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TRANSFORMATIONS FOR COMPLEX DISCRETE LINEAR
HAMILTONIAN AND SYMPLECTIC SYSTEMS

Yi WANG, YUMING SHI AND GUOJING R E N

This paper is concerned with transformations for complex discrete linear Hamilto-
nian systems and complex discrete linear symplectic systems. A general complex
discrete trigonometric system is studied and a criterion for it is established. Based on
these results, the Prufer and trigonometric transformations for complex discrete linear
Hamiltonian systems and complex discrete linear symplectic systems are formulated.
The relative existing results in real cases are extended.

1. INTRODUCTION

The field of difference equations is a mathematically rich and versatile area that
is used for modelling discrete processes. The interest in studying difference equations
has been created and is sustained by the following two main factors: one is due to the
theoretical significance and diverse modelling applications to almost all areas of science,
engineering, and technology where discrete phenomena abound; and the other one is
that with the wide applications of digital computer, differential equations are solved
by employing their approximative difference-equation formulations. Thus the need for,
and interest in scientific advancement in the area is naturally motivated [12]. For more
motivation, we refer the reader to [10, 16].

In this paper, we consider the following complex discrete linear Hamiltonian system:

(1.1) Ax(t) = A(t)x{t + 1) + B(t)u(t),

t + l)-A'(t)u{t), t e l ,

where the interval I := [a, oo) is the integer set {£}~a; A is the forward difference
operator: Ax(t) = x(t +1) — x(t); A(t), B(t), and K(t) a r enxn complex matrices; A*(t)
denotes the complex conjugate transpose of A(t); and B(t) and K(t) are Hermitian. We
also consider the following complex discrete symplectic system:

(1.2) z(t + i)
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where 4>(t) is a 2n x 2n complex symplectic matrix for all t el, that is, $*(t)J${t) = J,

while

j= ° Mw- °)
is the canonical symplectic matrix.

Throughout the whole paper, we always assume that /„ - A(t) is nonsingular in I ,
where /„ is the n x n unit matrix. Under this assumption, system (1.1) can be written
as system (1.2). Their relationships will be discussed in detail in Section 2.

It is well known that both the Priifer transformation and the trigonometric transfor-
mation are very useful in the study of the Sturm-Liouville theory and oscillation problems
for second-order ordinary differential equations. Later, Barrett [4], Reid [13], and Zheng
[17, Chapter 2, Section 3] formulated the Priifer transformation for the complex linear
continuous Hamiltonian system

x'(t) = A{t)x(t) + B(t)u{t),

u'{t) = K(t)x(t) - A'(t)u(t)

by using the so-called complex trigonometric system

s'(t) = Q(t)c(t), c'(t) = -Q(t)s(t),

where A(t), B(t), K{i), and Q(t) are n x n continuous matrix-valued functions in the
continuous interval [a, +oo), and B(t), K(t), and Q(t) are Hermitian. Dossly gave a
trigonometric transformation, which can turn a real linear continuous Hamiltonian system
into a real trigonometric system [9]. These transformations are also useful in the study
of oscillation problems for linear continuous Hamiltonian systems.

For discrete cases, relative problems were investigated and some good results have
been obtained. The key to establishing the Priifer and trigonometric transformations is
discrete trigonometric systems. In 1997, Anderson introduced a special discrete trigono-
metric system

(1.3) X{t + l) = cos Q(t)X{t)+sin Q{t)U(t),

U(t + l) = -sinQ(t)X{t) + cosQ(t)U(t), t e l ,

where Q{t) i s a n x n Hermitian matrix-valued function in the interval X, and sin Q(t) and
cosQ(i) are defined by the sine and cosine Maclaurin series [3]. He gave a definition of
discrete matrix-valued sinusoidal functions by solutions of certain initial value problems
of system (1-3), discussed their properties, and established an oscillation criterion for
system (1.3). Recently, Bohner and Dosly studied the general real discrete trigonometric
system

x(t + l) = P(t)x(t) + Q(t)u(t)

u(t + 1) = -Q(t)x{t) + P{t)u{t),

https://doi.org/10.1017/S0004972700039125 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039125


[3] Transformations for Hamiltonian and symplectic systems 181

where P(t) and Q(t) are nx n real matrix-valued functions and satisfy

PT(t)P(t) + QT(t)Q(t) = /„, PT(t)Q(t) = QT(t)P(t)

(see [6, 7, 8]). In [6, 7], they gave a discrete trigonometric transformation for a real
discrete symplectic system and applied the transformation to establish an oscillation
criterion for the real symplectic system. In [8], they formulated the discrete Priifer
transformation for the real scalar self-adjoint second-order difference equation

(1.4) A(rkAxk)+pkxk+1=0

and employed the transformation to obtain an oscillation criterion for equation (1.4).
In [7, 8], they also introduced the discrete Priifer transformations for a real discrete
symplectic system and for the real symplectic dynamic system

z*(t) = S(t)z(t)

on the time scale T, respectively, where zA(£) is the delta-derivative of z at t € T.

However, there appear to be few studies concerning transformations for complex
discrete linear Hamiltonian systems and complex discrete linear symplectic systems. It
is noted that in order to formulate the transformations in [6, 7, 8], Bohner and Dosly
constructed a unitary matrix whose real part or imaginary part is composed of a coefficient
matrix and one component of a real conjoined basis or normalised conjoined bases, which
are complex in complex cases. Hence, the methods employed in real cases in [6, 7, 8]
can not be directly applied in complex cases. The present paper will formulate Priifer
and trigonometric transformations for complex discrete linear Hamiltonian systems and
complex discrete linear symplectic systems by applying a criterion of complex discrete
trigonometric systems.

The rest of this paper is organised as follows. Section 2 collects some basic concepts
and some useful lemmas. A complex discrete trigonometric system is studied and a
criterion of it is established. In Section 3, Priifer and trigonometric transformations
for complex discrete linear Hamiltonian systems and complex discrete linear symplectic
systems are investigated.

2. PRELIMINARIES

We first discuss the relationships between the Hamiltonian system (1.1) and the
symplectic system (1.2). If /„ - A(t) is invertible in I , then system (1.1) can be written
as a special symplectic system (1.2) with
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E(t) := (/ - Ait))'1 (see [1, Example 2.4], [2, Theorem 3.19], and [14, Theorem 2.1]).
However, the symplectic system (1.2) with

(2.1) *(t) =

can not be turned into a Hamiltonian system (1.1) in general unless that An{t) is in-
vertible for all t e l , where Aij(t), 1 < i , j ^ 2, are n x n matrices. So we shall focus
our attention on the study of system (1.2) and the relative results for system (1.1) can
be directly derived from the above relationship in the present paper.

Next, we investigate properties of solutions of system (1.2). The following result can
be easily derived from the symplectic property of

LEMMA 2 . 1 . Assume that (Xf, lff)T(t) and {Xj, Ujfit) are two 2nxn matrix-

valued solutions of system (1.2). Then there exists a n x n constant matrix C such

that

DEFINITION 2.1:

(1) Let (XT,UT)T(t) be a 2n x n matrix-valued solution of system (1.2).
If X'(t)U{t) is Hermitian and rank(X,U)(t) = n for all t € I, then
(XT, UT)T(t) is said to be a conjoined basis of system (1.2).

(2) Two conjoined bases [XJ, Uf)T{t) of system (1.2), i - 1,2, are said to be
normalised conjoined bases of system (1.2) if

{X{,U*x){t)J\ ' ( « ) = /„, V t € l .

(3) If normalised conjoined bases (Xj', lff)T(t) of system (1.2), i = 1,2, satisfy

Xi(a) = U2(a) = 0, U^a) = -X2(a) = In,

then they are said to be special normalised conjoined bases of system (1.2)
at t = a.

REMARK 2.1. (i) Similar concepts in (1) and (2) of Definition 2.1 can be found in [2,

pp. 114 and 120], in which they are called a prepared basis and a normal pair of solutions,

respectively. The concepts in Definition 2.1 are similar to those defined for real discrete

linear Hamiltonian systems in [15, Section 1.4] and for real continuous linear Hamiltonian

systems in [11, Chapter 1, Section 1].

(ii) With a similar argument to that in [15, Lemma 1.4.2] for real discrete linear
Hamiltonian systems, it can be proved that there exist a conjoined basis of (1.2) and
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special normalised conjoined bases of system (1.2) at any given t0 € I by Lemma 2.1 and
using the symplectic property of $ .

LEMMA 2 . 2 . Assume that {Xf, Uj)T(t), i = 1,2, are special normalised conjoined
bases of system (1.2) at t = a. Then the matrix

is symplectic in I.

PROOF: By Lemma 2.1, for any t el we have

This completes the proof. Q

LEMMA 2 . 3 . Assume that S is a 2n x 2n complex matrix. Then S is symplectic
if and only if S* is symplectic.

PROOF. The proof is elementary and so we omit its details. D

The following result is a direct consequence of Lemmas 2.2 and 2.3.

LEMMA 2 . 4 . If {Xj,lf[)T(t), i = 1,2, are special normalised conjoined bases
of system (1.2) at t = a, then (XiX;){t) = (X2X;)(t), {UxU2*){t) = (W)(*)> and

{X;U2 - U{X2){t) = In for all t £ I.

The next lemma is simple, but useful in the present paper.

LEMMA 2 . 5 . Let P and Q be two n x n complex matrices. Then

(2.2) P'P + Q'Q = I, P'Q-Q*P = 0

if and only if

(2.3) PP* + QQ* = I, PQ' - QP* = 0.

PROOF: Denote

\-Q P)

It can be easily proved that (2.2) and (2.3) are equivalent to G*JG = J and GJG* = J,

respectively. So this lemma follows from Lemma 2.3. This completes the proof. D

We now introduce a complex discrete trigonometric system and discuss properties

of its some special solution.

DEFINITION 2.2: The system

(2.4) x(t + l) = P(t)x(t) + Q(t)u(t),

u(t + l) = -Q(t)x(t) + P(t)u(t),
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is called a complex discrete trigonometric system if P(t) and Q(t) are n x n complex

matrices and satisfy (2.2) for all £ € X.

Obviously, it follows from the proof of Lemma 2.5 that system (2.4) is a special
symplectic system. By (ST,CT)T(t) denote the 2nxn matrix-valued solution of system

(2.4) with the initial condition

(2.5) X(a) = Q, U(a)=In.

Using the similar methods to those employed in the proofs of [3, Theorem 5 and Corollary
8], one can show the following Propositions 2.1 and 2.2.

PROPOSITION 2 . 1 . For each t e l , S(t) and C(t) satisfy

(2.6) (S*S + C'C)(t) = In, (S*C)(t) = (C*S)(t),

(2.7) (SS* + CC*)(t) = In, (SC*)(t) =

/ n X1/2

where \\A\\ = ( £ l°yl2 I f°T the n x n matrix A = (aij)nxn.
\t,j=i /

PROPOSITION 2 . 2 . For each t e l , S(t) and C(t) satisfy

(2.8) S(t + l)S'(t) + C(t + 1)C*(£) = P(t),

(2.9) S(t + 1)C*(£) - C(t + l)S*(t) = Q{t),

where P(t) and Q(t) are the coefficient matrices in system (2.4).

At the end of this section, we give a criteria of complex trigonometric systems.

THEOREM 2 . 1 . Let P(t) and Q(t) benxn complex matrices. If system (2.4) has
a 2n x n matrix-valued solution [ST, CT)T(t) satisfying (2.6) or (2.7) for all t £ I , then
(2.4) is a trigonometric system. Moreover, this solution (ST, CT)T(£) is a conjoined basis

of system (2.4).

PROOF: By Lemma 2.5, it follows that (2.6) and (2.7) are equivalent. So it suffices

to show that the results in this theorem hold under the assumption that system (2.4) has

a In x n matrix-valued solution satisfying (2.7).

Suppose that (5T, CT)T(t) is a 2n x n matrix-valued solution of system (2.4) and

satisfies (2.7). It follows from (2.7) that

(cfJ<"»(£H-ft)
for all £ e [a - 1, oo). Since {ST, CT)T(£) is a solution of system (2.4), we get from (2.10)

that

(2 11) (
P + C Q l (t) - (In
*Q* + C*P* ( ) ~ \ 0
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for all t € I . So, for each t € X, (2.3) follows from (2.11) and (2.7). Further, by Lemma
2.5, (2.2) holds for all t e l Therefore, system (2.4) is a trigonometric system.

From (2.7) and the fact that rank {AA*) = rank .4 for any n x n matrix A, we have
that rank (5, C)(t) = n for any t € I . Hence, (S7", CT)T(t) is a conjoined basis of system
(2.4). The entire proof is complete. D

3. M A I N R E S U L T S

In this section, we give the main results of this paper. First, we present two lemmas,
which are useful in this section.

LEMMA 3 . 1 . Let (XT, UT)T{t) be any conjoined basis of system (1.2). Then there
exists any. n nonsingular matrix-valued function H(t) satisfying

(3.1) {X'X + irU)(t) = (IPH){t), t€l.

Further, it satisfies

(3.2) (XFX* + UFU*)(t) = In, (UFX')(t) = (XFU*)(t), V tGl ,

where F{t) := (H'H)-1^).

P R O O F : For simplicity, the variable t is omitted in the proof. Denote R :— (X*X

+ U'U). Then it follows from (1) in Definition 2.1 that r ank i i = n and

This yields that X+iU is nonsingular and R > 0. So, there exists a unitary matrix-valued
function H such that

where dt > 0, i — 1,2,... , n, are exactly eigenvalues of R. Set

It can be easily proved that (3.1) holds. Further, set P - XH~l and Q = UH~l. By
using the fact that X'U = U*X and from (3.1), (2.2) follows. Hence, (2.3) holds by
Lemma 2.5 and consequently, (3.2) holds. The proof is complete. D

LEMMA 3 . 2 . Assume that (XT, UT)T(t) is the conjoined basis of system (1.2) and
(SF, CT)T(t) is the conjoined basis of some trigonometric system (2.4) both with the

initial condition (2.5). Let H(t) be any n nonsingular matrix-valued function satisfying

(3.1). If the following relations hold:

(3.3) X(t) = S*(t)H(t), U(t) = C-(t)H(t),
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then the coefficient matrices P and Q in system (2.4) can be expressed as

(3.4) P(t) = H~l(t + 1) P j (0 *'(t) M (t) H-\t)

(3.5) Q(t) = H-\t + 1) MM (0 4'(t) J P J (t) /T1 (t).

P R O O F : Since (A'T,[/T)T(t) is a solution of system (1.2), we have

(3-6) (*) (t+ !)=(*) (t)**(t).

In addition, it follows from (3.3) that

(u) (t + l) = H'it + l)(s^)(t + i),

which, together with (3.6), implies that

(3.7) (S,C)(t + l) = H*-\t+l)(yj («)*•(*).

Multiplying (3.7) from the right by (S'T, CT)T{t) and from (2.8), we have

P{t) = H-\t + 1) P J (t) *'(*) f ̂ \ (t),

which, together with (3.3), yields that (3.4) holds. On the other hand, multiplying (3.7)
from the right by (C*T, ~S'T)T(t) and from (2.9), we get

(3-8) Q(t) = H-l(t + 1) P j (t) $'(*) ( ̂ , J (t).

Since it follows from (3.3) that

(3.5) is derived from (3.8). This completes the proof.

REMARK 3.1. Lemma 3.2 is the discrete analog of [17, Lemma 2.3.1].

Lemma 3.2 only presents a relation between some special conjoined basis of system

(1.2) and some special conjoined basis of a certain complex trigonometric system (2.4).

However, we are enlightened by this result. Now, we can formulate one of the main

results in the present paper-the Priifer transformations for systems (1.1) and (1.2).
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THEOREM 3 . 1 . For any conjoined basis (XT, UT)T{t) of system (1.1), or system

(1.2), there exists a n x n nonsingular matrix-valued function H(t) and n x n matrix-

valued functions S(t) and C(t) such that (3.3) holds, where (ST,CT)T{t) is a conjoined

basis of the complex trigonometric system (2.4) with P(t) and Q(t) being determined by

(3.4) and (3.5), respectively, and H(t) satisfies

(3.9) H(t + 1) = (5, C)(t + 1) $(t) r , I (t) H(t), t e I.

PROOF: Based on the discussion in the first part of Section 2, it suffices to show
that all the results hold for system (1.2).

Suppose that (XT,UT)T(t) is a conjoined basis of system (1.2). By Lemma 3.1,
there exists a n x n nonsingular matrix-valued function H(t) such that (3.1) and (3.2)
hold. Set

(3.10) S(t) := (H'^X'^t), C(t) := (H-1lT)(t), t e I.

From (3.1) and by the fact that (X*U){t) = (U*X)(t) for all t <E I, it follows that
(5T, CT)T{t) satisfies (2.7) and consequently, it also satisfies (2.6) by Lemma 2.5. There-
fore, from Theorem 2.1, if (ST,CT)T(t) is a matrix-valued solution of system (2.4) with
P(t) and Q(t) being determined by (3.4) and (3.5), then (2.4) is a trigonometric system
and (S7, CT)T(£) is a conjoined basis of (2.4) by using (3.1). So, it suffices to show that
(S7, CT)T(i) is a matrix-valued solution of system (2.4).

In fact, from (3.4), (3.5), and (3.10), we have

6: = P(t)S(t)+Q(t)C(t)

= H-l(t + 1) K J (t) *'(t) x I P J (t)F(t)X'(t) + J rM (t)F(t)U'(t)

where F(t) is the same as in Lemma 3.1. Further, it follows from (3.2) that

5 = H-l{t + l)(*

= H*~\t + l)X'{t + 1) = S(t + 1),

which implies that

(3.11) S(t + 1) = P(t)S(t) + Q{t)C(t), t e I.

Similarly, one can show that

(3.12) C(t + 1) = -Q(t)S(t) + P(t)C(t), t € I.
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Hence, (ST,CT)T(t) is a matrix-valued solution of system (2.4) from (3.11) and (3.12).

Finally, it is to show that (3.9) holds. It follows from (3.10) that

-ffl(3.13) ( 1 1 {t + 1) H(t + 1) = I J (t + 1) = *(t) ( 1 J (t) tf « .

By multiplying (3.13) from the left by (S,C)(t+l) and from (2.7), (3.9) is derived. The
entire proof is complete. D

R E M A R K 3.2. Theorem 3.1 extends [7, Theorem 2.3] for real symplectic systems to
complex ones.

The final theorem presents discrete trigonometric transformations for systems (1.1)
and (1.2), respectively, which are useful in the study of oscillation problems for complex
discrete linear Hamiltonian systems and complex discrete linear symplectic systems.

THEOREM 3 . 2 . For any pair of special normalised conjoined bases (Xf, l/[)T(t)

and (X2, U£)T(t) of system (1.1) or system (1.2), there exist nxn matrix-valued functions

H(t) and N(t) such that for each t e I, H(t) is nonsingular, H*(t)N(t) is Hermiti&n,

and the first components of(Xf,Uf)T(t) and (Xj ,Cj ) T ( t ) can be expressed as

(3.14) Xtf) = H{t)S(t), X2(t) = H(t)C(t),

where ( 5 T , CT)T(t) is a conjoined basis of a trigonometric system (2.4) with the ini-

tial condition (2.5), while the coefficient matrices P(t) and Q(t) in system (2.4) can be
expressed as

(3.15) P(t) = H~\t + l)E{t) [H(t) + B(t)N(t)],

(3.16) Q(t) = H~l{t + l)E{t)B(t)H*-l{t)

for system (1.1) and

(3.17) P(t) = H-\t + 1) [Au{t)H[t) + A12(t)N(t)],
(3.18) Q(t) = H~\t +

for system (1.2), where An(t) and Ai2(t) are the same as those in (2.1).

P R O O F : Based on the discussion in the first part of Section 2, it suffices to show
that all the results hold for system (1.2). For simplicity, the variable t is often omitted
in the following discussion.

Suppose that (Xf, lf[)T(t) and (X£, f/f )T(t) are any pair of special normalised
conjoined bases of system (1.2). By Lemma 2.2, rank(Xi,X2) = n. Hence, rank (XxATi
+ X2X2) — n. It follows from Lemma 2.4 that

xxx[ + x2x; = (Xi + ix2){xx + ix2y,
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which implies that X\ + iX2 is nonsingular and XiXf + X2X2 > 0. So, there exists a
nonsingular n x n matrix-valued function H(t) such that

(3.19) XiXl + X2X; = HH'.

Set

(3.20) S{t) := (H-'XJit), C(t) :=(#"%)(*),

and

(3.21) N(t) := (UiXf + U2X'2){t)H'-\t).

It can be proved by Lemmas 2.1 and 2.4 and from (3.21) that

HH'NH' - HN'HH* = 0.

Hence,
H'N - N'H = H~l(HH'NH* - HN*HH*)H*-1 = 0,

that is, H*(t)N(t) is Hermitian and consequently,

(3.22) NH~l = (NH~ly.

For convenience, denote T(t) := (HH*Yl{t). Clearly, T{t) = T*(t) from (3.19). It
follows from (3.21) and (3.22) that

X + NH~lX2 = T{X1 + XiU;X2 + X2U2*X2).

Further, by Lemma 2.4 and from (3.19), we get

(3.23) TXx + NH~lX2 = T[X, + Xi(X{U3 - /„) + X2X2'U2]

= TT~lU2 = U2.

Similarly, one can show that

(3.24) TX2 + NH~1Xl = Ul.

In addition, by using (3.20), (3.17), and (3.18),

P(t)S(t) + Q{t)C{t) = H~\t + l)i4u(0X,(t) + H~\t + l)Au{t)[NH-lXi + TX2]{t),

which, together with (3.24), yields that

(3.25) P{t)S(t) + Q{t)C(t) = H~l{t + l){AnXi + AaUi){t).
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Since (Xf, lf[)T{t) is a solution of system (1.2), Xx(t + 1) = An{t)Xi(t) + A12(t)Ui(t).
So, we get from (3.25) and (3.20), that

(3.26) S{t + 1) = P{t)S{t) + Q(t)C(t).

Similarly, using (3.23), one can get that

(3.27) C(t + 1) = -Q(t)S(t) + P{t)C(t).

Hence, from (3.26) and (3.27), (ST,CT)T(t) is a 2n x n matrix-valued solution of system
(2.4) with the coefficient matrices P(t) and Q(t) being determined by (3.17) and (3.18).
Further, from (3.19) and (3.20) and by Lemma 2.4, it can be easily proved that S(t) and
C(t) satisfy (2.7). Therefore, system (2.4) is a trigonometric system and (ST,CT)T(t) is
a conjoined basis of system (2.4) by Theorem 2.1. This completes the proof. D

REMARK 3.3. We now give an equivalent form to the trigonometric transformation
(3.14). From (3.20), (3.22), and (3.24), we have

C = H~lX2

= H~lX2 + N*X1-N
tX1

= H*H—xH-lX2+H*H-1N*Xl - N*XX

= -N'Xi + H*{TX2

= -N'XX + H'UL

So (3.14) can be written as

Using a similar method to that used in [5, Lemma 7], one can show that the transfor-
mation (3.28) preserves oscillation behaviours of solutions of system (1.2). Hence, the
transformation (3.14) preserves oscillation behaviours of solutions of systems (1.1) and
(1.2).

REMARK 3.4. Theorem 3.2 extends [6, Theorem 3.1] for real symplectic systems to

complex ones.

REMARK 3.5. The trigonometric system (2.4) can be turned into another trigonometric
system with Q replaced by a Hermitian and positive semi-definite matrix Q by a similar
way to that used in [6, Remark 3.2].
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