

Thus X together with the operations of addition and
multiplication, the zero and unit elements, and the order

relation of definition 2 is a complete ordered field, and is,
therefore, a model of the real numbers.

University of Toronto
University of Tasmania
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