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Misha Feigin and Alexey Silantyev

Abstract

We consider the polynomial representation S(V ∗) of the rational Cherednik algebra
Hc(W ) associated to a finite Coxeter group W at constant parameter c. We show
that for any degree d of W and m ∈ N the space S(V ∗) contains a single copy of the
reflection representation V of W spanned by the homogeneous singular polynomials of
degree d− 1 + hm, where h is the Coxeter number of W ; these polynomials generate
an Hc(W ) submodule with the parameter c= (d− 1)/h+m. We express these singular
polynomials through the Saito polynomials which are flat coordinates of the Saito metric
on the orbit space V/W . We also show that this exhausts all the singular polynomials in
the isotypic component of the reflection representation V for any constant parameter c.

1. Introduction

In this paper we relate two remarkable constructions associated with a finite Coxeter group
W . The first one is the Frobenius manifold structure on the space of orbits of W acting in
its reflection representation V ; see [Dub96]. The key ingredient here is the Saito flat metric on
the orbit space V/W ; see [SYS80]. This metric is defined as a Lie derivative of the standard
contravariant (Arnold) metric. The flat coordinates form a distinguished basis in the ring of
invariant polynomials S(V ∗)W . This basis is now known explicitly for all irreducible groups W .
All the cases except for W of type E7 or E8 were covered in the original paper [SYS80]. The flat
coordinates in the latter two cases were found recently in both [Abr09] and [Tal10].

The other famous construction associated with the group W is the rational Cherednik
algebra Hc(W ) (see [EG02]). It depends on the W -invariant function c on the set of reflections
of W , which we assume to be constant. The key ingredient here is the Dunkl operator ∇ζ , ζ ∈ V ,
which acts in the ring of polynomials as a differential-reflection operator [Dun89]. For particular
values of c, the polynomial representation S(V ∗) has non-trivial submodules M . These values
were completely determined by Dunkl et al. in [DJO94], where it was shown that non-trivial
submodules exist if and only if c is a non-integer number of the form c= l/d where d is one of
the degrees of the Coxeter group W and l ∈ Z>0. The lowest homogeneous component M0 of M
consists of so-called singular polynomials [DJO94], which are annihilated by Dunkl operators ∇ζ
for any ζ ∈ V . All singular polynomials were found by Dunkl in the case where W is of type A;
see [Dun04, Dun05]. Further, it was established in [ES09] that in this case, any submodule M is
generated by its lowest homogeneous component M0. In general, the structure of submodules of
S(V ∗) and the corresponding singular polynomials are not known. Some singular polynomials for
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the classical groups W and for the icosahedral group were determined in [CE03] and [Dun03] (see
also [BP10]), respectively, while the dihedral case was fully studied in [DJO94] (see also [Chm06]).

In this paper we study singular polynomials that belong to the isotypic component of the
reflection representation V of the Coxeter group W . The existence of such singular polynomials
is known for the Weyl groups when c= r/h, with h being the Coxeter number of W and r
a positive integer coprime to h (see [GG09]). It appears that, in general, the corresponding
parameter values have to be c= (d− 1)/h+m, where d is one of the degrees of W and m ∈ Z>0.
We explain how to construct all the singular polynomials in the isotypic component of V in
terms of the Saito polynomials which are flat coordinates of the Saito metric. We use the theory
of Frobenius manifolds, especially Dubrovin’s almost duality [Dub04]. We show that the singular
polynomials under consideration correspond to the W -invariant polynomial twisted periods of
the Frobenius manifold V/W , and we determine all such twisted periods.

Firstly, we prove that the first-order derivatives of the Saito polynomials are singular
polynomials at appropriate values of the parameter c= (d− 1)/h (Corollary 2.14). Then we
explain how to construct further singular polynomials with the parameter c shifted by an integer
(Theorem 3.16). We next show in Corollary 4.10 that this construction gives all of the singular
polynomials in the isotypic component of the reflection representation.

In the final section we present residue formulae for all the polynomial invariant twisted
periods in the case of classical Coxeter groups W . Then we generalize them to get some singular
polynomials for the complex reflection group W = Sn n (Z/`Z)n.

2. Frobenius structures on the orbit spaces

Let V = Cn with the standard constant metric g given by g(ei, ej) = (ei, ej) = δij , where ei,
i= 1, . . . , n, is the standard basis in V . Let (x1, . . . , xn) be the corresponding orthogonal
coordinates. Let W be an irreducible finite Coxeter group of rank n which acts in V by orthogonal
transformations such that V is the complexified reflection representation of W . Let R⊂ V be the
Coxeter root system with the group W (see [Hum90]). Let y1(x), . . . , yn(x) be a homogeneous
basis in the ring of invariant polynomials S(V ∗)W = C[x1, . . . , xn]W = C[x]W . Let dα be the
corresponding degrees dα = deg yα(x), for α= 1, . . . , n. We assume that the polynomials are
ordered so that d1 > · · ·> dn, with d1 = h being the Coxeter number of the group W . The
polynomials y1, . . . , yn are coordinates on the orbit spaceM= V/W . The Euclidean coordinates
x1, . . . , xn can also be viewed as local coordinates on M\Σ, where Σ is the discriminant set.
Denote by S = {x ∈ V | (γ, x) = 0 for some γ ∈R} the preimage of Σ in the space V .

The metric g is defined on M\Σ owing to its W -invariance. Let gαβ be the corresponding
contravariant metric. Consider its Lie derivative ηαβ(y) = ∂y1g

αβ(y). The metric η is called the
Saito metric. It is correctly defined (up to proportionality), and it is flat. There exist homogeneous
coordinates tα ∈ C[x]W , 1 6 α6 n, with deg tα = dα such that η is constant and anti-diagonal,
more exactly,

ηαβ = ∂t1g
αβ(t) = δα+β

n+1 for 1 6 α, β 6 n,

where δij = δij is the Kronecker symbol.1 Such coordinates are called Saito polynomials.
The pair of metrics g, η forms a flat pencil which defines a Frobenius manifold [Dub96]. We

will mainly be concerned with the almost dual Frobenius structure [Dub04]; it is defined by the

1 We distinguish between upper and lower indices, as we will use the standard differential-geometrical convention
of assuming summation over the repeated upper and lower indices.
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prepotential

F (x) =
1
2

∑
γ∈R+

(γ, x)2 log(γ, x),

where summation is over the set of positive roots and the roots are normalized so that (γ, γ) = 2.
The prepotential is quasi-homogeneous, that is, its Lie derivative is of the form

LEF =
2
h
F + quadratic terms in x,

where E is the Euler vector field

E =
1
h
xi

∂

∂xi
= Eα

∂

∂tα

with Eα = (dα/h)tα.
Define the tensor

∗
Cijk =

∂3F

∂xi∂xj∂xk
=
∑
γ∈R+

γiγjγk
(γ, x)

, (2.1)

where x ∈ V and γi = (γ, ei). Let
∗
Cijk = gil

∗
Cjkl. Then, for any x ∈ V \S, the tensor

∗
Cijk =

∗
Cijk(x)

gives the structure constants of an associative n-dimensional algebra [Dub04].

Define another tensor Cijk =
∗
C
ij
k = gil

∗
C
j
kl, and consider the corresponding tensor with two low

indices Cαβλ = ηλεC
αε
β in the flat coordinates tα. The tensor Cαβλ defines associative multiplication

of tangent vectors at any point of the orbit space; the vector field ∂t1 is the unity of this
multiplication. Let Cα be the corresponding n× n matrix with entries (Cα)βλ = Cβαλ. Let U be
the matrix Uαβ = gαληλβ. The following result plays a key role.

Theorem 2.2 [Dub04, Proposition 3.3]. A function p(t1, . . . , tn) satisfies the system of
equations

∂2p

∂xi∂xj
= ν

∗
C
k
ij

∂p

∂xk
, 1 6 i, j 6 n (2.3)

if and only if the following equations hold:

ξα(t) = ∂tαp(t), 1 6 α6 n, (2.4)
∂tαξ(t) U = ξ(t)(ν + Λ)Cα, 1 6 α6 n, (2.5)

where ξ(t) = (ξ1(t), . . . , ξn(t)) and Λ is the diagonal matrix

Λ =−1
h

Diag(d1 − 1, . . . , dn − 1).

Functions p satisfying the system (2.3) are called twisted periods of the Frobenius
manifold [Dub04]. We will be dealing with the system (2.4)–(2.5), so we note the following fact.

Lemma 2.6. For any polynomial solution ξ(t) of the system (2.5) there exists a polynomial p(t)
satisfying (2.4).

Proof. It is sufficient to check the compatibility ∂tαξβ = ∂tβξα. Taking into account invertibility
of the matrix U on M\Σ and using equation (2.5), we rewrite this equality as

ξλ(ν + Λ)λεC
ε
βρ(U

−1)ρα = ξλ(ν + Λ)λεC
ε
αρ(U

−1)ρβ.

Note that it is necessary to check that

Cεβρ(U
−1)ρα = Cεαρ(U

−1)ρβ. (2.7)
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The equality (2.7) is equivalent to

CελρU
λ
δ = CελδU

λ
ρ . (2.8)

Indeed, upon multiplying (2.8) by (U−1)ρα(U−1)δβ and summing by repeating indices we
obtain (2.7). The relation (2.8), in turn, follows from the property Uαβ = EεCαεβ (see [Dub96])
and the associativity conditions CελρC

λ
αδ = CελδC

λ
αρ. 2

We observe that the Saito polynomials themselves satisfy the equations from Theorem 2.2.
More exactly, we have the following statement.

Lemma 2.9. For each β = 1, . . . , n, the function p(t) = tβ is a solution to the system (2.4)–(2.5)
with parameter

ν =
dβ − 1
h

.

Proof. By substituting ξα = δβα into (2.5), we obtain the equations 0 = eβ(ν + Λ)Cα, where eβ =
(0, 0, . . . , 1, . . . , 0) with 1 in the position β. These equations are satisfied if ν − (dβ − 1)/h= 0. 2

Now recall the Dunkl operators associated with the Coxeter group W . We fix a parameter
c ∈ C. The Dunkl operator in the direction ei (with i= 1, . . . , n) is given by

∇i = ∂xi − c
∑
γ∈R+

γi
(γ, x)

(1− sγ), (2.10)

where sγ denotes the orthogonal reflection with respect to the hyperplane (γ, x) = 0. The key
property of Dunkl operators is their commutativity [Dun89]:

[∇i,∇j ] = 0 for 1 6 i, j 6 n.

Proposition 2.11. Suppose that a W -invariant polynomial p(x1, . . . , xn) satisfies the
system (2.3). Then for any j = 1, . . . , n the polynomial vj(x) = ∂xjp(x) satisfies the equations

∇ivj = 0, i= 1, . . . , n, (2.12)

where ∇i is the Dunkl operator (2.10) with parameter c= ν.

Proof. By using the W -invariance of p(x), we rearrange the left-hand side of equation (2.12) as

∇ivj = ∂xi∂xjp(x)− ν
∑
γ∈R+

γi
(γ, x)

(
∂xjp(x)− ∂

∂(sγej)
p(x)

)

= ∂xi∂xjp(x)− ν
∑
γ∈R+

2γjγi
(γ, γ)(γ, x)

(
γ,

∂

∂x

)
p(x).

By using (γ, ∂/∂x) =
∑

i γi∂xi and the formula (2.1), we obtain

∇ivj = ∂xi∂xjp(x)− ν
∗
C
k
ij∂xkp(x). (2.13)

Thus the property (2.12) follows from (2.3). 2

Corollary 2.14. Consider the Saito polynomial tβ = tβ(x) for some β = 1, . . . , n. Then the
derivatives vj = ∂xj t

β(x) satisfy the relations (2.12), that is,

∇i∇jtβ(x) =∇i∂xj tβ(x) = 0 for i, j = 1, . . . , n, (2.15)

if the Dunkl operators have parameter c= (dβ − 1)/h.
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Definition 2.16 [DJO94]. A polynomial q(x) is said to be singular if ∇iq(x) = 0 for all
i= 1, . . . , n.

Thus Corollary 2.14 deals with the singular polynomials vj . The W -module 〈v1, . . . , vn〉 is
isomorphic to the reflection representation of the Coxeter group W .

3. Shifting

In the previous section we established that derivatives of the Saito polynomials tβ are singular
polynomials for the appropriate values of the parameter c= cβ = (dβ − 1)/h. In this section
we explain how to generate further singular polynomials starting with Saito polynomials. The
corresponding parameters c differ from cβ by integers.

We start with a known property of the solutions of system (2.5).

Lemma 3.1 [Dub04, Lemma 3.6]. If ξ(t) is a solution of the system (2.5), then ξ̃(t) = ∂t1ξ(t) is
a solution of the same system with ν replaced by ν − 1:

∂tα ξ̃(t) U = ξ̃(t) (ν − 1 + Λ)Cα, 1 6 α6 n.

Note also that if a function p(t) is a solution of the system (2.4)–(2.5), then ∂t1p(t) is a
solution of the same system with ν replaced by ν − 1. Indeed, the partial derivatives of the
function ∂t1p(t) are ∂tα∂t1p(t) = ∂t1ξα(t), so they satisfy the system (2.5) with ν − 1.

The new solution ξ̃(t) given in Lemma 3.1 can be expressed as ξ̃ = ξ(ν + Λ)U−1. If ν 6=
(dα − 1)/h for all α= 1, . . . , n, then the matrix ν + Λ is invertible and we can rewrite this
relation as ξ = ξ̃ U(ν + Λ)−1. This suggests a way of inverting Lemma 3.1 in order to generate
solutions with an increased value of ν.

Lemma 3.2. Let ξ(t) be a solution of the system (2.5). Assume that ν 6= (dα − 1)/h− 1 for all
α= 1, . . . , n. Then

ξ̂(t) = ξ(t)U(ν + 1 + Λ)−1 (3.3)

is a solution of the system (2.5) with ν replaced by ν + 1:

∂tα ξ̂(t) U = ξ̂(t) (ν + 1 + Λ)Cα, 1 6 α6 n. (3.4)

Proof. Let t0 be a generic point in M and let ξ(t0) be the value of ξ(t) at this point. Then the
value of ξ̂(t) at this point is ξ̂(t0) = ξ(t0)U(t0)(ν + 1 + Λ)−1. There exists a solution ζ̂(t) of
the system (3.4) such that ζ̂(t0) = ξ̂(t0). By Lemma 3.1, the covector ζ(t) = ζ̂(t)(ν + 1 + Λ)U−1

is a solution of (2.5). Note that there exists a unique solution of the system (2.5) with a given value
at the point t0. So, upon taking into account ζ(t0) = ξ̂(t0)(ν + 1 + Λ)U−1(t0) = ξ(t0), one gets
ζ(t) = ξ(t). Therefore ζ̂(t) = ζ(t)U(ν + 1 + Λ)−1 = ξ(t)U(ν + 1 + Λ)−1 = ξ̂(t) and ξ̂(t) satisfies
equation (3.4). 2

Remark 3.5. Suppose that all the components of the ξ(t) in Lemma 3.2 are polynomials. Then,
by Lemma 2.6, there exists a polynomial p̂(t) such that ξ̂α(t) = ∂tα p̂(t). Thus the covector ξ̂(t)
satisfies the whole system (2.4)–(2.5) (with ν replaced by ν + 1) for some polynomial p̂(t).

By applying Lemma 3.2 to the first-order derivatives of the Saito polynomials, we get the
following result.

1871

https://doi.org/10.1112/S0010437X1200036X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200036X


M. Feigin and A. Silantyev

Proposition 3.6. The covector ξ̂ with components

ξ̂α =
Uβα

dβ − dα + h
, α= 1, . . . , n, (3.7)

satisfies the equations

∂tα ξ̂(t) U = ξ̂(t)(ν̂ + Λ)Cα, 1 6 α6 n, (3.8)

with ν̂ = (dβ − 1)/h+ 1.

Proof. Let ν = (dβ − 1)/h, and consider the solution p(t) = tβ of the system (2.4)–(2.5) and the
corresponding covector ξ with components ξα = δβα (see Lemma 2.9). By Lemma 3.2, the covector
ξ̂ given by formula (3.3) is a solution of (3.8) for ν̂ = ν + 1. By substituting ξα = δβα into (3.3)
we obtain the components (3.7). 2

This leads us to the following result.

Theorem 3.9. For any ζ ∈ V and β = 1, . . . , n, the polynomial

q(x) =
n∑

i,α=1

1
dβ − dα + h

∂tβ

∂xi
∂tn+1−α

∂xi
∂ζt

α (3.10)

is a singular polynomial for the Dunkl operators with parameter c= (dβ − 1)/h+ 1.

Proof. First, we rearrange to get

Uβα = gβληλα = gβ,n+1−α =
n∑
a=1

∂tβ

∂xa
∂tn+1−α

∂xa
. (3.11)

It follows from Proposition 3.6 and Lemma 2.6 that there exists a W -invariant polynomial p(x)
such that

∂tαp=
1

dβ − dα + h

n∑
a=1

∂tβ

∂xa
∂tn+1−α

∂xa
.

By Proposition 2.11, the derivative q(x) = ∂ζp(x) is a singular polynomial. It has the required
form as ∂ζp= ∂tαp∂ζt

α. 2

As an example, consider the case where β = n. The corresponding Saito polynomial tn

is proportional to (x1)2 + (x2)2 + · · ·+ (xn)2. The right-hand side of the equality (3.10) is then
proportional to

n∑
α=1

tn+1−α∂ζt
α,

as the polynomial tn+1−α is homogeneous of degree dn+1−α and dα + dn+1−α = h+ 2. We arrive
at the following consequence.

Proposition 3.12. For any ζ ∈ V , the polynomial

q(x) = ∂ζ

n∑
α=1

tαtn+1−α (3.13)

is a singular polynomial for the Dunkl operators with parameter c= (h+ 1)/h.
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Remark 3.14. For c= 1/h+m, where m ∈ Z>0, the existence of the singular polynomials in the
isotypic component of the reflection representation is known from [BEG03] (see also [Gor03]).
Further, in the case of Weyl groups W and c= r/h where r is a positive integer coprime to h,
the existence of singular polynomials in the isotypic component of the reflection representation
is known from [GG09].

Example 3.15. Let R=An ⊂ V ⊂ Cn+1 be given in its standard embedding, so that V ⊂ Cn+1

is defined by
∑n+1

i=1 zi = 0 where zi are the standard coordinates in Cn+1. Define the polynomials
sα = Resz=∞

∏n+1
i=1 (z − zi)(n+1−α)/(n+1) dz for α= 1, . . . , n. Then the Saito coordinates satisfy

tα = sα|V /(n− α+ 1) (see [Dub96, SYS80]). The polynomials sα satisfy
∑n+1

i=1 ∂s
α/∂zi = 0, so

for any ζ ∈ Cn+1 and i= 1, . . . , n+ 1 Corollary 2.14 gives ∇(n+1−α)/(n+1)
i ∂ζs

α = 0 where

∇ci =
∂

∂zi
− c

n+1∑
j=1
j 6=i

1− sij
zi − zj

,

with sij exchanging zi and zj (see also [Dun98] and [Eti07, Proposition 11.14], where this
fact was established). Further, Proposition 3.12 gives that the polynomial q(z1, . . . , zn+1) =
∂ζ
∑n

α=1 t
αtn+1−α satisfies ∇(h+1)/h

i q = 0.

By iterating the previous arguments we get the following statement.

Theorem 3.16. Let m ∈ Z>0, and fix β with 1 6 β 6 n. Define the covector ξ(m) =
(ξ(m)

1 , . . . , ξ
(m)
n ) by

ξ(m) = ξ(0)
−→∏

16j6m

U

(
Λ +

dβ − 1
h

+ j

)−1

, (3.17)

where ξ(0) has components ξ
(0)
α = δβα, α= 1, . . . , n, and the factors are ordered as

−→∏
16j6m Aj =

A1A2 · · ·Am. Then, for any i= 1, . . . , n, the polynomials

qi(x) = qβ,i(x) =
n∑

α=1

ξ(m)
α

∂tα

∂xi
(3.18)

are singular polynomials for the Dunkl operators with parameter c= (dβ − 1)/h+m. These
polynomials are homogeneous of degree dβ − 1 + hm.

4. Singular polynomials in the reflection representation

We are going to show that the polynomials (3.18) generate all singular polynomials in the
isotypic component of the reflection representation of W . First, we note that each copy of
the reflection representation spanned by the singular polynomials is governed by a single W -
invariant polynomial.

Proposition 4.1. Let a subspace M0 ⊂ C[x] be spanned by the singular polynomials, and
suppose that M0

∼= V as W -modules. Choose a basis {P1, . . . , Pn} in M0 such that each
polynomial Pi is mapped to the basis vector ei ∈ V under the isomorphism. Then there exists
Q ∈ C[x1, . . . , xn]W such that ∂Q/∂xi = Pi for all i= 1, . . . , n.
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Proof. We have ∇iPj =∇jPi = 0 for all i, j = 1, . . . , n. Hence

∂xiPj − ∂xjPi − c
∑
γ∈R+

(γ, ei)
(γ, x)

(1− sγ)Pj + c
∑
γ∈R+

(γ, ej)
(γ, x)

(1− sγ)Pi = 0. (4.2)

Since (1− sγ)ei = 2(γ, ei)γ/(γ, γ), we get

(γ, ei)(1− sγ)Pj = (γ, ej)(1− sγ)Pi

for any γ ∈R+. Thus it follows from the relation (4.2) that ∂xiPj = ∂xjPi, and so there exists
Q ∈ C[x1, . . . , xn] such that ∂Q/∂xi = Pi for all i= 1, . . . , n. Let us also check that Q is W -
invariant. Fix γ ∈R+. Then for any i= 1, . . . , n we have sγPi = ∂sγei(sγQ); on the other hand,
sγPi = ∂sγeiQ. Thus ∂sγei(Q− sγQ) = 0, and so Q= sγQ as required. 2

Corollary 4.3. The singular polynomials (3.18) can be represented as

qi =
∂Q

∂xi
(4.4)

where

Q=Qβ =
1

dβ + hm

n∑
α=1

dαξ
(m)
α tα, (4.5)

for i= 1, . . . , n, keeping the notation of Theorem 3.16.

Proof. By Proposition 4.1 we have the relation (4.4) for some invariant polynomial Q of degree
dβ + hm. Hence (dβ + hm)Q=

∑n
i=1 x

iqi 2

Remark 4.6. It has recently been explained in [KL11] how an N = 4 multi-particle mechanical
system with D(2, 1; α) superconformal symmetry can be constructed based on a solution of
the WDVV equations and a particular twisted period. It follows from Theorem 3.16 and
Corollary 4.3 that the polynomials qi and Q given by (3.18) and (4.5) define a superconformal
mechanical system with the bosonic potential proportional to Q−2

∑n
i=1 q

2
i at the parameter

value α=−(dβ + hm)/2.

Remark 4.7. Let g(x1, . . . , xn) be a homogeneous W -invariant polynomial of positive degree.
Let Lg be the differential operator which acts on the W -invariant functions by g(∇1, . . . ,∇n).
The operators Lg commute with each other and include the corresponding Calogero–Moser
operator [Eti07]. It follows from Corollary 4.3 that if c= (dβ − 1)/h+m, then LgQβ = 0 and so
the polynomial Qβ belongs to the joint kernel of the Calogero–Moser operator and its quantum
integrals. In particular, the Saito polynomial tβ satisfies Lgtβ = 0 if c= (dβ − 1)/h.

Now we move to the main statement of this section, on possible polynomial twisted periods
of the Frobenius manifold M.

Theorem 4.8. Let L be the linear space of solutions p(x) to the system (2.3) such that
p ∈ C[x]W . Then dim L= 1 unless ν = (dβ − 1)/h+m for some degree dβ and m ∈ Z>0. In the
latter case, dim L= 2 unless W =Dn, where n is even and dβ = n in which case dim L= 3.

Proof. Suppose that p ∈ C[x]W is a homogeneous solution of the system (2.3) such that
D = deg p > 0. By Proposition 2.11, the polynomials vi(x) = ∂p(x)/∂xi are singular at the
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parameter c= ν. It follows from the relation
n∑
i=1

xi∇i =
n∑
i=1

xi∂xi − ν
∑
γ∈R+

(1− sγ)

that ν = (D − 1)/h> 0 (cf. [DJO94]). Consider first the case where 0 6 ν 6 1. Equation (2.5) at
α= 1 takes the form 0 = ξ(t)(ν + Λ), since C1 = Id and deg ξλ =D − dλ < h for any 1 6 λ6 n.
Hence the matrix ν + Λ is degenerate, so ν = (dβ − 1)/h for some β, and D = dβ. Moreover, p(x)
as a polynomial of the Saito coordinates has to be a linear combination of tλ with dλ = dβ.

Now let ν > 1. The polynomial ∂t1p(t) is non-constant as the matrix ν + Λ is non-degenerate.
By Lemma 3.1, the polynomial ∂t1p(t) is a solution of the system (2.3) with ν replaced by ν − 1. It
follows from Lemma 3.2 and Remark 3.5 that the spaces of positive-degree homogeneous invariant
solutions of (2.3) for the parameter ν and for when ν is replaced by ν − 1 are isomorphic. 2

The arguments from the proof of Proposition 2.11 can be reversed, from which it follows that
the polynomial (4.5) is a twisted period with ν = (dβ − 1 + hm)/h of the Frobenius manifoldM.
Thus Theorem 4.8 implies the following statement.

Corollary 4.9. Let p ∈ C[x]W be a non-constant twisted period of the Frobenius manifoldM.
Then ν = (dβ − 1 + hm)/h for some degree dβ and m ∈ Z>0. Further, p= λQβ unless W =D2r

and dβ = 2r for some r ∈ N, in which case p= λQr + µQr+1 where the Qβ are given by (4.5) and
λ, µ ∈ C.

Consider now a linear space M0 of singular polynomials such that M0
∼= V as W -modules.

Then Q ∈ C[x]W defined by Proposition 4.1 is a twisted period and hence Corollary 4.9 allows
us to describe all such W -modules M0.

Corollary 4.10. Let q be a homogeneous singular polynomial. Suppose that the linear
space spanned by the polynomials wq, w ∈W , is isomorphic to V as a W -module. Then
deg q = dβ − 1 + hm for some degree dβ of W , m ∈ Z>0, and c= (dβ − 1 + hm)/h.

Further, q =
∑n

i=1 ηiqβ,i unless W =D2r and dβ = 2r for some r ∈ N, in which case q =∑n
i=1 ηi(λqr,i + µqr+1,i) where the qβ,i are given by (3.17)–(3.18) and λ, µ, ηi ∈ C.

In the former cases, all the homogeneous singular polynomials for c= (dβ − 1 + hm)/h in
the isotypic component of the reflection representation are described as linear combinations∑n

i=1 ηiqβ,i, while in the latter case the homogeneous singular polynomials in the isotypic
component of the reflection representation form the 2n-dimensional subspace of polynomials∑n

i=1 λiqr,i + µiqr+1,i where λi, µi ∈ C.

5. Further examples for classical series

While we express singular polynomials in the isotypic component of the reflection representation
of W through the Saito polynomials, in certain cases direct formulae exist. We refer to [Chm06,
DJO94] for the case of dihedral groups, and to [Dun98, CE03] for the case where W is of classical
type. For instance, it follows from [Dun98] and Corollary 4.9 that all the polynomial invariant
twisted periods for W =An are given by

Q= Resz=∞
n+1∏
j=1

(z − zj)ν dz
∣∣∣∑

zj=0
,
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where ν = s/(n+ 1) +m with s= 1, . . . , n and m ∈ Z>0 (c.f. [Dub04]). Further, let

Q= Resz=∞ za
n∏
j=1

(z2 − x2
j )
ν dz, (5.1)

where x1, . . . , xn are the standard coordinates in Cn. Then all the polynomial invariant
twisted periods for W =Bn have the form (5.1) where a= 0 and ν = (2s− 1)/2n+m with
s= 1, . . . , n and m ∈ Z>0. Similarly, (5.1) is the twisted period for W =Dn if a=−2ν and
ν = (2s− 1)/2(n− 1) +m with s= 1, . . . , n− 1 and m ∈ Z>0. All the remaining polynomial
invariant twisted periods for W =Dn have the form

Q= Resz=0 z
−2m−1

n∏
j=1

(z2 − x2
j )
m+1/2 dz, (5.2)

where m ∈ Z>0 (cf. [EYY93]). We note that for even n, the polynomial Q=Qm,∞ given by (5.1)
with a=−2m− 1 and ν =m+ 1/2 where m ∈ Z>0 has the same degree as the polynomial
Q=Qm,0 given by (5.2) with the same m. These polynomials are not proportional, as for m> 0
the polynomial ∂t1Qm,∞ is a non-zero multiple of the polynomial Qm−1,∞ and ∂t1Qm,0 is a
non-zero multiple of Qm−1,0.

This leads to the following proposition, which can also be checked directly.

Proposition 5.3. Let the polynomial Q(x) be given by (5.2) with m ∈ Z>0. For any ζ ∈ V , the
polynomial ∂ζQ is singular for W =Dn with parameter c=m+ 1/2.

Proposition 5.3 can be generalized to the case of the complex reflection group W = Sn n
(Z/`Z)n where ` ∈ Z satisfies `> 2. This group is generated by the reflections σ(a)

ij and si acting
on the standard basis by

σ
(a)
ij ei = ω−aej , σ

(a)
ij ej = ωaei, σ

(a)
ij ek = ek, (5.4)

siei = ωei, siek = ek, (5.5)

where ω = e2πi/` is the `th primitive root of unity, i, j, k = 1, . . . , n with i 6= j 6= k 6= i, and
a= 0, . . . , `− 1. The Dunkl operators in this case have the form

∇i = ∂xi − ν
`−1∑
a=0

n∑
j=1
j 6=i

1
xi − ωaxj

(1− σ(a)
ij )−

`−1∑
b=1

cb

`−1∑
a=0

ω−ab

xi
sai (5.6)

where ν, c1, . . . , c`−1 ∈ C (see [DO03]; we do not suppose any more that parameters of the Dunkl
operators are equal). Define c0 = 0 and ca`+b = cb for a ∈ Z and b= 0, 1, . . . , `− 1.

The next statement generalizes Proposition 5.3. The form of the singular polynomials is
suggested by [CE03], where some singular polynomials for the group W were found using the
residues at infinity.

Proposition 5.7. Let q ∈ Z satisfy 1 6 q 6 `− 1. Suppose that ν =m+ (`− q + s)/`, cq−s = 0
and c−s = s/` for some m, s ∈ Z>0. Then the formulae

fj =
n∏
i=1

x`νi Resz=0 z
−`m−1

n∏
i=1

(
1− z`

x`i

)ν xqj dz

x`j − z`
(5.8)

define singular polynomials; that is, ∇ifj = 0 for any i, j = 1, . . . , n, where the operator ∇i is
given by (5.6) (and in (5.8) it is assumed that xi 6= 0 for all i). These polynomials are homogeneous

1876

https://doi.org/10.1112/S0010437X1200036X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200036X


Singular polynomials from orbit spaces

of degree (n− 1)(m`+ `− q) + ns, and they span an irreducible n-dimensional representation
of W .

Proof. Calculating the residue in (5.8) explicitly yields

fj = (−1)m
∞∑

k1,...,kn=0
k1+···+kn=m

(
ν − 1
kj

)
x
`(m−kj)+s
j

n∏
i=1
i6=j

(
ν

ki

)
x
`(ν−ki)
i ,

where
(
α
k

)
= α(α− 1) · · · (α− k + 1)/k! and

(
α
0

)
= 1. Since ν >m, the function fj is a

homogeneous polynomial of x1, . . . , xn, with degree (n− 1)`ν + s= (n− 1)(m`+ `− q) + ns.
Note that all the coefficients in this expression do not vanish, and hence fj 6= 0. The generators
of W act on the polynomials (5.8) by the formulae

σ
(a)
ij fi = ωaqfj , σ

(a)
ij fj = ω−aqfi, σ

(a)
ij fk = fk, (5.9)

sifi = ω−sfi, sifk = ωq−sfk, (5.10)

where i, j, k = 1, . . . , n with i 6= j 6= k 6= i and a= 0, . . . , `− 1. It follows that the space spanned
by fj , j = 1, . . . , n, is an n-dimensional irreducible representation of W .

Next, let us show that the polynomial fj is singular. Let i 6= j; then, using the formulae (5.9)–
(5.10), we find

∇ifj = ∂xifj − ν
`−1∑
a=0

1
xi − ωaxj

(fj − ω−aqfi)−
`−1∑
b=1

cb

`−1∑
a=0

ω−ab

xi
ωa(q−s)fj . (5.11)

The last term in (5.11) equals −`cq−sx−1
i fj = 0, as

∑`−1
a=0 ω

ab = 0 for b /∈ `Z. Thus ∇ifj =∏n
i=1 x

`ν
i Resz=0 z

−`m−1
∏n
i=1(1− z`/x`i)νFij dz, where

Fij = ν
`x`−1
i xqj

(x`i − z`)(x`j − z`)
− ν

`−1∑
a=0

1
xi − ωaxj

(
xqj

x`j − z`
−
ω−aqxqi
x`i − z`

)

= − ν

(x`i − z`)(x`j − z`)

(
−`x`−1

i xqj +
`−1∑
a=0

z`ω−aq(xqi − ωaqx
q
j) + xqix

q
j(x

`−q
i − ω−aqx`−qj )

xi − ωaxj

)
= − ν

(x`i − z`)(x`j − z`)

(
−`x`−1

i xqj

+
`−1∑
a=0

z`ω−aq
q−1∑
b=0

xbiω
a(q−1−b)xq−1−b

j +
`−1∑
a=0

xqix
q
j

`−q−1∑
b=0

x`−q−1−b
i ωabxbj

)
.

Thus the first double sum in Fij vanishes and the last double sum equals `x`−1
i xqj . Therefore

Fij = 0 and ∇ifj = 0 for i 6= j.

Now, to prove that ∇jfj = 0, it is sufficient to check that
∑n

i=1 xi∇ifj = 0. Since fj is
homogeneous of order (n− 1)`ν + s, we have

∑n
i=1 xi∂xifj = ((n− 1)`ν + s)fj . Hence, using

cq−s = 0 as previously, one obtains

n∑
i=1

xi∇ifj = ((n− 1)`ν + s)fj +
n∏
k=1

x`νk Resz=0 z
−`m−1

n∏
k=1

(1− z`/x`k)νFj dz,
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where

Fj = −ν
`−1∑
a=0

n∑
i=1
i6=j

xi
xi − ωaxj

(
xqj

x`j − z`
−
ω−aqxqi
x`i − z`

)

− ν
`−1∑
a=0

n∑
k=1
k 6=j

xj
xj − ωaxk

(
xqj

x`j − z`
−

ωaqxqk
x`k − z`

)
−

`−1∑
b=1

cb

`−1∑
a=0

ω−ab−asxqj

x`j − z`
.

By taking into account that xi/(xi − ωaxj) + xj/(xj − ω−axi) = 1, we obtain

Fj =−ν
`−1∑
a=0

n∑
i=1
i6=j

(
xqj

x`j − z`
−
ω−aqxqi
x`i − z`

)
− `c−s

xqj

x`j − z`
=−

xqj

x`j − z`
((n− 1)`ν + s),

where we have used the assumption that c−s = s/`. Hence we deduce that
∑n

i=1 xi∇ifj = 0. 2

Remark 5.12. In the case where the parameters satisfy ` |(s− q), the singular polynomials (5.8)
appeared earlier in [CE03, Proposition 4.1], where they were presented using the residue at
infinity. In other cases, the space spanned by (5.8) does not contain the singular polynomials
from [CE03, Proposition 4.1], except for the case where n= 2 and s= 0 and the case where
n= 1.

Acknowledgements

M.F. is very grateful to Y. Burman for stimulating discussions, particularly during the beginning
stages of this work, and to I. Strachan for useful discussions and for pointing out the paper [Tal10].
M.F. also thanks S. Krivonos, O. Lechtenfeld, A. Marshakov and A. Varchenko for stimulating
discussions. Both authors are grateful to C. Dunkl and S. Griffeth for useful comments.

References

Abr09 D. Abriani, Frobenius manifolds associated to Coxeter groups of type E7 and E8, Preprint (2009),
arXiv:0910.5453.

BP10 M. Balagovic and A. Puranik, Irreducible representations of the rational Cherednik algebra
associated to the Coxeter group H3, Preprint (2010), arXiv:1004.2108.

BEG03 Yu. Berest, P. Etingof and V. Ginzburg, Finite-dimensional representations of rational Cherednik
algebras, Int. Math. Res. Not. 2003 (2003), 1053–1088.

Chm06 T. Chmutova, Representations of the rational Cherednik algebras of dihedral type, J. Algebra 297
(2006), 542–565.

CE03 T. Chmutova and P. Etingof, On some representations of the rational Cherednik algebra,
Represent. Theory 7 (2003), 641–650.

Dub96 B. Dubrovin, Geometry of 2D topological field theories, in Integrable systems and quantum groups
(Montecatini Terme, Italy 1993), Lecture Notes in Mathematics, vol. 1620 (Springer, Berlin,
1996), 120–348.

Dub04 B. Dubrovin, On almost duality for Frobenius manifolds, in Geometry, topology, and mathematical
physics, American Mathematical Society Translations Series 2, vol. 212 (American Mathematical
Society, Providence, RI, 2004), 75–132.

Dun89 C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math.
Soc. 311 (1989), 167–183.

1878

https://doi.org/10.1112/S0010437X1200036X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200036X


Singular polynomials from orbit spaces

Dun98 C. F. Dunkl, Intertwining operators and polynomials associated with the symmetric group,
Monatsh. Math. 126 (1998), 181–209.

Dun03 C. Dunkl, Special functions and generating functions associated with reflection groups, J. Comput.
Appl. Math. 153 (2003), 181–190.

Dun04 C. F. Dunkl, Singular polynomials for the symmetric groups, Int. Math. Res. Not. 2004 (2004),
3607–3635.

Dun05 C. F. Dunkl, Singular polynomials and modules for the symmetric groups, Int. Math. Res. Not.
2005 (2005), 2409–2436.

DJO94 C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam, Singular polynomials for finite reflection groups,
Trans. Amer. Math. Soc. 346 (1994), 237–256.

DO03 C. F. Dunkl and E. M. Opdam, Dunkl operators for complex reflection groups, Proc. Lond. Math.
Soc. 86 (2003), 70–108.

EYY93 T. Eguchi, Y. Yamada and S.-K. Yang, Topological field theories and the period integrals, Modern
Phys. Lett. A 8 (1993), 1627–1637.

Eti07 P. Etingof, Calogero-Moser systems and representation theory, Zurich Lectures in Advanced
Mathematics (European Mathematical Society, Zürich, 2007).
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