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LYING-OVER PAIRS OF COMMUTATIVE RINGS 

DAVID E. DOBBS 

(R, T) is said to be a lying-over pair in case R C T is an extension of 
(commutative) rings each of whose intermediate extensions possesses 
the lying-over property. This paper treats several types of extensions, 
including lying-over pairs, which figure in some known characterizations 
of integrality. Several new characterizations of integrality are thereby 
obtained ; as well, our earlier characterization of P-extensions is sharpened 
with the aid of a suitable weakening of the incomparability property. In 
numerous cases, a lying-over pair (R, T) must be an integral extension 
(for example, if R is quasisemilocal or if (R, T) is a coherent pair of 
overrings). However, any algebraically closed field F of positive charac
teristic has an infinitely-generated algebra T such that (F, T) is a 
lying-over pair. For any ring R, (R, R[X]) is a lying-over pair if and only 
if R has Krull dimension 0. An algebra T over a field F produces a lying-
over pair (Fy T) if and only if T is integral over each nonfield between F 
and T. Each lying-over pair (R, T) satisfies the going-up property and, 
as a consequence, sustains enough incomparability to establish the follow
ing inequalities for Krull dimensions: 

dim (R) ^ dim (T) ^ dim (R) + 1. 

1. In t roduc t ion . This paper is a sequel to [10]. As in [10], we adopt 
the conventions that each ring considered is commutative, with unit; 
and an inclusion (extension) of rings signifies that the smaller ring is a 
subring of the larger and possesses the same multiplicative identity. 
Also as in [10], our work's principal motivation arises from the following 
characterization of integrality in terms of the lying-over (LO) and in
comparability (INC) properties. 

FOLKLORE THEOREM. For rings R C F, the following are equivalent: 
(1) T is an integral extension of R; 
(2) (a) For any inclusions of rings R C A C B C F, the extension 

A C B satisfies INC, and 
(b) For any inclusions of rings R C A C B C F, the extension A C B 

satisfies LO. 

Two proofs of the above theorem are discussed in Remark 2.5. Whereas 
much of [10] focussed on the study of condition (a), our concern here is 
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primarily with condition (b). Our initial line of inquiry was suggested by 
a comparison between the ''folklore theorem" and the next result 
(established in Theorem 2.1 below). 

THEOREM. For rings R C T, the following are equivalent: 
(1)2" is an integral extension of R; 
(2) (i) Each element of T is a root of a suitable polynomial in R[X] with 

unit content, and 
(ii) For any inclusions of rings R C A C T and prime ideal 

P Ç Spec (A), one has PT 7e T. 

It was shown in [10, Corollary 4] that conditions (a) and (i) are 
equivalent, and so (a) characterizes the P-extensions introduced in [19]. 
This characterization is sharpened in Corollary 2.4, with the aid of the 
notion of a MINC-extension (defined in Section 2). Although we have 
not completely resolved the question of possible equivalence of condi
tions (b) and (ii), it is apparent that (b) => (ii), with the converse 
holding at least in case T is quasisemilocal (see Theorem 2.7). Indeed, in 
that case, (b) actually guarantees integrality, a phenomenon encountered 
also in Remarks 2.8 and 2.12 for the cases of certain pseudovaluation 
domains (in the sense of [20]), adjacent extensions ([6], [24]), and 
coherent pairs ([27], [28], [31]). 

(R, T) is called a lying-over pair (for short, an LO-pair) in case con
dition (b) is satisfied. As Section 2 details, examples of LO-pairs abound, 
the list thereof being augmented in Lemma 2.11 via localization and the 
D + M construction. Despite the special cases noted earlier, an LO-pair 
need not amount to an integral extension, the simplest example being 
F C F [X], for F any field (see Proposition 2.9). In fact, part of Section 
4 is devoted to indicating how such polynomial extensions and related 
integral extensions lurk within any nonintegral LO-pair. For a decidedly 
nonintegral, infinitely generated LO-pair, see Example 4.3. 

We develop new characterizations of integrality in terms of LO-pairs 
(in Corollaries 3.3, 3.5 and 3.6), the principal tool being the fact that 
LO-pairs exhibit going-up (GU) behavior. (See Corollary 3.2. Of course, 
an LO-extension need not satisfy GU.) Section 3 explores consequences of 
such GU-behavior, such as a bound on the transcendence degree of an 
LO-pair (in Proposition 3.7). Perhaps the most surprising of these con
sequences, Proposition 3.10, indicates that any LO-pair satisfies a weak 
form of INC. As a result (see Corollary 3.11), the Krull dimensions of 
any LO-pair (R, T) satisfy dim(P) ^ d im(r ) ^ dim(R) + 1. In short, 
the trust is not only that condition (b) of the "folklore theorem" implies 
part of (a), but that LO-pairs are in some ways much more similar to 
integral extensions than are P-extensions. 

Any unexplained terminology is standard, as in [17] and [22]. 
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2. LO-pairs and MINC-extensions. We begin by recalling some 
terminology from [19] and [10]. Given rings R C T and an element 
u G T, we say that u is primitive over R in case u is a root of a polynomial 
/ G i£[X] with unit content, i.e., such that the coefficients of/ generate 
the unit ideal of R. If each element of T is primitive over R, then R C T 
is said to be a P-extension. Next, adapting some terminology from [22, 
p. 35], we call (R, T) a survival pair in case PT ?£ T whenever P is a 
prime ideal of an intermediate ring between R and T. We now proceed to 
recast and establish the theorem stated in the introduction. 

THEOREM 2.1. For rings R C T, the following are equivalent: 
(1) T is an integral extension of R; 
(2) (i) R C T is a P-extension, and 

(ii) (R, T) is a survival-pair. 

Proof. It is straightforward to show (1) => (2). Indeed, (1) => (i) 
since any monic polynomial has unit content; and (1) =» (ii) since any 
integral extension satisfies LO (cf. [22, Theorem 44]). 

Conversely, assume (i) and (ii). If (1) fails, select u £ T such that u 
is not integral over R. By replacing R if necessary, wTe may suppose that 
R is integrally closed in T. Accordingly, RP is integrally closed in TR\P, 
for each maximal ideal P of R. Then, since u/\ G TR\P is primitive over 
RP, a lemma of Seidenberg (cf. [30, Theorem 6], [22, Theorem 67]) 
guarantees that either u/\ G Rp or (u/\)~l G RP. Now, the former 
possibility cannot hold for every P since u G R, and so there exists a 
maximal ideal M of R such that (u/1) G RM and (w/1) - 1 G RM, whence 
(u/l)~l G MRM- Since (ii) guarantees that M r ^ T, the usual modest 
boost from Zorn's lemma supplies a maximal ideal N of T containing MT. 
Of course, N C\ R = M, and so NTRXM is a proper ideal of TR\M. How
ever, 

1 = (u/l)-*(u/l) G {MRM)TRXM = MTRXM C NTRVd, 

the desired contradiction, to complete the proof. 

Before we can sharpen the characterization of P-extensions in [10], the 
following definition is needed. An inclusion R C T of rings is said to be 
a MINC-extension (the notation signifying "incomparability with respect 
to maximal ideals of R") if, whenever comparable prime ideals Qi C (?2 
of T each contract to the same maximal ideal (Qi H J ? = Q2 (^ R) oî R, 
one must then have Qi = Ç2. Evidently, each INC-extension is a 
MINC-extension, but as the next example shows, the converse fails. 

Example 2.2. Consider a tower of rings R C F C T, where F is a field, 
the domain i? is not a field, and T is not a field. Then R C. T is a MINC-
extension which is not an INC-extension. First, note that T contains a 
nonmaximal prime ideal, since T is not a field. Accordingly, to prove the 
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assertions, it is enough to show that each prime P of T contracts to the 
prime 0 in R. This, however, is immediate since P C\ F = 0, whence 
p r\R = (P C\ F) n R = 0, as desired. 

The extension in Example 2.2 is rather "large." In particular, it cannot 
be generated by a single element. One proof of this comes from the next 
assertion, which is a sharpening of the statement of the main result in [10]. 

THEOREM 2.3. For rings R C T and an element u G T, the following are 
equivalent: 

(1) u is primitive over R; 
(2) R C R[u] is a MINC-extension; 
(3) R Cl R[u] is an INC-extension. 

Proof. It is straightforward to check that the proof that (1) «=> (3) in 
[10, Section 2] may be adapted to establish that (1) <=> (2). 

Directly from Theorem 2.3 and the pertinent definitions, we next infer 
the promised strengthening of [10, Corollary 4]. 

COROLLARY 2.4. For rings R C T, the following are equivalent: 
(1) R C T is a P-extension; 
(2) R C R[u] is a MINC-extension, for each u Ç T; 
(3) A C B satisfies INC, for each inclusion of rings R C A C B C T. 

We next introduce a useful terminological device. If SP is a property 
which may be possessed by ring extensions then, by a SP-pair (R, T), we 
mean an extension R C T such that A (Z B satisfies SP for all inclusions 
of rings R C A C B C T. For example, condition (a) [resp., (b)] of the 
"folklore theorem" is simply the requirement that (R, T) be an INC-pair 
[resp., LO-pair]. Taking^ 5 to be the "survives in" property indicated in 
[22, p. 35], we see that a survival-pair (R, T) is an extension such that 
IB ^ B whenever one has rings R C A C B C T and a proper ideal / 
of A. Evidently, this coincides with the earlier definition of "survival-
pair." For other illustrations, if SP is the going-down property GD (resp., 
the property that the associated contraction map of prime spectra is 
injective), then a domain R with quotient field K produces a ^ -pa i r 
(R, K) if and only if R is a going-down ring in the sense of [7, p. 448] and 
[11, Theorem 1] (resp., an ^'-domain in the sense of [25]). Yet another use 
use of the "pair" terminology occurs in the following slight weakening 
of the preceding result. 

COROLLARY 2.4 (bis). For rings R C T, the following are equivalent: 
(1) R C T is a P-extension; 
(2) (22, T) isaMINC-pair; 
(3) (R, T) is an INC-pair. 
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Remark 2.5. By Corollary 2.4(bis), the assertion of the "folklore 
theorem" may be sharpened to the statement that a ring extension 
R C T is integral if and only if (R, T) is both a MINC-pair and an L0-
pair. Observe that any LO-pair must be a survival-pair, since any exten
sion which satisfies LO must also satisfy the "survives in" property. 
Thus, one possible sharpening of the "folklore theorem" would assert 
that integrality of R C T amounts to (R, T) being both a MINC-pair 
and a survival-pair. In fact, this is a valid sharpening: one merely needs 
to combine Theorem 2.1 and Corollary 2.4(bis). Thus, we have proved 
(a strengthening of) the "folklore theorem." 

A somewhat different proof of the same result, namely that integrality 
results when (R, T) is both a MINC-pair and a survival-pair, will next be 
sketched. As in the proof of Theorem 2.1, we may suppose R integrally 
closed in T and (by passage to R[u\) T algebra-finite over R. Now, for 
each maximal ideal P of R, "survival" produces Q G Spec(T) such that 
Q P\ R = P ; since R C T satisfies M INC, Q is not comparable with any 
other prime of T which contracts to P. Thus, by Zariski's main theorem 
(as, e.g., in [14, Theorem]), the canonical map Rf —> 77 is an isomorphism 
for some/ £ R\P. By varying P, we get finitely many elements/< such 

that Rfi —» Tfi for each i and ^Rfi = R. Since TiR f. is a faithfully 
flat P-algebra [3, Proposition 3, p. 109], the inclusion map R —> T is 
therefore an isomorphism [3, Proposition 1, p. 27]; that is, R = T, com
pleting the proof. 

Additional improvements of the i'folklore theorem" will be given in 
Corollaries 3.3 and 3.5 below. 

In comparing the corresponding conditions in the "folklore theorem" 
and Theorem 2.1, we are now led to the following question. Since the 
notion of P-extension (condition (i) in Theorem 2.1) coincides with the 
concept of (M)INC-pair ("folklore"'s condition (a)), it is natural to 
ask whether the notions of survival-pair (condition (ii)) and LO-pair 
(condition (b)) are equivalent. As noted in Remark 2.5, considering 
individual extensions shows that any LO-pair must be a survival-pair. 
However, as the next examples show, the converse is more subtle. 

Examples 2.6. Two examples are given to show that a ring extension 
R C T which satisfies the "survives in" property need not satisfy LO. 
(Note that we are not claiming that (R, T) is a survival-pair.) The first 
example presents Noetherian rings, and is due to Chevalley (cf. [4, 
Lemme 2]). For the example, let R be any local (Noetherian) domain of 
(Krull) dimension at least 2; by [4], R possesses a discrete (rank 1) 
valuation overring T whose maximal ideal N contracts to the maximal 
ideal M of R. Then R "survives in" T since each proper ideal I of R 
satisfies IT C MT C N £ T. However, R C T does not satisfy LO, 
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since T has but two primes (0 and N), neither of which contracts to a 
nonzero nonmaximal prime of R. 

The second example is nonNoetherian, and derives from W. J. Lewis' 
example [13, Example 4.4] of a treed domain which is not a going-down 
ring. In the example, dim(R) = 2, dim(T) = 1, T is a valuation domain, 
and R is quasilocal and contains a preassigned algebraically closed field. 
The reader is referred to [13] for details of the construction. 

At this point, it seems appropriate to indicate a frequent benefit 
accruing from consideration of "pairs." To wit: it often happens that two 
inequivalent properties SP and £f of ring extensions sustain only a one
way implication, say SP => SP\ while the concepts of ^ -pa i r and j^-pair 
manage to be equivalent. One example is afforded by taking & = INC 
and y = MINC (see Example 2.2 and Corollary 2.4(bis)). For another 
example, consider SP = mated (cf. [7]) and £P = i(njective contraction 
map): for details, see [25, Example 2.3 and Corollary 2.11]. As will be 
shown in Corollary 3.2, a third example arises from 0* = GU and 
5P = LO. Thus, somewhat undeterred by Examples 2.6, we shall con
tinue to seek instances in which survival-pairs must be LO-pairs. (The 
general question remains open.) In this vein, the next result generalizes 
the observation that T is integral over R whenever (R, T) is a survival-
pair for which T is a field. 

THEOREM 2.7. For rings R C T such that T is quasisemilocal, the 
following are equivalent: 

(1) T is integral over R; 
(2) (R, T) is an LO-pair; 
(3) (R, T) is a survival-pair. 

Proof. It remains only to prove that (3) => (1). By replacing R if 
necessary, we may suppose R integrally closed in T. By Theorem 2.1, it 
is enough to show [given (3)] that each element of T is primitive over R. 
If the assertion fails, Theorem 2.3 provides u £ T such that R C R[u] 
is not a MINC-extension. Thus, there exist distinct comparable primes 
Qi C Q2 of R[u] and a maximal ideal M of R such that QtC\ R = M for 
i = 1,2. Now, let eu:R[X] —» R[u] be the i^-algebra homomorphism 
sending X to u. Since MR[u] C Q\ we have 

MR[X]Ceu-
1(Q1)Ceu-

l(Q2), 

whence by [22, Theorem 37], MR[X] = eu-
l{Qx). In particular, 

ker(eM) C MR[X], and so MR[u] = Q\ is contained in infinitely many 
maximal ideals of R[u\. 

Let Nu . . . , Nk be all those maximal ideals of T which contract to M. 
(Note k < co since T is quasisemilocal ; possibly, k = 0.) Therefore, 
R[u] has a maximal ideal Q such that Qi C Q and Q j* NXC\ R[u] for 
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i = 1, 2, . . . , k. We claim this contradicts (3), for R[u] does not ''survive 
in" T. Specifically, we claim that QT = T. If not, then QT C N for 
some maximal ideal N of T, and 

QC QTC\R[u] C Nr\R[u], 

whence Q — N C\ R[u] by the maximality of Q. However, 

M = Qx (^ R C Q ^ R = N C\ R, 

whence M = N H R, contradicting the choice of Q, to complete the 
proof. 

The next result collects some additional instances in which the existence 
of LO-pairs guarantees integrality of the underlying extensions. 

Remark 2.8. (a) It is a standard fact (cf. [3, Theorem 1, p. 376]) that 
if R is a valuation domain and T an overring of R such that R ''survives 
in" T, then R = T. Along the same lines, now let R be a pseudovaluation 
domain, with quotient field K. (Recall, from [20], this means that, 
whenever elements x and y of K and a prime ideal P of R satisfy xy £ P, 
then either x £ P or y G P.) Let M be the (unique) maximal ideal of R, 
and T the (unique) valuation overring of R with maximal ideal M. 
(Such M and T exist, according to [20, Corollary 1.3 and Theorem 2.7]. 
In fact, Spec(R) = Spec(T) as sets. If R is not a valuation domain, then 
[20, Theorem 2.10] shows T = {a £ K:aM CR\- In general, by [1, 
Proposition 2.5], T = {a G K'.aM C M}). We claim, under these condi
tions, that (R} T) is a survival-pair if and only if T is the integral closure 
ofR. 

For the proof, it suffices to attend to the "only if" half. However, 
when (R, T) is a survival-pair, one infers readily from the condition 
Spec(i^) = Spec(T) that Spec(i^) = Spec(^4) for all rings A between R 
and T. Then, by "folklore," T is integral over R, whence T is the integral 
closure of R, as claimed. 

(b) Let R C T be an adjacent extension in the sense of [6]; i.e., R and 
T are distinct rings such that each ring between R and T coincides with 
either R or T. (In the notation introduced in [24], R C T.) We claim, 

max 

under these conditions, that R "survives in" T (that is, (R} T) is a 
survival-pair) if and only if T is integral over R. For the proof, it suffices 
to appeal to [6, (2.5.3)], itself a translation of work on "minimal homo-
morphisms" in [15, Théorème 2.2(ii)]. 

In fact, the above appeal to [6] also shows that if R C T is an integral 
adjacent extension, then T is module-finite over R and some maximal 
ideal of R is an ideal (necessarily maximal) of T. If, in addition, either 
R or T is quasilocal, then Spec(i^) = Spec(T), a condition met earlier 
in (a). (For a far-reaching generalization, see [1, Theorem 3.10].) For 
an example of this phenomenon, let R be any field and T = R[X]/(X2). 
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Additional references treating special cases of adjacent extensions include 
[18] and [26]. 

(c) If T is a flat overring of a domain R such that R "survives in" T, 
then R = T (thus yielding another case in which the presence of a 
survival-pair guarantees integrality). For the proof, one needs merely to 
examine an argument of [29, Proposition 2]. 

(d) Recall from [25, p. 21] that an extension A C B of rings has the 
finite fiber property in case each prime of A is the contraction of at most 
finitely many primes of B. By examining the proof of Theorem 2.7, one 
sees that T is integral over R if (R, T) is both a survival-pair and a 
finite fiber-pair. 

(e) One type of "pair" which will be met later (in Remark 3.12(b)) 
treats the going-down property 0* = GD. A family of GD-pairs was 
explicitly constructed in [7, Corollary 4.4 (iii)]. For the present, we wish 
to note that whenever (R, T) is both a survival pair and GD-pair, then 
(R} T) is an LO-pair. (However, it will follow from Proposition 2.9 that 
T need not be integral over R in this case.) For the proof, it is enough to 
observe that whenever A "survives in" B and A C B satisfies GD, then 
A Ç_ B also satisfies LO: cf. [22, Exercise 38, p. 45]. 

Despite the special results in Theorem 2.7 and Remark 2.8(a), (b), (c) 
and (d), not all LO-pairs arise from integral extensions. The next result 
presents the archetypical example of this phenomenon. Suitably inter
preted, its analysis will recur in the characterization in Theorem 4.1 of 
those LO-pairs whose first component is a field. 

PROPOSITION 2.9. If F is any field, then (F, F[X]) is an LO-pair. 

Proof. It suffices to show that A C F[X] satisfies LO for all rings A 
between F and F[X]. If A = F, this is obvious, since 0 is the only prime 
ideal of F. If A F^ F, select u Ç A\F, and write 

u = <2o + d\X + . . . + cinX
n 

for suitable coefficients at £ F, with an 9^ 0. Then X is a root of the monic 
polynomial 

On-'i-u + ZatY*) e (F[u])[Y}. 

Hence, X is integral over F[u] and, a fortiori, F[X] is integral over A} 

from which the desired conclusion follows immediately. 

In order to obtain "larger" examples of nonintegral LO-pairs, it will 
be convenient to collect (in Lemma 2.11) some facts about the behavior 
of LO-pairs under certain constructions. First, we pause to give a "simple 
overring" characterization of LO-pairs. It may be viewed as an analogue 
of the characterization of (M)INC-pairs via condition (2) in Corollary 
2.4. 
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PROPOSITION 2.10. For any inclusion R C T of rings, (R, T) is an LO-
pair if and only if A C A [u] satisfies LO whenever u G T and A is a ring 
between R and T. 

Proof. The "only if" half is trivial. If the "if" half fails, there exists 
a ring A between R and T, together with a prime P G Spec (̂ 4 ), such that 
no prime of T contracts to P. Consider the set 

S = {(B,W):B [saving, A C B C T, W G Spec(B),Wr\A = P) 

together with the partial order on 5 given by 

(Si, Wi) g (B2, W2) «=» [Si C B2 and ^ 2 ^ ^ = tTi]. 

It is straightforward to verify that 5 contains an upper bound for any 
given chain in 5 and so, by Zorn's lemma, there is a maximal element 
(D, Q) G S. Since no prime of T contracts to P, we have D ^ T. Select 
u G T\D. By hypothesis, D C D[u] satisfies LO, and so some prime W 
of D[u] satisfies W C\ D = Q. Then (D[u], W) G S} contradicting maxi-
mality of (D, Q), to complete the proof. 

For part (a) of the next result, the reader is assumed to be familiar 
with the basic facts about the D + M construction, as summarized in 
[2, Theorems 2.1 and 3.1]. Note that part (b) is an analogue of a result 
for P-extensions (that is, INC-pairs) established in [19, Theorem 4] and 
[10, Corollary 9]. Analogues of (c) abound: cf. [6, Theorem 2.7]. 

LEMMA 2.11. (a) Let V be a valuation domain of the form F + M, where 
F is a field and M is the maximal ideal of V. Let R C T be subrings of F. 
Then (R + M, T + M) is an hO-pair (resp., a survival pair) if and only 
if (R, T) is an hO-pair (resp., a survival pair). 

(b) Let R C A C T be rings. If (A, T) is an hO-pair (resp., a survival-
pair) and R d A is integral, then (R, T) is an LO-pair (resp., a 
survival-pair). 

(c) For rings R C T, the following are equivalent: 
(1) (R, T) is an LO-pair; 
(2) (Rs, Ts) is an LO-pair for each multiplicative subset S of R; 
(3) (RM, TR\M) is an LO-pair for each maximal ideal M of R. 

Proof. (Sketch): (a) The typical ring which is contained between 
R + M and T + M is of the form A + M, for a ring A intermediate 
between R and T. Prime ideals of A + M are of two types, viz., primes 
of V and primes of the form P + M, corresponding to P G Spec (A). 
Given these facts, one finds that the key to the assertion concerning sur
vival-pairs is the observation that (P + M) (T + M) = PT + M. For 
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the assertion about LO-pairs, the key fact is that 

(Q + M) C\ {A + M) = (Q r\ A) + M 

for Q G Spec(r) . 
(b) To establish the assertion about LO-pairs, it is enough to prove that 

B C T satisfies LO whenever B is a ring between R and T. To do this, 
use a "rectangle argument", in the sense described in [13, p. 270]. Speci
fically, "factor" B C T as the composite of the extensions B C BA and 
BA C T. The first of these extensions is integral (since A is integral over 
R), and thus satisfies LO; the second also satisfies LO, since (A, T) is an 
LO-pair. Thus, B C T satisfies LO, as desired. The proof carries over, 
mutatis mutandis, for the assertion about survival-pairs. 

(c) The typical ring contained between Rs and Ts is of the form As, 
for a ring A between R and T. Verification of the assertions then reduces 
to checking the following two statements. As d Ts satisfies LO whenever 
A C T satisfies LO; and A C. T satisfies LO whenever ARXM C TB\M 

satisfies LO for each maximal ideal M of R. Both of these facts are easy 
consequences of the description of primes in localizations (cf. [3, Proposi
tion 1 l(ii), p. 70]). 

Remark 2.12 and Proposition 2.13 present our initial applications of 
the preceding lemma. 

Remark 2.12. (a) For each n, either a nonnegative integer or the symbol 
oo , there exists an LO-pair (R, T) such that dim(R) = n and T is not 
integral over R. For such a construction, let F be a field. If n = 0, then 
Proposition 2.9 shows that (F, F[X]) is a satisfactory pair. In general, 
let F(X) + M be a valuation domain of dimension n (with maximal ideal 
M)\ then, by Lemma 2.11(a) and the lore of the D + M construction, 
{F + M, F[X] + M) is a satisfactory (R, T). 

Note that dim(T) = dim(R) + 1 for the above construction of 
(R, T). For an extension of this fact, see Corollary 3.11 below. 

(b) For the above construction of (R, T) = (F + M, F[X) + M), 
observe that T is an overring of R but, by [12, Theorem 3], R is not 
coherent (if n > 0). Indeed, by [9, Proposition 3.9], R is not even a 
locally finite-conductor domain. (Recall that a domain A, with quotient 
field K, is said to be finite-conductor if, for each v (E K, the conductor 
{a G A lav 6 A} is a finitely generated ideal of A. Examples of finite-
conductor domains include all coherent domains and GCD (pseudo-
Bézout) domains. More generally, a domain A is called locally finite-
conductor if AM is finite-conductor for each maximal ideal M of A.) 
Another approach to this, in the same spirit as Theorem 2.7 and Remark 
2.8, will next be given. 

First, some terminology is needed. By a locally finite-conductor pair 
(A, B) is meant an extension A C B of rings such that each ring con-
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tained between A and B is a locally finite-conductor domain. Examples 
include the "coherent pa i r s" recently introduced in [27] and [28]. As 
special cases of these, one has the "Noether ian pa i r s" studied in [31]; 
for an impor tan t instance of those, see [16, Theorem, p . 129]. Finally, the 
promised result may be s ta ted: if T is an overring of R such t h a t (R, T) 
is both an LO-pair and a locally finite-conductor pair, then T is integral 
over R. 

For the proof, we may take R to be integrally closed in T. By globaliza
tion [3, Corollary 1, p . 88], it is enough to prove t h a t RM = TR\M for 
each maximal ideal M of R. By Lemma 2.11(c), (RM, TR\M) is an LO-
pair. Moreover, RM is a finite-conductor domain which is integrally 
closed in its overring TR\M, and so [23, Theorem 2] may be applied to showr 

t ha t RM = TR\M, completing the proof. 

Before the s ta tement of the next result, it is convenient to recall 
(cf. [3, Exercise 16, p . 143; Corollary, p . 92; Exercise 17, p . 46]) t ha t a 
ring A is von Neumann regular (absolutely flat) if and only if A P is a 
field for each P £ Spec (^4); and t h a t dim (^4) = 0 if and only if the 
reduced ring associated to A is von N e u m a n n regular. 

PROPOSITION 2.13. Let R be a ring. Then (R, R[X]) is an LO-pair if 
and only if dim(R) = 0. 

Proof. First , a reduction is needed. Let T = R/\/R, the reduced ring 
associated to R. By the above remarks , dim (R) = 0 if and only if T is von 
Neumann regular. We shall need the fact t h a t (R, R[X]) is an LO-pair 
if and only if (T, T[X]) is an LO-pair. (This is somewhat subtle to es tab
lish. T h e relevant techniques will appear in the proof of Lemma 3.1 below 
and so, for reasons of space, we omit details a t this point .) Accordingly, 
we may assume henceforth t h a t R = T, i.e., t h a t R is reduced. 

By Lemma 2.11(c) and the preceding remarks , R may be assumed 
quasilocal. Then Proposition 2.9 dispatches the "if" half. Next , if the 
"only if" half fails, select a nonzero element, b, in the maximal ideal M 
of R, and consider B = R[bX]. By hypothesis , B C R[X] satisfies LO, 
and so some prime Q of R[X] satisfies Q H B = MB. (Note t h a t MB is 
a prime of R since b is not nilpotent .) As bX Ç MR[X] C\ B C Q H B, 
it follows t ha t 

bX Ç MB = M + bMX + b2MX2 + . . . . 

Hence b = bm for some m G M and, since 1 - m i s a uni t of R, we have 
b — 0, contradict ing the choice of b, to complete the proof. 

Let R be a domain, with integral closure R' and quot ient field K. Recall 
from [19, Theorem 5] and [10, Corollary 5], as t ransla ted with the aid of 
Corollary 2.4(bis), t h a t (R, K) is a ( M ) I N C - p a i r if and only if R' is a 
Priifer domain. However, the si tuation for survival-pairs or LO-pairs is 
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less interesting here, for (R, K) is such a pair if and only if R = K. The 
next result indicates that a more interesting prospect arises if one 
eliminates the overring K from consideration. It may be viewed as a 
generalization of the fact (cf. [22, Exercise 29, p. 43]) that R and K are 
the only overrings of R if and only if R is a valuation domain of dimen
sion at most 1. First, we need to recall from [25, Proposition 2.34] that 
R is a quasilocal i-domain if and only if each overring of R is quasilocal ; 
that is, by [25, Corollary 2.15] (see also [8, Corollary 2.5] and [17, 
Theorem 26.2]), if and only if Rf is a valuation domain. 

PROPOSITION 2.14. For a domain R with quotient field K, the following 
are equivalent: 

(1) R is a quasilocal i-domain and à\m(R) ^ 1; 
(2) (R, T) is a survival-pair for each ring T such that R C T £ K; 
(3) (R, T) is an LO-pair for each ring T such that R C T ^ K. 

Proof. (1) => (3). By (1), Rf is a valuation domain of dimension at 
most 1. But R and R' share the same valuative dimension (by [17, 
Proposition 30.13]), and dim^ (R') = dim(R') since Rr is a Prufer 
domain. Hence each overring of R is quasilocal and has dimension at most 
1, from which (3) is evident. 

(3) =» (2). This is trivial. 
(2) => (1): Let A be any overring of R other than K. By (2), P 

1 'survives in" AP for each nonzero prime ideal P of A. It follows that each 
maximal ideal M of A satisfies M C. P, whence A is quasilocal, of dimen
sion at most 1. Accordingly, (1) holds, and the proof is complete. 

To close the section, note that Proposition 2.14 specializes, in the case 
of integrally closed R, to yield two new characterizations of the valuation 
domains of dimension at most 1. 

3. LO-pairs are going-up. The types of ^ -pa i rs considered in 
Section 2 included the following choices for ^ : I N C , LO, and GD. 
Another property of extensions which is traditionally cited in such lists 
is the going-up property GU (cf. [22, p. 28]), and so one might wonder 
why GU-pairs were not treated earlier. The fact is (see Corollary 3.2) 
that the GU-pairs coincide with the LO-pairs, and this section is devoted 
to exploring consequences of this fact. Before beginning with a technical 
lemma, it is first convenient to recall from [22, Theorem 4.2; Exercise 3, 
p. 41] that GU => LO and LO *» GU. 

LEMMA 3.1. Let R C T be rings. Then: 
(a) R C T satisfies GU if and only if, for each Q Ç Spec(T), P = 

QC\Ris such that R/P C T/Q satisfies LO. 
(b) (R} T) is an LO-pair if and only if, for each Q G Spec(r) , P = 

QC\ R is such that (R/P, T/Q) is an "LO-pair. 
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Proof. An easy, but key, observation is the following. If Qi C Qi are 
primes of T and we set P f = QiC\ R for i = 1, 2, then 

(G2/0l) O. (i?/Pl) = P2/P1. 

This much said, the remaining details for (a) may safely be left to the 
reader. 

As for (b), the "if" half is straightforward. Indeed, to verify that 
(R, T) is an LO-pair, it is enough to show that A C T satisfies LO for all 
rings A between R and T. Since GU => LO, it therefore suffices, by part 
(a), to prove that A/W C T/Q satisfies LO whenever Q £ Spec(T) and 
W — QC\A. However, by hypothesis, P = Q C\ R is such that 
(R/P, T/Q) is an LO-pair and, since R/P C A/W C T/Q, the desired 
result follows. 

The proof of the "only if" half of (b) is a bit subtler. Indeed, in case 
(R, T) is an LO-pair, Q £ Spec(T) and P = Q C\ R, our task is to show 
that D C T/Q satisfies LO for each ring D contained between R/P and 
T/Q. To this end, note that R/P is contained in T/Q by virtue of the 
canonical ring-isomorphism 

R/P % (R + Q)/Q, 

and so D may be identified as D — A/Q, where A is a suitable ring con
tained between R + Q and T. Now, R + Q C T satisfies LO since 
(R, T) is an LO-pair. Thus, by applying the proof's first observation 
[with R replaced by R + Q, and Qi = Pi = Q], we see that the extension 
(R + Q)/Q C T/Q inherits LO from R + Q C T, which completes the 
proof. 

We pause to reiterate that the techniques used in the preceding proof 
permit one to complete the proof of Proposition 2.13. 

As was promised following Examples 2.6, the next result affords another 
instance in which the "pair" approach surmounts one-way implications. 

COROLLARY 3.2. For any extension R C T of rings, (R, T) is a GU-pair 
if and only if (R, T) is an LO-pair. 

Proof. Of course, the "only if" half is immediate, since GU => LO. 
For the "if" half, one need only note that the criterion in part (a) of 
Lemma 3.1 is a formal consequence of the criterion in part (b). 

Recall from Remark 2.5 that the "folklore theorem" translates to the 
statement that an extension R C T of rings is integral if and only if 
(R, T) is both a MINC-pair and an LO-pair. This result will be sharp
ened in Corollaries 3.3 and 3.5. 

COROLLARY 3.3. For rings R C T, the following are equivalent: 
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(1) T is an integral extension of R; 
(2) (a)T may be generated as an R-algebra by a set of elements each of 

which is primitive over R, and 
(b) (R, T) is an LO-pair. 

Proof. By virtue of Proposition 2.10 and Corollary 3.2, the assertion 
translates to [10, Remark 8(c)]. 

Recall from [5, p. 176] that a normal pair consists of a domain A and 
an overring B such that each ring contained between A and B is integrally 
closed in B. The next result is in the spirit of Remarks 2.8 and 2.12(b). 

COROLLARY 3.4. / / (R, T) is both an LO-pair and a normal pair, then 
R = T. 

Proof. By Lemma 2.11(c) and the remarks in [5, p. 176], R may be 
assumed quasilocal. If the assertion fails, select u G T\R. As R C R[u] 
is not integral, Corollary 3.3 guarantees that u is not primitive over R. 
In particular, 1 $ MR[u], where M denotes the maximal ideal of R. 
However, by [5, Proposition 1], either u £ R or u~l Ç R, whence 
u~l £ i f and 1 = u~lu £ MR[u], the desired contradiction. 

COROLLARY 3.5. For rings R Q T, the following are equivalent: 
(1) T is integral over R; 
(2) (X) R C T is a MINC-extension, and 
(b) (R, T) is an LO-pair. 

Proof. By the above comments and Corollary 2.4, it suffices to show 
that (X) and (b) jointly guarantee that R C R[u] is a MINC-extension 
for each u G T. However, this is a formal consequence of combining the 
facts that (thanks to Corollary 3.2) R[u] C T satisfies GU (and LO) 
with the datum (X). The proof is complete. 

A theorem of Kaplansky [21] asserts an extension R C T of rings is 
integral if (and only if) the extension R[X] C T[X] of polynomial 
rings satisfies GU. In tandem with Corollary 3.2, this readily implies 
the next result. 

COROLLARY 3.6. An extension R C T of rings is integral if and only if 
(R[X), T[X]) is an "LO-pair. 

Recall from [10, Corollary 4] that if T is a (commutative) algebra over 
a field F, then (F, T) is a (M)INC-pair if and only if T is algebraic over 
F. The next result studies LO-pairs in this context. For motivation, see 
[24, Corollary 4, p. 10] and [31, Theorem 4]. 

PROPOSITION 3.7. Let F be afield and T an F-algebra such that (F, T) is 
an LO-pair. Then dim(T) ^ 1. If, in addition, T is a domain, then 

tr. degF(T) S 1. 
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Proof. If the first assertion fails, consider a chain Pi C Pi C Pz of 
three distinct primes in T. Select u £ Pi\P\ and v G P\P2. By passage 
to F[u, v], with the aid of the primes Pi H F[u, v], we may thus assume 
that T is algebra-finite over F. Hence, by Noether's normalization lemma, 
T contains two elements, X and Y, (transcendental and) algebraically 
independent over F. We next sketch two ways to complete the proof. 

First, set A = F[Y]. Since F C F[X] C A[X] C T and (F, T) is an 
LO-pair, Corollary 3.2 guarantees that F[X] C A[X] satisfies GU. 
Thus, by the result of Kaplansky stated above, A is integral over F, a 
contradiction since Y is transcendental. 

For a second proof, which makes no use of [21], we again let A = F[Y]. 
Since F C A C A[X] C T and (F, T) is an LO-pair, (A,A[X]) must 
also be an LO-pair. Therefore, by Proposition 2.13, A is von Neumann 
regular, the desired absurdity. 

If the final assertion fails, then the quotient field K of T satisfies 
tr. degF (K) ^ 2. Select nonzero a, b, c, d G T such that u = ab~l and 
v = cd~l are algebraically independent indeterminates over F. If A = 
F[a, b, c, d], the result that was just established shows dim (A) ^ 1, 
although 

2 = tr. degF (F[u, v]) S tr. degF (F(a, b, c, d)) = tr. degF (-4) 
= dim(A), 

the desired contradiction. 

Remark 3.8. We pause to show that Proposition 2.10 is a best-possible 
LO-analogue of Corollary 2.4, in the following sense. There exists a ring 
extension R C T such that R (Z R[u] satisfies LO for each u G T 
although (R, T) is not an LO-pair. For example, let X and Y be alge
braically independent indeterminates over a field F, let R = F} and set 
T = F[X, Y]. It is trivial that each R C R[u] satisfies LO. However, by 
Proposition 3.7, (R, T) is not an LO-pair since dim(T) = 2. 

Examples of LO-pairs have included, inter alia, integral extensions and 
certain polynomial ring extensions. The next result shows that arbitrary 
LO-pairs not only bring forth associated integral extensions but also 
exhibit a property shared by all polynomial extensions (cf. [22, Theorem 
37]). 

COROLLARY 3.9. Let (R, T) be an LO-pair, and let P G Spec(i^). Then: 
(a) If Q is a maximal ideal of T such that Q C\ R = P, then R/P C T/Q 

is an algebraic extension of fields. 
(b) There is no chain Qi C Qi C Qz of distinct primes of T such that 

QiC\R = P for i = 1,2,3. 

Proof, (a) As Q is maximal and (thanks to Corollary 3.2) R C T 
satisfies GU, it follows that P is maximal. Howrever, by Lemma 3.1(b), 
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the fields R/P and T/Q form an LO-pair, and so the desired assertion is 
obtained by applying (the comment preceding) Theorem 2.7. 

(b) Lemma 2.11(c) guarantees that (RP, Ts) is an LO-pair, where 
5 = R\P. If Q = ft C ft C ft are distinct primes of T contracting to 
P, it follows from Lemma 3.1(b) that (RP/PRP, Ts/QTS) is also an 
LO-pair. Thus, by Proposition 3.7, 

dim(Ts/QTs) £ 1. 

However, the chain formed by the primes QiTs/QTs reveals 

&m(Ts/QTs) è 2, 

a contradiction, completing the proof. 

On comparing corresponding conditions in the statements of Corollary 
3.5 and the ''folklore theorem", one might well ask whether LO-pairs 
satisfy that aspect of the INC property which is not addressed by M INC. 
The next result provides an affirmative answer. 

PROPOSITION 3.10. Let (R, T) be an LO-pair. If comparable prime 
ideals ft C ft of T contract to the same nonmaximal prime ideal 
P( = QlC\R = ft H i ? ) , then ft = ft. 

Proof. By Lemma 3.1(b), (R/P, T/Qi) is an LO-pair of domains. 
Since P is nonmaximal, R/P is not von Neumann regular, and so Propo
sition 2.13 shows that T/Qi is an algebraic extension of R/P. Thus, any 
u 6 ft\ft (if such exist) satisfies 

un + rxu
n-x + . . . + rn_iw + rn G ft 

for finitely many suitable elements rt G R. Hence, 

rn e (Tu + ft) n R c ft n R = p c ft, 
so that v = un~l + riun~2 + . . . + rn_1 satisfies uv G — rn + ft = ft. 
As u $ ft and ft is prime, it follows that v G ft. By repeating the argu
ment enough times, we see that u G ft, a contradiction. Hence, no such 
u exists; i.e., ft = ft, as asserted. 

COROLLARY 3.11. / / (R, T) is an LO-pair, then 

dimCR). S dim(T) S dim(R) + 1. 

Proof. AsR Q T satisfies GU by virtue of Corollary 3.2, it follows that 
dim(i?) ^ d im( r ) . (Cf. [22, Theorem 46]). On the other hand, the 
inequality dim(T) ^ dim(R) + 1 follows directly by combining Corol
lary 3.9(b) and Proposition 3.10. 

Remark 3.12. (a) As Proposition 2.13 shows, the condition dim(T) = 
dim(i^) + 1 obtains for certain (nonintegral) LO-pairs (R, T). In view 
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of Corollary 3.11, one might ask whether the remaining possibility, 
dim(P) = dim(P), characterizes integral extensions amongst the LO-
pairs. We show next that the answer is negative in general. 

For a counterexample, let (P, T) = (P + M, F[X] + M) as in Re
mark 2.12(a), such that the dimension of the ambient valuation domain 
F(X) + M is n = oo. Evidently, (P, T) is an LO-pair, dim(P) = 
dim (7") = oo , but T is not integral over R. 

(b) Before giving an affirmative counterpart of the result in (a), 
observe the following going-down behavior. For the spécifie (P, T) in 
(a), each u £ T is of the form v + m for suitable v 6 F[X] and m 6 M, 
whence R[u] = F[v] + M, and so R C R[u] satisfies GD by virtue of 
[11, Corollary]. Then, by considering the specific GD-pairs cited in 
Remark 2.8(e), we are led to conjecture the following result. Let (P, T) 
be an LO-pair and n a nonnegative integer such that each maximal ideal 
of R has height n. Assume that dim(P) = n(= dim(P)) . If either (1) 
R C R[u] satisfies GD for each u G T\R or (2) R[u] is treed for each 
u £ T\R, then T is integral over R. 

For the proof, deny, and argue as in the proof of Theorem 2.7. Then 
the supposed failure of M INC leads to a maximal ideal M of R and an 
element u of T\R such that MR[u] is a nonmaximal prime ideal of A = 
R[u]. Select a chain P 0 C P i C • • • C Pn = M of n + 1 distinct primes 
of R. In case (1), we obtain (via GD) a chain Ço C Q\ C • • • C Qn-i C 
MA of primes of A such that Qt Pi R = Pi for i = 0, 1, . . . , n - 1. 
Since MA is not maximal, it follows that dim(^4) ^ n + 1. However, 
since (̂ 4, T) is an LO-pair, Corollary 3.11 yields dim (̂ 4) ^ dim(T) = w, 
a contradiction. For case (2), Corollary 3.2 provides, via GU, a chain of 
primes W0 C. Wi C . . . C Wn of ^ such that IF, H i? = P , for i = 
0, 1, . . . , n. We may assume that Wn properly contains MA. Since A is 
supposed treed, MA and Wn-\ are comparable. As 

MA C\R = M (t Pn_! = PFw_i H R, 

it follows that PFw_i C MA, so that the height of Wn in yl is at least 
n + 1. However, as above, Corollary 3.11 shows that dim (̂ 4) ^ n, the 
desired contradiction. 

It is an open question whether the above result may be extended to the 
case in which (n < oo and) neither (1) nor (2) is assumed. 

4. LO-pairs with first coordinate a field. One upshot of Lemma 
3.1(b) is that the study of LO-pairs (P, T) may be reduced to the case 
in which R and T are domains. As was apparent from the consequences in 
Section 3 of Proposition 3.7, the special case in which R is a field merits 
further consideration. We begin this brief, final section by characterizing 
this case. 
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T H E O R E M 4.1 . Let F C T be rings such that T is a domain and F is a 
field. Then the following are equivalent: 

(1) (F, T) is an hO-pair; 
(2) T is integral over each ring A contained between F and T such that A 

is not afield; 
(3) T is integral over F[u]for each element u G T which is transcendental 

over F. 
Moreover, if the above conditions hold, then T is integral over F[v]for some 

element v £ T. 

Proof. (1) => (2). Assume (1) and consider a ring A, F C A C F, such 
tha t A is not a field. Of course, A is not algebraic over F (cf. [22, 
Theorem 48]). Thus , by Proposition 3.7, 

tr . deg F (A) = 1 = dim (A). 

Moreover, any ring B which is between A and T satisfies 

tr. deg F (A) ^ tr. deg F (B) ^ 1 

(again, by Proposition 3.7), so t ha t tr. degF (B) = 1 = dim(B). The 
desired conclusion, tha t T is integral over A, may be obtained in two 
ways. Specifically, observe t ha t (A, T) is a (M)INC-pa i r and apply 
the "folklore theorem" (or Remark 2.5 or Corollary 3.5); or apply the 
result in Remark 3.12(b) [both of whose auxiliary conditions hold in the 
present case]. 

(2) => (3). This is trivial. 
(3) => (1). Assume (3), and consider a ring A between F and T. Our 

task is to show tha t A C F satisfies LO. Wi thout loss of generality, A is 
not a field. Hence, A is not algebraic over F; t ha t is, there exists an 
element u £ A which is t ranscendental over F. By (3), T is integral over 
F[u] and, a fortiori, also integral over A, whence A C T satisfies LO, as 
desired. 

The final assertion follows from condition (3) unless T is algebraic over 
F, in which case setting v = 0 suffices. The proof is complete. 

If T is a domain containing a field F then, by a standard factorization of 
T {over F), we shall mean inclusions F C F[u] C T arising from an 
element u G T such tha t T is integral over F[u}. I t is clear t ha t if a do
main T which contains a field F happens to sustain a s tandard factoriza
tion, then tr. degF(T) ^ 1 ; by Noether 's normalization lemma, the 
converse holds in case T is algebra-finite over F. By Theorem 4.1, there 
is a s tandard factorization whenever the field F and domain T are such 
t ha t (F, T) is an LO-pair. The next result furthers the preceding 
observations. 

Remark 4.2. (a) If T is a domain containing a field F and tr. deg F {T) = 
1, it need not be the case t ha t T has a s tandard factorization over F. 
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Indeed, if T = F[X]XF[X]j then one cannot find an element u £ T and a 
field K between F and T such that T is integral over K[u\. (Sketch of 
proof: Deny. Since T is local, integrality forces K[u] to be local, whence u 
is algebraic over K. By transitivity of integrality, T is integral over K, so 
that 1 = d im(r ) = dim(K) = 0, a contradiction.) 

(b) The example in (a) also shows that the converse of the final 
assertion of Theorem 4.1 is false. Specifically, there exists a domain T 
containing a field F such that tr. degF (T) = 1 and (F, T) is not an 
LO-pair. (For a simpler example, consider F C F(X) = A. Observe, 
moreover, that A does not sustain a standard factorization over F. 
However, A does have the more general type of factorization treated in 
(a): it suffices to set K = A and u = 0.) We next present an algebra-
finite example of this phenomenon. 

Let F be any field, and set B = F[X, (X - l ) - 1 ] , viewed inside F(X). 
Then B is algebra-finite over F, tr. degF (B) = 1 and, since (X — 1) £ 
Spec(/?[X]) does not "survive in" B, it follows that (F, B) is not an 
LO-pair. 

(c) We next present an example of an LO-pair each of whose standard 
factorizations have nontrivial integral part. Specifically, we claim that 
T = C[X2, Xs] is such that (R, T) is an LO-pair, but one cannot find a 
field K between R and T, together with an element u £ T, such that 
T = K[u]. 

For the proof, apply Lemma 2.11(b) and Proposition 2.9 to the chain 
R C C C C[X], to conclude that (R, C[X]) is an LO-pair. It follows, a 
fortiori, that (R, T) is also an LO-pair, as asserted. If the final assertion 
fails, so that R C ^ C K[u] = T, then T cannot be algebraic over the 
field K. Thus, 

tr. degR K = tr. degR T — tr. degK T = 0. 

By the fundamental theorem of algebra, I C C . Hence T = C[u], 
which is w^ell-known to be impossible. The proof is complete. 

The next example significantly extends the moral of Remark 4.2(c). 

Example 4.3. Let F be a field of characteristic p > 0, and set 

T = F[XyX
llv,X"v\. . . yX

l/pn, . . .] 

viewed inside an algebraic closure of F(X). Then (F, T) is an LO-pair 
each of whose standard factorizations have infinitely-generated integral 
part. 

To begin the proof, we claim that there is no field L such that F £ 
L C T. Indeed, if such L exists, select v G L\F. As v~l 6 L, there exists 
a positive integer n such that v, v~l Ç F[X1/pn]. However, F[X1/pn] is 
(isomorphic to) the T^-algebra of polynomials over Fin one indeterminate, 
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and hence all its units lie in F. In particular, v £ F, the desired contra
diction. 

Next, if A is any ring such that F ^ A C F, we claim that dim (A) = 1. 
Indeed, dim (̂ 4) > 0, by the result of the preceding paragraph. On the 
other hand, if dim (̂ 4) > 1, choose a chain of distinct primes O C ^ i C 
P 2 of A. By arguing as at the start of the proof of Proposition 3.7, one 
produces a finite-type F-subalgebra B of A such that dim (B) ^ 2. Select 
a positive integer n such that B C F[X1/pn]. Then 

dim(5) = tr. degF (B) ^ tr. degF (F[Xllpn\) = 1, 

the desired contradiction. 
To show that (F, F) is an LO-pair, Theorem 4.1 reduces the task to 

proving that F is integral over each ring A contained properly between 
F and F. Observe, by the result of the preceding paragraph, that (A, F) 
is a MINC-pair. Accordingly, by Remark 2.5, it suffices to show that 
(A, F) is a survival-pair. If this fails, some ring B such that A C B C F 
and some prime P of B satisfy PF = F. One deduces an equation 
1 = ^bttif where bt G P and tt Ç F for each i. Choose a positive integer 
n such that bu h £ F[Xl/pn] for each i. Set D = F[{bi}] inside B} and 
let Q = PC\D G Spec(Z)). Observe, from the above equation, that Q does 
not ''survive in" F[Xl/pn], contradicting the fact that (thanks to Propo
sition 2.9), (Fy F[X1/pn]) is an LO-pair. This completes the proof that 
(F, F) is an LO-pair. 

To establish the final assertion, we shall actually showT it is impossible 
to have an element u G T and a field K between F and F such that F is 
finitely-generated as a K[u)-algebra. Indeed, if such u and K existed, 
the first observation of the proof would force K = F. Then F would be 
a finite-type P-algebra, so that F C F[X1/pn] for a suitable positive integer 
n, contradicting the presence in F of Xl/pn+l. This completes the proof. 

Recently, Zaks [32, Lemma 32] has shown that whenever domains 
A C B satisfy dim(B) = dim(^4) + 1 < oo and B is a subring of a 
polynomial ring over A in several (possibly, infinitely many) variables, 
then B is isomorphic with a suitable subring of A [X], the polynomial ring 
over A in one variable. The next result uses the preceding example to 
address the question of a possible analogue for LO-pairs. 

Remark 4.4. (a) Our first result is negative. Specifically, it is possible 
for an LO-pair (A, B) to satisfy dim(^4) = 0 and dim(B) = 1 without 
forcing B to be isomorphic writh a subring of ^4[X]. For example, let 
(A, B) = (F, F) as in Example 4.3, and assume further that F is the 
finite field with p elements. For convenience, let Y denote an indeter
minate over F. If the assertion fails, there exists an injective ring-homo-
morphism h'.F —> F[ Y], Since h (I) = 1 and F is a prime field, h restricts 
to the identity map on F. Now if/„ = h(Xl/pn) for each positive integer n} 
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then the equations (X1/pn+1yn = XUp entail (fn+i)pn = fu since ft is a 
homomorphism. Comparing degrees, we find that 

d e g ( / i ) = pndeg(fn+1) 

for each n. Hence, deg (/i) = 0, and s o / i G F, contradicting the fact 
that h is an injection. 

(b) But, there is a positive side, too. Once again, let (A, B) = (F, T) 
as in Example 4.3. This time, F will be chosen "large". To wit: let 
Y, X, Xi, X2, XZJ . . . be denumerably many algebraically independent 
indeterminates over the prime field Z/pZ, and set 

F= Z/pZ({Xt
l"i}1Si,i), 

viewed inside the algebraic closure of Z/pZ(Xi, X2, X3, . . .). Then an 
injective ring-homomorphism h:T —> F[Y] does exist. In fact, it is 
evident that, by sending X to X\ and Xt to Xi+i for each i ^ 1, one may 
construct such a Z/£>Z-map h whose image lies within F. 

We close with a return to the archetypical examples. The final result 
may be regarded as a companion to Corollary 3.9(a). 

PROPOSITION 4.5. Let (R, T) be an LO-pair such that T is not integral 
over R. Then there exist a maximal ideal M of R, a nonmaximal prime ideal 
Q of T satisfying Q C\ R = M, and an element X G T/Q such that X is 
transcendental over the field F = R/M and T/Q is integral over F[X]. 
(Thus, R/M C T/Q factors as the composite of an integral extension and a 
polynomial ring extension over afield.) 

Proof. By Corollary 3.5, R C T is not a M INC extension. Thus, some 
nonmaximal prime Q of T contracts to a maximal prime M of R. Let 
F = R/M. By Lemma 3.1(b), (F, T/Q) is an LO-pair, and so Theorem 
4.1 supplies a standard factorization F C F[u] C T/Q; that is, u G T/Q 
and T/Q is integral over F[u]. It remains only to show that u is a satis
factory X, that is, that u is not algebraic over F. If the result fails, then 
F C T/Q is a composite of integral extensions, hence integral, so that 
T/Q is a field, contradicting the nonmaximality of Q. This completes the 
proof. 
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